JPS61122480A - Air separation method sampling argon - Google Patents

Air separation method sampling argon

Info

Publication number
JPS61122480A
JPS61122480A JP24062684A JP24062684A JPS61122480A JP S61122480 A JPS61122480 A JP S61122480A JP 24062684 A JP24062684 A JP 24062684A JP 24062684 A JP24062684 A JP 24062684A JP S61122480 A JPS61122480 A JP S61122480A
Authority
JP
Japan
Prior art keywords
column
argon
air
crude argon
liquid air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24062684A
Other languages
Japanese (ja)
Inventor
正博 山崎
布村 雅良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24062684A priority Critical patent/JPS61122480A/en
Publication of JPS61122480A publication Critical patent/JPS61122480A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複式精留塔の低圧塔中部よりアルゴン原料ガ
スを抜出して粗アルゴン塔に供給し、粗アルゴン塔より
抜出した粗アルゴンを精製分離するアルゴンを採取する
空気分離方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention extracts argon raw material gas from the middle of the low-pressure column of a double rectification column and supplies it to a crude argon column, and purifies and separates the crude argon extracted from the crude argon column. The present invention relates to an air separation method for collecting argon.

〔発明の背景〕[Background of the invention]

空気分離装置におけるアルゴンを分離する方法は、例え
ば特公昭57−42832号公報に開示されている。こ
の公報に開示された方法は、第2図に示す如き構成であ
る。この図において、lは原料空気圧縮機、2は水洗冷
却塔、3は可逆熱交換器、4は複式精留塔の下塔、5は
複式精留塔の上塔、6は主凝縮器、7〜9は液化器、l
Oは膨張タービン、11は導管、セは炭化水素吸着器、
13は過冷却器、14〜18は導管、19は粗アルゴン
塔、Iは導管、乙は粗アルゴン熱交換器、nはアルゴン
精製装置、田は精製アルゴン塔、冴〜Iは導管、田は熱
交換器、9は空気圧縮機、(9)、 31は導管を示し
ている。この図において、複式精留塔下塔4の下部より
導管11にて導出される約4.7Ks/cdGの液体空
気は、炭化水素吸着器戊および液体空気過冷却器Bを経
て、環流液として上塔5の中部へお嘔られるが、この液
体空気の1部は、導管14を経て空気循環回路に導入さ
れ、膨張弁によって減圧された後、粗アルゴン塔19頂
部のコンデンサに冷源として導かれ、ガス化した後、導
管4および熱交換器器を通り、リサイクルガスと熱交換
してほぼ常温まで昇温され、空気圧縮機器には約5−/
cIiGまで昇圧された後、熱交換器器に再び導入され
、戻りガスと熱交換することにより、空気の液化温度近
くまで冷却させた後、複式精留塔の下塔4と上塔5との
間に設けられた主凝縮器6に導入して液化させ、再び租
アルゴン塔席の頂部コンデンサの冷源として供給される
A method for separating argon in an air separation device is disclosed, for example, in Japanese Patent Publication No. 57-42832. The method disclosed in this publication has a configuration as shown in FIG. In this figure, l is a feed air compressor, 2 is a water washing cooling tower, 3 is a reversible heat exchanger, 4 is a lower column of a double rectifier, 5 is an upper column of a double rectifier, 6 is a main condenser, 7-9 are liquefiers, l
O is an expansion turbine, 11 is a conduit, C is a hydrocarbon adsorption device,
13 is a supercooler, 14 to 18 are conduits, 19 is a crude argon column, I is a conduit, O is a crude argon heat exchanger, n is an argon purifier, Tada is a purified argon column, Sae~I is a conduit, Tada is a conduit 9 is a heat exchanger, 9 is an air compressor, and 31 is a conduit. In this figure, liquid air of approximately 4.7 Ks/cdG led out from the lower part of the lower column 4 of the double rectification column through the conduit 11 passes through the hydrocarbon adsorber and the liquid air subcooler B, and is raised as a reflux liquid. Part of this liquid air, which is discharged into the middle of the column 5, is introduced into the air circulation circuit through the conduit 14, and after being depressurized by the expansion valve, is led to the condenser at the top of the crude argon column 19 as a cooling source. After being gasified, it passes through the conduit 4 and the heat exchanger, heat exchanges with the recycled gas, and raises the temperature to approximately room temperature.
After being pressurized to cIiG, it is reintroduced into the heat exchanger and cooled to near the liquefaction temperature of air by exchanging heat with the return gas. The argon gas is introduced into the main condenser 6 provided between the two, where it is liquefied, and is again supplied as a cooling source to the top condenser in the argon tower seat.

