JPS61122530A - Self-check type flame sensor - Google Patents

Self-check type flame sensor

Info

Publication number
JPS61122530A
JPS61122530A JP24345584A JP24345584A JPS61122530A JP S61122530 A JPS61122530 A JP S61122530A JP 24345584 A JP24345584 A JP 24345584A JP 24345584 A JP24345584 A JP 24345584A JP S61122530 A JPS61122530 A JP S61122530A
Authority
JP
Japan
Prior art keywords
flame
light
receiving element
crystal cell
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24345584A
Other languages
Japanese (ja)
Inventor
Susumu Hirata
進 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP24345584A priority Critical patent/JPS61122530A/en
Publication of JPS61122530A publication Critical patent/JPS61122530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To detect whether there is flame or not and whether a flame sensor is faulty or not by arranging a liquid crystal cell which is driven to enter a transparent and an opaque mode alternately and repeatedly at a specific period on the front surface of a photodetecting element, and detecting a signal obtained at the photodetecting element by a detecting circuit with a fail-safe function. CONSTITUTION:The liquid-crystal cell 3 arranged between flame 1 and the photodetector 4 is driven with output voltage pulses of a driving voltage source 5 to enter the transparent mode and opaque mode alternately at a specific frequency. When the liquid-crystal cell 3 is transparent, light from the flame 1 which is converged by a lens 2 is incident on the photodetector 4 through the liquid-crystal cell 3 and converted into an electric signal, which is detected as a pulse output of the specific frequency by a pulse detecting circuit 7 having the fail-safe function through an amplifier 6. Thus, whether there is the flame 1 or not and whether the flame sensor is fault or not are detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、受光素子を用いて火炎の有無を検出する方式
の火炎センサに関し、更に具体的には火炎の有無を検出
する検出動作中に常時自己の故障の有無をもチェックで
きる自己診断機能を有する自己点検式の火炎センサに関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flame sensor that uses a light receiving element to detect the presence or absence of a flame, and more specifically, to a flame sensor that detects the presence or absence of a flame. The present invention relates to a self-checking flame sensor that has a self-diagnosis function that can constantly check whether there is a malfunction or not.

〔従来の技術〕[Conventional technology]

火炎の有無を検出する火炎センサの出力によって燃料の
供給、停止を制御する燃焼制御装置は、火炎がないにも
かかわらず誤って火炎があるとする誤検知が生じた場合
には、燃料を供給し続けることになるから誤検知は爆発
等の極めて危険な状態を招くことになる。従って、燃焼
制御装置に適用する場合の火炎センサには特に信頼性が
要求される。
The combustion control device, which controls the supply and stop of fuel based on the output of a flame sensor that detects the presence or absence of a flame, stops supplying fuel if a false detection that there is a flame occurs even though there is no flame occurs. As the detection continues, false detections can lead to extremely dangerous situations such as explosions. Therefore, reliability is particularly required for flame sensors when applied to combustion control devices.

従来、火炎センサとして、電極を火炎中に挿入して火炎
電流を直接検出するフレームロッド方式のものがある。
Conventionally, there is a flame rod type flame sensor in which an electrode is inserted into a flame to directly detect flame current.

上記フレームロッド方式の火炎センサの場合には、電極
を直接火炎中にさらすため腐食等の問題があり、上述の
ように特に信頼性が要求される燃焼制御装置における火
炎センサとしては信頼性の上からも十分ではない〇一方
、受光素子例えばCdSセル等を利用した光センサによ
って光学的に火炎の有無を検知する方式の火炎センサは
、非接触であるためフレームロッド方式の場合の不都合
がないものの火炎検出動作中においては光センサのオー
プン故障、ショート故障の発生を検知できない。従って
、光学的に火炎の有無を直接的に検出する場合は、一般
に、スタートチェック時においてこれらの故障の有無を
検出し7エイルセー7性を実現するという対策が採られ
ている。しかし、スタートチェック時には故障がなくて
も動作中に故障に至るということもあシ得る。
In the case of the above-mentioned flame rod type flame sensor, there are problems such as corrosion because the electrodes are directly exposed to the flame, and as mentioned above, it is not reliable as a flame sensor in a combustion control device that particularly requires reliability. 〇On the other hand, flame sensors that optically detect the presence or absence of flame using a light-receiving element such as a CdS cell do not have the disadvantages of the flame rod method because they are non-contact. During the flame detection operation of the object, it is not possible to detect the occurrence of an open failure or a short failure of the optical sensor. Therefore, when directly detecting the presence or absence of a flame optically, a measure is generally taken to detect the presence or absence of these failures at the time of a start check and to realize the reliability. However, even if there is no failure during the start check, it is possible that a failure may occur during operation.

従って、安全性確保の上からは、本来的には検出動作中
においてこそ光センサのこれらの故障の発生を常時チェ
ックできるようにすることが必要である。
Therefore, from the viewpoint of ensuring safety, it is essentially necessary to be able to constantly check the occurrence of these failures of the optical sensor during the detection operation.

そこで、特に極めて高い安全性を実現しなければならな
い大型の燃焼器のような一部の燃焼器のへ  燃焼制御
装置における火炎センサでは、上述のように火炎からの
光を直接受光素子に導くのではなく、検出動作中の故障
発生のチェックも行なえるように、受光素子としての例
えば紫外線検出用の光電管の前面に回転機構を有するメ
カニカルなシャッタを設置し、入射する火炎光をチョッ
パリングすることによって光電管の出力をパルス化し、
フェイルセーフ機能をもつパルス検出回路で上記光電管
の出力パルスを検出することによシ、光電管のみならず
回路部も含めた誤検知防止を行なうようにした方式が採
用されている。なお、受光素子として紫外線検出用光電
管を用いるのは、赤熱した燃焼器の炉壁等からの赤外線
の影響を排除するためで、紫外線領域を使うことによシ
火炎のみをチェックでき、炉壁等からの赤外線によって
誤動作することはない。従って、高い安全性が要求され
ているような場合に、紫外線検出用光電管を使用すれば
、更に、赤熱されている炉壁等からの赤外線で火炎があ
ると誤検知するのを避けることもできる。
Therefore, for some combustors such as large combustors that must achieve an extremely high level of safety, flame sensors in combustion control devices do not guide the light from the flame directly to the light receiving element as described above. Instead, a mechanical shutter with a rotating mechanism is installed in front of a phototube for ultraviolet detection as a light receiving element, for example, to chopper the incident flame light so that it can be checked for failures during detection operation. The output of the phototube is pulsed by
A method is adopted in which the output pulse of the phototube is detected by a pulse detection circuit with a fail-safe function, thereby preventing false detection not only of the phototube but also of the circuit section. The purpose of using an ultraviolet detection phototube as a light-receiving element is to eliminate the influence of infrared rays from the red-hot combustor wall, etc. By using ultraviolet light, only the flame can be checked. It will not malfunction due to infrared rays from the Therefore, in cases where a high level of safety is required, using an ultraviolet detection phototube can also avoid false detection of flame due to infrared rays from red-hot furnace walls, etc. .

上記メカニカルシャッタを用いる方式は、検出動作中に
おいても火炎センサのオープン故障、ショート故障を常
時チェックできる点で極めて優れたものではあるか、回
転機構を有するメカニカルなチョッパリングは大がかシ
なものとなシ、形状が大きくなシ、また可動部があるた
め寿命も短く従って信頼性の低下を招くことにもなる。
Isn't the above method using a mechanical shutter extremely superior in that it can constantly check for open and short circuit failures in the flame sensor even during detection operation?A mechanical chopper ring with a rotating mechanism is a big deal. However, since it is large in shape and has moving parts, it has a short lifespan, resulting in a decrease in reliability.