また、前記主凝縮器6にて液化した液体空気の1部を、
導管阻にて分岐し、精製アルゴン塔田における底部リボ
イラおよび頂部コンデンサに導1、精製アルゴン塔器内
の流体と熱交換させることによって最終的にはガス化し
、粗アルゴン塔19頂部へ      のコンデンサか
ら熱交換器器に供給される空気流に合流される。
In addition, a part of the liquid air liquefied in the main condenser 6 is
It branches at the conduit pipe, leads to the bottom reboiler and top condenser in the purified argon column 1, is finally gasified by exchanging heat with the fluid in the purified argon column, and flows from the condenser to the top of the crude argon column 19. It is combined with the air stream supplied to the heat exchanger vessel.

なお、万一上述した空気循環系統が故障あるいはメンテ
ナンスなどのため、一時的に使用できない場合には、導
管14オよび導管巧を利用してアルゴンを連続的に採取
することが可能である。
Incidentally, in the event that the above-mentioned air circulation system is temporarily unavailable due to a failure or maintenance, it is possible to continuously collect argon using the conduit 14 and the conduit.

この方法では、ガス化した液体空気を再液化する循環サ
イクルで循環使用するようになっていた。
In this method, gasified liquid air is re-liquefied and reused in a circulation cycle.

このため、酸素と窒素との分離効率が向上すると共に、
アルゴン収率も大幅に向上させる二とができるという利
点がある。しかし、高収率でアルゴンを採取する点での
利点はあるけれども、この採取に要するエネルギー消費
を少なくする点については配慮されていない。
Therefore, the separation efficiency between oxygen and nitrogen is improved, and
It has the advantage of being able to significantly improve the argon yield. However, although this method has the advantage of extracting argon with high yield, no consideration is given to reducing the energy consumption required for this extraction.

すなわち、エネルギー消費量の大部分を占めるものは、
ガス化した液体空気を昇圧する空気圧縮機の消費動力で
あり、これを小さくする点での配慮がなされていない。
In other words, what accounts for the majority of energy consumption is
This is the power consumption of an air compressor that boosts the pressure of gasified liquid air, and no consideration has been given to reducing this power consumption.

この消費動力を少なくするには、圧縮機の吐出圧力をで
きる限り下げることが効果的である。
In order to reduce this power consumption, it is effective to lower the discharge pressure of the compressor as much as possible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高収率でアルゴンを採取する場合にお
いて、エネルギーの消費を少なくする二とのできるアル
ゴンを採取する空気分離方法な提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an air separation method for extracting argon that reduces energy consumption when extracting argon in high yields.

〔発明の概要〕[Summary of the invention]

本発明では、再液化した液体空気を圧力の低い複式精留
塔の上塔に供給するようにして、再液化に必要な圧力を
主凝縮器内の液体酸素によってガス化した液体空気が液
化するに必要な圧力まで下げて、空気圧縮機のエネルギ
ー消費な少gくする。
In the present invention, the re-liquefied liquid air is supplied to the upper column of the double rectification column where the pressure is low, and the pressure necessary for re-liquefaction is maintained by the liquid oxygen in the main condenser to liquefy the gasified liquid air. Reduce the pressure to the required level to reduce the energy consumption of the air compressor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をtJ1図に示す本発明の一実施例に基づ
いて詳細1こ説明する。第1図において、第2図と同一
の機器は同符号で示している。複式精留塔の下塔4の下
部より導管Uにて導出される約4.7K11/cdGの
液体空気は、炭化水素吸着器認および過冷却器lを経て
、膨張弁によって減圧された後、粗アルゴン塔19の頂
部コンデンサーに冷熱源として導かれる。そして、ここ
でガス化した後、導管nを経て、熱交換器器および空気
圧縮機器で構成される再液化回路に導入される。すなわ
ち、ガス化した液体空気は、熱交換器器を通り、リサイ
クルガスと熱交換してほぼ常温まで昇温され、空気圧縮
機器にて約3.51b/clIGまで昇圧された後、熱
交換器器に再び導入され、戻りガスと熱交換することに
より液化温度近曵まで冷却される。
Hereinafter, the present invention will be explained in detail based on an embodiment of the present invention shown in diagram tJ1. In FIG. 1, the same equipment as in FIG. 2 is indicated by the same reference numerals. Liquid air of approximately 4.7K11/cdG led out from the lower part of the lower column 4 of the double rectification column through the conduit U passes through the hydrocarbon adsorption device and supercooler L, and is then depressurized by the expansion valve. It is led to the top condenser of the crude argon column 19 as a source of cold heat. After being gasified here, it is introduced into a reliquefaction circuit consisting of a heat exchanger and air compression equipment via conduit n. That is, the gasified liquid air passes through a heat exchanger, exchanges heat with recycled gas, is heated to approximately room temperature, is pressurized to approximately 3.51b/clIG by air compression equipment, and then passes through a heat exchanger. The gas is then reintroduced into the vessel and cooled to near the liquefaction temperature by exchanging heat with the return gas.