すなわち、光学的に検出する場合の利点は7レ一ムロツ
ド方式よシも信頼性を向上させることができるというと
ころにあるが、上記のようにメカニカルなシャッタを設
けるととKよって、光学的に検出する方式の利点が損な
われることになる。更に、回転機構を有するメカニカル
シャッタは消費電力も大きいし、価格的に高価なものと
なることもあって、一般に普及している燃焼制御装置の
火炎センサには適用できないという不都合がある。
In other words, the advantage of optical detection is that it can improve reliability compared to the 7-frame rod method, but if a mechanical shutter is provided as described above, it is difficult to detect optically. The advantages of the detection method will be lost. Furthermore, a mechanical shutter having a rotating mechanism consumes a large amount of power and is expensive, so that it cannot be applied to a flame sensor of a commonly used combustion control device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記のように火炎センサに自己点検機能をも
たせる場合に、回転機構を有するメカニカルなシャッタ
では大がかシとなシ、寿命も短く、しかも価格的に高価
なものとなるという問題を解決しようとするものである
The present invention solves the problem that when providing a flame sensor with a self-inspection function as described above, a mechanical shutter with a rotating mechanism is too bulky, has a short lifespan, and is expensive. This is an attempt to solve the problem.

〔問題点を解決するための手段及び作用〕本発明は、上
記問題点を解決するため、受光素子の前面に駆動電圧源
によって所定の周期で透明モードと不透明モードを交互
に繰り返すよう駆動される液晶セルを配置し、火炎セン
サに入射する火炎光を上記液晶セルによって定周期でチ
ョッパリングしパルス化して上記受光素子に与えるよう
KL、受光素子から得られる所定の繰り返し周期を有す
る信号を7工イルセー7機能をもつ検出回路によって検
出することにょシ、火炎の有無の検出の他、火炎センサ
の故障発生をも動作中において常時検出することが可能
となるようにしたものである。
[Means and operations for solving the problems] In order to solve the above problems, the present invention provides a device in which the front surface of the light-receiving element is driven by a driving voltage source to alternately repeat a transparent mode and an opaque mode at a predetermined period. A liquid crystal cell is arranged, and a signal having a predetermined repetition period obtained from the light receiving element is sent to the KL so that the flame light incident on the flame sensor is chopped at regular intervals by the liquid crystal cell, pulsed, and applied to the light receiving element. In addition to detecting the presence or absence of flame, it is also possible to constantly detect the occurrence of a failure in the flame sensor during operation by using a detection circuit having an IRS-7 function.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の火炎センサの一実施例の全体構成図で
、lは検出すべき火炎、2は火炎1の光を集光するレン
ズ、3は火炎1の光のシャッタリングを実行する液晶セ
ルであシ、図示の例では液晶セル3は火炎1の光を電気
信号に変換する受光素子4の前面に間隔を置いて配置さ
れている。5は液晶セル3を駆動する駆動電圧源で、所
定の周波数の交流成分のパルスを発振する。駆動電圧源
5のパルスの発振周波数は数10〜数100出の間にあ
る所定の値に固定されている。上記火炎1と受光素子4
の間に配置された液晶セル3は、駆動電圧源5の出力電
圧パルスで駆動されることにより、上記所定の周波数で
透明モードと不透明モードを交互に繰り返す。液晶セル
3が透明状態のときにレンズ2によシ集光された火炎1
の光が液晶セル3を通って受光素子4に入射される。
FIG. 1 is an overall configuration diagram of an embodiment of the flame sensor of the present invention, where l is the flame to be detected, 2 is a lens that focuses the light of flame 1, and 3 is a shutter for shuttering the light of flame 1. In the illustrated example, the liquid crystal cell 3 is arranged at a distance in front of a light receiving element 4 that converts the light of the flame 1 into an electrical signal. Reference numeral 5 denotes a driving voltage source for driving the liquid crystal cell 3, which oscillates a pulse of an alternating current component at a predetermined frequency. The oscillation frequency of the pulses of the drive voltage source 5 is fixed at a predetermined value between several 10 and several 100 frequencies. The above flame 1 and light receiving element 4
The liquid crystal cell 3 disposed between the two is driven by the output voltage pulse of the drive voltage source 5 to alternately repeat the transparent mode and the opaque mode at the predetermined frequency. Flame 1 focused by lens 2 when liquid crystal cell 3 is in a transparent state
The light passes through the liquid crystal cell 3 and is incident on the light receiving element 4.

6は受光素子4によって電気信号に変換された火炎1の
光の信号を増幅するアンプ、7はアンプ6の出力に接続
されたフェイルセーフ機能を有するパルス検出回路で、
パルス検出回路7は受光素子4から取シ出される上記所
定の周波数のパルス出力を検出することによって、火炎
1の有無を検へ  出すると共に、火炎センサの故障の
有無のチェックも行なう。
6 is an amplifier that amplifies the light signal of the flame 1 converted into an electric signal by the light receiving element 4; 7 is a pulse detection circuit with a fail-safe function connected to the output of the amplifier 6;
The pulse detection circuit 7 detects the pulse output of the predetermined frequency taken out from the light receiving element 4 to detect the presence or absence of the flame 1, and also checks whether the flame sensor is malfunctioning.

上記液晶セル3の構造は、第2図に一例を示すように1
液晶8が夫々電極9,9を有する一対のガラス10.1
0でテンドイツチ状に挾まれ、更にガラス10,10の
夫々の外側に互いに偏°光軸が直角に配置される偏向板
11.11が設けられた構造となっている0液晶セル3
は配向処理されているため、電極9,9に電圧が加わら
ないときは、第3図(4)に示すように1液晶8の分子
8′が900ねじれて配向されていることにより火炎光
1′の図中横方向酸が900@転し、従って液晶セル3
は光を透過し透明となる。一方、電極9,9に電圧が加
わるときには、同図の)に示すように、上記900のね
じれの配向が電界によって強制的に消失する0従って、
火炎光1′の横方向成分は液晶8を通過する際に前記の
ような900回転が生じないので、図中下側の偏向板1
1を透過できず、液晶セル3は光を遮断し不透明となる
。液晶セル3の電極9.9には駆動電圧源5の交流パル
スにより所定の周波数の電圧が印加されるので、上記所
定の周波数に対応して火炎1の光がチョッパリングされ
ることになる。従って、アンプ6の出力信号も上記周波
数に対応したパルスとなシ、パルス検出回路7に印加さ
れる。
The structure of the liquid crystal cell 3 is as shown in FIG.
A pair of glasses 10.1 on which the liquid crystal 8 has electrodes 9, 9, respectively
A 0 liquid crystal cell 3 is sandwiched between the 0 and 0 glasses 10 and 10 in the form of a tent, and is further provided with polarizing plates 11 and 11 on the outside of each of the glasses 10 and 10, the polarization axes of which are arranged at right angles to each other.
are aligned, so when no voltage is applied to the electrodes 9, 9, the molecules 8' of one liquid crystal 8 are twisted by 900 degrees and the flame light 1 is oriented as shown in FIG. 3 (4). ' In the figure, the lateral acid turns 900@, so the liquid crystal cell 3
transmits light and becomes transparent. On the other hand, when a voltage is applied to the electrodes 9, 9, the twisted orientation of 900 is forcibly disappeared by the electric field, as shown in ) in the same figure.
Since the lateral component of the flame light 1' does not undergo 900 rotations as described above when passing through the liquid crystal 8, the deflection plate 1 at the lower side of the figure
1 cannot pass through the liquid crystal cell 3, and the liquid crystal cell 3 blocks the light and becomes opaque. Since a voltage of a predetermined frequency is applied to the electrode 9.9 of the liquid crystal cell 3 by the AC pulse of the drive voltage source 5, the light of the flame 1 is chopped in accordance with the predetermined frequency. Therefore, the output signal of the amplifier 6 is also applied to the pulse detection circuit 7 as a pulse corresponding to the above frequency.