さらに、液化温度近くまで冷却された液体空気は、複式
精留塔の下塔4と上塔5の間に設けられた主凝縮器6に
導入して液化される。この液化された液体空気は、還流
液として複式精留塔の上塔5の中部へ供給される。一般
にガス化した液体空気中の酸素濃度は34〜40%であ
り、再液化するための温度は比較的高くなる。したがり
で、ガス化した液体空気を昇圧する空気圧縮機器の吐出
圧力は約3.5Kf/cdG程度で良い。従来において
は。
Further, the liquid air cooled to near the liquefaction temperature is introduced into the main condenser 6 provided between the lower column 4 and the upper column 5 of the double rectification column, and is liquefied. This liquefied liquid air is supplied to the middle part of the upper column 5 of the double rectification column as a reflux liquid. Generally, the oxygen concentration in gasified liquid air is 34 to 40%, and the temperature for reliquefaction is relatively high. Therefore, the discharge pressure of an air compressor that increases the pressure of gasified liquid air may be about 3.5 Kf/cdG. In the past.

これを約5.OK9/cIIGまで昇圧していたが、こ
れは再液化された液体空気を粗アルゴン塔19の塔頂(
コンデンサ)まで押上げるための圧力を確保するためで
ある。第1図に示す実施例では、この点が改善され、再
液化した液体空気は複式精留塔の上塔(低圧塔)5の中
部に戻すので、3.5KIi/criG程度の圧力で十
分となる。したがって、この実施例において、空気圧縮
機器の吐出圧力は、従来(約5.OKr/cjIQ)よ
りも大幅に低(する〔約3゜5に9/cdG)ことがで
き、この分だけエウルギー消費が少なくて済む。
This is about 5. The pressure was increased to OK9/cIIG, but this meant that the re-liquefied liquid air was transferred to the top of the crude argon column 19 (
This is to ensure the pressure necessary to push the capacitor up to the capacitor. In the embodiment shown in FIG. 1, this point has been improved and the re-liquefied liquid air is returned to the middle of the upper column (low pressure column) 5 of the double rectification column, so a pressure of about 3.5 KIi/criG is sufficient. Become. Therefore, in this embodiment, the discharge pressure of the air compression equipment can be significantly lower (approximately 3°5 to 9/cdG) than the conventional one (approximately 5.OKr/cjIQ), and eurgy consumption is reduced by this amount. less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、粗アルゴン塔頂部のコンデンサーでガ
ス化した液体空気を熱交換器、空気圧縮機、複式精留塔
の主凝縮器で構成する再液化回路で、空気圧縮機の消費
動力を最少に押えて再液化できるので、以下の効果があ
る。
According to the present invention, the power consumption of the air compressor is reduced by using a reliquefaction circuit that converts liquid air gasified in the condenser at the top of the crude argon column into a heat exchanger, an air compressor, and a main condenser of a double rectification column. Since it can be reliquefied with minimal pressure, it has the following effects.

(1)再液化回路により、粗アルゴン塔で一度ガス化し
た液体空気を再液化して上塔に還流液として供給できる
ので、上塔における精留条件が着し啜改善されて、酸素
と窒素との分離効率が向上すると共に、アルゴン収率も
大巾に向上させるこ、とができる。
(1) With the reliquefaction circuit, liquid air that has been gasified in the crude argon column can be reliquefied and supplied to the upper column as a reflux liquid, so the rectification conditions in the upper column are improved and the oxygen and nitrogen In addition to improving the separation efficiency, the argon yield can also be greatly improved.