第4図はパルス検出回路7と操作部12の一例を示すも
ので、パルス検出回路7はトランジスタQ1とコンデン
サ01*C1とダイオードDIID!とリレーKlから
構成され、また操作部12は電源13と燃料弁14とリ
レーに1の常開接点に1−1から構成されている。アン
プ6のパルス出力がトランジスタQ1のペースに入力さ
れることによりトランジスタQlがオン、オフを繰り返
す。トランジスタQ1のオン、オフの繰り返しにより、
コンデンサC3はトランジスタQ1のオン、オフの周期
に対応して充tが繰り返えされると共に放電も繰υ返え
され、コンデンサCmの充放電によシリレーに1の励磁
が行なわれる。すなわち、トランジスタQ1がオフのと
きはコンデンサC2への充電が行なわれ、次にオンにな
るとトランジスタQtのコレクタはアース電位に引き下
げられ、一方コンデンサCコの放電電流はダイオードD
、を介してリレーに1とコンデンサCIの回路に流れ、
次に再びオフになるとコンデン?C鵞への充電が再び行
なわれる。コンデンサC□は、トランジスタQlがオフ
となってコンデンサC3への充電が行なわれているとき
くおいて、リレーに1の励磁を保持しておくため設けら
れている。
FIG. 4 shows an example of the pulse detection circuit 7 and the operating section 12. The pulse detection circuit 7 includes a transistor Q1, a capacitor 01*C1, and a diode DIID! The operating section 12 is composed of a power source 13, a fuel valve 14, a relay, a normally open contact, and a normally open contact 1-1. By inputting the pulse output of the amplifier 6 to the pace of the transistor Q1, the transistor Ql is repeatedly turned on and off. By repeatedly turning on and off the transistor Q1,
The capacitor C3 is repeatedly charged and discharged corresponding to the on/off period of the transistor Q1, and the series relay is excited to 1 by charging and discharging the capacitor Cm. That is, when the transistor Q1 is off, the capacitor C2 is charged, and when the transistor Q1 is turned on, the collector of the transistor Qt is pulled down to the ground potential, while the discharge current of the capacitor C is connected to the diode D.
, flows through the circuit of relay 1 and capacitor CI,
Then it turns off again and condensation? Charging of the C goose is performed again. The capacitor C□ is provided to keep the relay at 1 excitation when the transistor Ql is turned off and the capacitor C3 is being charged.

上述のように、パルス検出回路7は、アンプ6の出力が
一定周期のパルス出力であるときのみリレーに1を励磁
し続けるといういわばパルス検出器の機能を果すもので
あシ、シかもパルス検出回路7はトランジスタQ1のオ
ープン故障、ショート故障のいずれに対しても動作する
ことがない7エイルセー7性を有している。
As mentioned above, the pulse detection circuit 7 functions as a pulse detector, continuing to energize the relay with 1 only when the output of the amplifier 6 is a pulse output with a constant period. The circuit 7 has a certain property that it does not operate in response to either an open failure or a short circuit failure of the transistor Q1.

今、火炎1が確立していて、受光素子4が正常な状態す
なわち故障していない状態とする。
It is now assumed that the flame 1 has been established and the light receiving element 4 is in a normal state, that is, a state in which there is no failure.

上記状態の場合、アンプ6の出力は液晶セル3の駆動周
波数に対応するパルス出力となるので、パルス検出回路
7のリレーに1は励磁され、従ってリレーに1の常開接
点に1−1は閉成し、操作部12の燃料弁工4は開状態
を保つこと忙なる。
In the above state, the output of the amplifier 6 becomes a pulse output corresponding to the drive frequency of the liquid crystal cell 3, so the relay 1 of the pulse detection circuit 7 is energized, and therefore the normally open contact of the relay 1 is connected to the 1-1. The fuel valve 4 of the operating section 12 is busy maintaining the open state.

次に、火炎検出中に受光素子4にオープン故障あるいは
ショート故障といった故障が発生した場合、故障が発生
する。と、アンプ6の出力はパルス出力ではなく直流レ
ベルとなるため直ちにリレーに1は非励磁となシ、従っ
て常開接点に1−1は上述の閉成状態から開成状態に復
帰し、燃料弁14が閉じて安全性止が行なわれる。また
、安全停止の旨を使用者に知らせるような構成にするこ
ともできる。
Next, if a failure such as an open failure or a short failure occurs in the light receiving element 4 during flame detection, a failure occurs. Then, the output of the amplifier 6 is not a pulse output but a DC level, so the relay 1 is immediately de-energized, so the normally open contact 1-1 returns from the closed state to the open state as described above, and the fuel valve 14 is closed to effect a safety lock. Further, it is also possible to adopt a configuration that notifies the user of the safety stop.

火炎lがないときも同様にアンプ6の出力は直流レベル
となるため、リレーKlは励磁されず燃料弁14は開く
ことはない。
Similarly, when there is no flame L, the output of the amplifier 6 is at the DC level, so the relay Kl is not energized and the fuel valve 14 does not open.

上述のように1検出動作中の受光素子4に故障が発生す
ると、直ちに故障を検出することができるので、従来の
光センサによって直接的に検出する火炎センサを適用す
る燃焼制御装置がスタート時のみの受光素子の故障の有
無の確認をもって燃焼を実行するのに比し、格段の安全
性を増すことができる。しかも、回転機構を有するメカ
ニカルへ  なシャッタによるチョッパリングではなく
、液晶シャッタという電気光学的なシャッタでチョッパ
リングを行なうので、可動部がなく、従って高い信頼性
が得られるから、信頼性が低下するというおそれがなく
、また形状も極めて小さくできるし、液晶セル3を駆動
すれば済むため消費電力も少ない。更に、シャッタリン
グを実行する液晶部が故障してもパルス出力かです異常
と判断することができるので、従来の安全性を損うこと
もない。
As mentioned above, if a failure occurs in the light-receiving element 4 during one detection operation, the failure can be detected immediately, so the combustion control device that applies a flame sensor that detects directly with a conventional optical sensor can be used only at the start. Compared to executing combustion after checking whether or not there is a failure in the light-receiving element, safety can be significantly increased. Moreover, choppering is not done by a mechanical shutter with a rotating mechanism, but by an electro-optical shutter called a liquid crystal shutter, so there are no moving parts and high reliability is achieved, which reduces reliability. There is no fear that this will occur, the shape can be made extremely small, and power consumption is low because it is sufficient to drive the liquid crystal cell 3. Furthermore, even if the liquid crystal unit that performs shuttering fails, it can be determined that the pulse output is abnormal, so conventional safety is not compromised.

′ な訃、第1図に示した実施例においては、液晶セル
3は受光素子4と分離して配置した構成を示したが、本
発明はこれに限られず、例えば腕時計の時刻表示の如く
液晶セル3を受光素の入射面に一体的に形成するように
してもよい。一体的に形成するような構成にすれば、更
に櫃めてコンパクトで使い易いものとすることができる
1. In the embodiment shown in FIG. 1, the liquid crystal cell 3 is arranged separately from the light receiving element 4, but the present invention is not limited to this. The cell 3 may be formed integrally with the incident surface of the light receiving element. If the structure is formed integrally, it can be further compacted and made easier to use.