(2)再液化回路の消費動力の大部分を占める空気5 
     圧11機の吐出圧力を、再液化した液体空気
を本発明の如畷、複式精留塔の上塔に供給すれば、約3
.515/cIiG程度に下げることができるので、従
来の方法に畷らべ、消費動力を低減できろ。
(2) Air 5 accounts for most of the power consumed in the reliquefaction circuit
If the re-liquefied liquid air is supplied to the upper column of the double rectification column of the present invention, the discharge pressure of about 3.
.. Since it can be lowered to about 515/cIiG, power consumption can be reduced compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

tJ1図は本発明の一実施例を示す空気分離装置の系統
図、第2図は従来例を示す空気分離装置の系統図である
tJ1 is a system diagram of an air separation device showing an embodiment of the present invention, and FIG. 2 is a system diagram of an air separation device showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 1、複式精留塔の上塔中部よりアルゴン原料ガスを抜出
して粗アルゴン塔に供給し、粗アルゴン塔より抜出した
粗アルゴンを精製してアルゴンを採取する方法であって
、複式精留塔の下塔から抜出した液体空気を粗アルゴン
塔コンデンサに導き、粗アルゴン塔内の上昇ガスと熱交
換させた後、熱交換器を介して昇温させ、空気圧縮機に
て昇圧し、前記熱交換器にて空気流と熱交換させて冷却
した後、複式精留塔の主凝縮器に導入液化し、該液化さ
れた液体空気を複式精留塔の上塔中部に導入させたこと
を特徴とするアルゴンを採取する空気分離方法。
1. A method for extracting argon raw material gas from the middle of the upper column of a double rectification column and supplying it to a crude argon column, and purifying the crude argon extracted from the crude argon column to collect argon. The liquid air extracted from the lower column is led to the crude argon column condenser, where it is exchanged with the rising gas in the crude argon column, heated through a heat exchanger, and pressurized with an air compressor, and then the heat exchange is performed. The air is cooled by exchanging heat with the air stream in a container, and then introduced into the main condenser of the double rectification column to be liquefied, and the liquefied liquid air is introduced into the upper middle part of the double rectification column. An air separation method to extract argon.
JP24062684A 1984-11-16 1984-11-16 Air separation method sampling argon Pending JPS61122480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24062684A JPS61122480A (en) 1984-11-16 1984-11-16 Air separation method sampling argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24062684A JPS61122480A (en) 1984-11-16 1984-11-16 Air separation method sampling argon

Publications (1)

Publication Number Publication Date
JPS61122480A true JPS61122480A (en) 1986-06-10

Family

ID=17062291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24062684A Pending JPS61122480A (en) 1984-11-16 1984-11-16 Air separation method sampling argon

Country Status (1)

Country Link
JP (1) JPS61122480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017101776A1 (en) * 2015-12-16 2017-06-22 新疆天辰深冷技术有限公司 External cooling single-stage rectification air separation device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017101776A1 (en) * 2015-12-16 2017-06-22 新疆天辰深冷技术有限公司 External cooling single-stage rectification air separation device and method

Similar Documents

Publication Publication Date Title
CN109323533B (en) Method and device for reducing space division energy consumption by using medium-pressure rectifying tower
JPH1163810A (en) Method and device for manufacturing low purity oxygen
CN115540499A (en) Device and method for producing high-purity nitrogen and ultrapure oxygen by low-temperature pressurization circulation of flash evaporation waste gas
CN102985776A (en) Method and apparatus for separating air by cryogenic distillation
JPS61122480A (en) Air separation method sampling argon
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
CN108036585B (en) Heat pump air separation system for LNG cold energy utilization
CN207751221U (en) A kind of heat pump air-seperation system of LNG cold energy uses
JP3737612B2 (en) Method and apparatus for producing low purity oxygen
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JPS59215577A (en) Method of recovering co gas from converter gas
CN104913596B (en) A kind of air-separating plant and method for preparing pressure oxygen
CN219607509U (en) Air filtering and cooling system
CN114777416B (en) Low-energy-consumption air separation energy storage process for efficient conversion of green electricity
JPH07127971A (en) Argon separator
CN220541530U (en) Three-expansion air separation device for producing various liquid products by using medium-pressure air
JPS61259077A (en) Method of separating air
JP3667889B2 (en) Nitrogen production method and apparatus
KR880000075B1 (en) The method for separating air
JPS6038578A (en) Method of separating air
JPS6060484A (en) Method of separating air
JPS63187086A (en) Air liquefying separating method
JPS6399483A (en) Air separator
JPS61276680A (en) Method of liquefying and separating air