また、受光素子4としては、例えばメカニカルなチョッ
パリングを採用している紫外線検出用光電管に限られる
ことなく、最も低価格な光センサであるCdSセルや7
オトダイオード等であってもよい。すなわち、本発明は
、液晶シャッタという電気光学的でかつ極めて単純な構
成のチョッパリングによるものであるから、従来価格的
及び装置構成的に実装が考えられなかった廉価でかつ小
さな光センサ素子も対象とすることができるものである
In addition, the light receiving element 4 is not limited to an ultraviolet detection phototube that employs mechanical chopper ring, but may also be a CdS cell, which is the lowest priced optical sensor, or a 7
It may also be an otodiode or the like. In other words, since the present invention is based on choppering of an electro-optical and extremely simple structure called a liquid crystal shutter, it is also applicable to inexpensive and small optical sensor elements that could not previously be considered due to cost and device configuration. This is something that can be done.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、検出すべき火炎の光を
電気信号に変換する受光素子の前面に駆動電圧源によっ
て所定の周期で透明モードと不透明そ一ドを交互に繰夛
返すよう駆動される液晶セルを配置し、火炎センサに入
射する火炎光を液晶セルによって定周期でチョッパリン
グして上記受光素子に与えるようにし、受光素子から得
られる所定の繰り返し周期を有する信号を検出回路によ
って検出するととKよシ、火炎の有無の検出の他、火炎
検出動作中における故障の有無の検出をも行なうように
したので、火炎検出動作中においての故障の発生を直ち
に認識することができるのみならず、メカニカルシャッ
タのような可動部がないため寿命も長くかつ信頼性も高
く、また液晶セルであるため形状も極めて小さくできる
し消費電力も少なくて済む0また、液晶シャッタという
電気光学的なシャッタを用いるので、価格的及び装置構
成的な面からメカニカルなチョッパリングを適用できな
い燃焼制御装置の火炎センサにも容易に自己点検機能を
もたせることができ、しかも液晶部が故障しても上記の
所定の繰り返し周期を有する信号がでないので、異常と
判断することができ、従来の安全性を損うこともない。
As described above, according to the present invention, the driving voltage source is used to alternately repeat the transparent mode and the opaque mode at a predetermined period on the front surface of the light receiving element that converts the flame light to be detected into an electrical signal. A driven liquid crystal cell is arranged, and the flame light incident on the flame sensor is choppered at regular intervals by the liquid crystal cell and given to the light receiving element, and a signal having a predetermined repetition period obtained from the light receiving element is sent to a detection circuit. In addition to detecting the presence or absence of flame, it is also possible to detect the presence or absence of a failure during flame detection operation, so that it is possible to immediately recognize the occurrence of a failure during flame detection operation. Not only that, it has no moving parts like a mechanical shutter, so it has a long life and high reliability, and since it is a liquid crystal cell, it can be made extremely small and consumes less power. Since a shutter is used, it is possible to easily provide a self-inspection function to the flame sensor of the combustion control device, to which mechanical choppering cannot be applied due to cost and device configuration. Since there is no signal having a predetermined repetition period, it can be determined that there is an abnormality, and conventional safety will not be compromised.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の火炎センサの一実施例の全体構成図、
第2図は第1図の液晶セルの構造の一例を示す構造図、
第3図(4)及び(8)は液晶セルの光透過、遮断の動
作を説明する説明図、第4図は第1図のパルス検出回路
と操作部の具体的構成の一例を示す回路図である。 1・・・火炎、3・・・液晶セル、4・・・受光素子、
5・・・駆動電圧源、7・・・パルス検出回路。 特許用 願人  山武ノ1ネウエル株式会社第1図 第2図 第3図
FIG. 1 is an overall configuration diagram of an embodiment of the flame sensor of the present invention;
Figure 2 is a structural diagram showing an example of the structure of the liquid crystal cell in Figure 1;
Figures 3 (4) and (8) are explanatory diagrams explaining the light transmission and blocking operations of the liquid crystal cell, and Figure 4 is a circuit diagram showing an example of the specific configuration of the pulse detection circuit and operation section in Figure 1. It is. 1... Flame, 3... Liquid crystal cell, 4... Light receiving element,
5... Drive voltage source, 7... Pulse detection circuit. For patent applications: Yamatake No. 1 Newel Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)検出すべき火炎の光を電気信号に変換する受光素
子と、上記火炎と上記受光素子との間に配置され、駆動
電圧源によつて所定の繰り返し周期で透明モードと不透
明モードを交互に繰り返すよう駆動されることにより上
記火炎の光をシャッタリングして上記受光素子に与える
液晶セルと、上記受光素子から取り出される上記繰り返
し周期に応じた周波数を有する信号を検出することによ
り上記火炎と自己の故障の有無の検出を行なう検出回路
とを有する自己点検式火炎センサ。
(1) A light-receiving element that converts the flame light to be detected into an electrical signal, and a light-receiving element arranged between the flame and the light-receiving element, which alternates between a transparent mode and an opaque mode at a predetermined repetition period by a driving voltage source. A liquid crystal cell is driven to repeatedly shutter the flame light and provide it to the light-receiving element, and a signal having a frequency corresponding to the repetition period taken out from the light-receiving element is detected. A self-inspection type flame sensor having a detection circuit that detects the presence or absence of a self-failure.
(2)上記液晶セルが上記受光素子の前面に一体的に形
成されていることを特徴とする特許請求の範囲第(1)
項に記載の自己点検式火炎センサ。
(2) Claim (1) characterized in that the liquid crystal cell is integrally formed on the front surface of the light receiving element.
Self-checking flame sensor as described in section.
JP24345584A 1984-11-20 1984-11-20 Self-check type flame sensor Pending JPS61122530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24345584A JPS61122530A (en) 1984-11-20 1984-11-20 Self-check type flame sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24345584A JPS61122530A (en) 1984-11-20 1984-11-20 Self-check type flame sensor

Publications (1)

Publication Number Publication Date
JPS61122530A true JPS61122530A (en) 1986-06-10

Family

ID=17104140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24345584A Pending JPS61122530A (en) 1984-11-20 1984-11-20 Self-check type flame sensor

Country Status (1)

Country Link
JP (1) JPS61122530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254037U (en) * 1988-09-27 1990-04-19
JP2002536632A (en) * 1999-02-02 2002-10-29 エイビービー リサーチ リミテッド Silicon carbide photodiode based flame scanner
JP2003074843A (en) * 2001-08-30 2003-03-12 Miura Co Ltd Flame detecting method and flame detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454689A (en) * 1977-10-11 1979-05-01 Nec Corp Pyrovidicon image pickup apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454689A (en) * 1977-10-11 1979-05-01 Nec Corp Pyrovidicon image pickup apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254037U (en) * 1988-09-27 1990-04-19
JP2002536632A (en) * 1999-02-02 2002-10-29 エイビービー リサーチ リミテッド Silicon carbide photodiode based flame scanner
JP2003074843A (en) * 2001-08-30 2003-03-12 Miura Co Ltd Flame detecting method and flame detector

Similar Documents

Publication Publication Date Title
JPS61162785A (en) Infrared-ray penetration detector
US5264708A (en) Flame detector
US5584319A (en) Electro-optical valve-status supervision switch circuit for fire protection
DK2439451T3 (en) An apparatus for recognizing the presence of a flame
JPS61122530A (en) Self-check type flame sensor
US4395638A (en) Self-checking flame failure control
US4373201A (en) Fail safe digital timer
US3286761A (en) Self-monitoring condition detecting apparatus
US20030215172A1 (en) Fiber optic detection system and method
JPH04537B2 (en)
US3387135A (en) Fire detection and flame safeguard apparatus
US20030141979A1 (en) Industrial microcomputer flame sensor with universal signal output and self-checking
JP3690333B2 (en) Gas meter control device
JPH0714829Y2 (en) Ultraviolet sensor diagnostic device for combustion equipment
JPS6119332Y2 (en)
JP7232104B2 (en) Flame detection system and fault diagnosis method
US3488492A (en) Directional radiation sensing apparatus
JPH0236498A (en) Disaster prevention and crime prevention sensor
JP3304597B2 (en) Voltage detector
JPS6367097B2 (en)
JP2837424B2 (en) Detector
KR0154592B1 (en) Counter air flow detecting method using a sensor
JP2521505B2 (en) Passive infrared security sensor with visual field obstruction monitoring mechanism
JPH0384124A (en) Water tank device installed at high position
JPH0442568B2 (en)