JPS6112039A - Ceramic substrate - Google Patents

Ceramic substrate

Info

Publication number
JPS6112039A
JPS6112039A JP13367384A JP13367384A JPS6112039A JP S6112039 A JPS6112039 A JP S6112039A JP 13367384 A JP13367384 A JP 13367384A JP 13367384 A JP13367384 A JP 13367384A JP S6112039 A JPS6112039 A JP S6112039A
Authority
JP
Japan
Prior art keywords
insulating film
ceramic
ceramic plate
thermal conductivity
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13367384A
Other languages
Japanese (ja)
Inventor
Yoshikazu Uchiumi
良和 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13367384A priority Critical patent/JPS6112039A/en
Publication of JPS6112039A publication Critical patent/JPS6112039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To obtain the ceramic substrate having the coefficient of thermal expansion approximate to that of semiconductor silicon, a high thermal conductivity and a high insulating property in plane direction by a method wherein an insulating film of specific thickness is formed on the surface of a ceramic plate having SiC as the main component and also having the heat conductivity in excess of the specific value. CONSTITUTION:An insulating film having the final film thickness of 5mum or above is formed on the surface of a ceramic plate containing SiC as main component and having the thermal conductivity of 1.6W/cm deg.C or above. Such ceramic plate as above-mentioned has the SiC content of 90-99%, desirably 95- 99%, it has a high thermal conductivity in general and has the coefficient of thermal expansion of 4.5X10<-6>/ deg.C or thereabout. A reactive sintered Si ceramic plate and the like, which is obtained by sintering while Si powder and C powder are mixed in SiC powder, for example, is used. Also, the glass, material consisting of crystal and glass, thin film type ceramic, Si3N4 and the like can be used as the material of the insulating film.

Description

【発明の詳細な説明】 〔発明の技術分野〕 ′ 本発明は半導体、ICまたはチップセラミック回路
部品を実装したり、発熱をともなう厚膜または薄膜の回
路を印刷するためのセラミック基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a ceramic substrate for mounting semiconductor, IC or chip ceramic circuit components, or for printing thick film or thin film circuits that generate heat.

〔従来技術〕[Prior art]

従来から使用されている半導体、工0またはチップセラ
ミック回路部品を実装したり、発熱をともなう厚膜また
は薄膜の回路を印刷するための基板を分類すると、3種
類にわけられる。第1はプラスチックによるプリント基
板、第2はアルミナを主成分とするセラミック基板(以
下、アルミナ基板という)、第3は金属をコアーとし、
絶縁物を塗布したホール一基板である。
Conventionally used substrates for mounting semiconductor, industrial or chip ceramic circuit components, or for printing thick film or thin film circuits that generate heat can be classified into three types. The first is a printed circuit board made of plastic, the second is a ceramic substrate whose main component is alumina (hereinafter referred to as an alumina substrate), and the third is a metal core.
It is a one-hole board coated with an insulator.

従来、これらの分野にはプリント基板が多く使用されて
きているが、製品の小型軽量化の要請にともなって、近
年、セラミック基板も多く使用されるようになってきて
いる。さらに最近では、半導体または工0のパワーが上
昇し、発熱量も多くなり、セラミック基板ではものたり
ず、熱伝導性の良好な金属をコアーとするホーロー基板
を使用する動きもある。また最近の別の要請として、厚
膜または薄膜の抵抗体を騎時の加熱体として使用する感
熱ヘッドとしての動きもあり、そのばあいには加熱後す
ぐに冷却されなければならないため、基板材料としてホ
ー田−基板も候捕に上っている〇このように最近の基板
の動きとしては、熱伝導性の良好な基板を必要とする方
向がでてきているが、アルミナ基板では不足であり、熱
伝導性の良好なホール一基板の検討がなされている。。
Conventionally, printed circuit boards have been widely used in these fields, but with the demand for smaller and lighter products, ceramic substrates have also come into widespread use in recent years. Furthermore, recently, as the power of semiconductors and semiconductors has increased, the amount of heat generated has also increased, and ceramic substrates are no longer sufficient, and there is a movement to use hollow substrates whose cores are made of metal with good thermal conductivity. Another recent demand is the use of thick-film or thin-film resistors as heating elements for heat-sensitive heads. Hoda - Substrates are also on the rise. As seen above, recent trends in substrates have led to the need for substrates with good thermal conductivity, but alumina substrates are insufficient. , a single-hole substrate with good thermal conductivity has been studied. .

しかしながら、ホーマー基板のコアーは鉄が主体である
ため、下記のごとき問題点を有している0(1)鉄の熱
膨脹係数が大きいため、シリコンの単結晶から製造され
る半導体や工0の熱膨脹係数とのマツチングがわるい。
However, since the core of the Homer substrate is mainly made of iron, it has the following problems: (1) Since the coefficient of thermal expansion of iron is large, the thermal expansion of semiconductors manufactured from silicon single crystals and Poor matching with coefficients.

(2)鉄の熱伝導度は0.4W10n qO程度であり
、鉄に絶縁物を塗布するとその熱伝導度はさらにさがり
、アルミナ基板と比較したばあい、特別よいとはいいが
たい。
(2) The thermal conductivity of iron is about 0.4W10nqO, and when an insulating material is applied to iron, the thermal conductivity decreases further, and when compared with an alumina substrate, it cannot be said to be particularly good.

そのためコアーにムlやOuを使用することも考えられ
るが、これらは鉄よりさらに熱膨脹係数が高く、(1)
の点で不満足である。
Therefore, it is possible to use mulch or Ou for the core, but these have higher coefficients of thermal expansion than iron, and (1)
I am unsatisfied with this point.

最近(1)および(2)を満足するSiOセラミックか
らなる基板が報告され、ヒタセラムなる商品名で市販さ
れている。しかしながらこの基板は電圧電流特性が非直
線的であり、電圧が高いと抵抗が低下する(たとえば3
0°0で100V/mm以上で急に低抵抗となる)上に
、温度が室温より高くなると抵抗の低下が一層大きなも
のとなる。ヒタセラム以外のSiC基板は一般に電気抵
抗が低く、低電圧でさえ使用することはできない。
Recently, a substrate made of SiO ceramic that satisfies (1) and (2) has been reported and is commercially available under the trade name Hitaceram. However, this substrate has nonlinear voltage-current characteristics, and the resistance decreases when the voltage is high (for example, 3
(The resistance suddenly becomes low at 100 V/mm or more at 0°0.) Furthermore, when the temperature becomes higher than room temperature, the decrease in resistance becomes even greater. SiC substrates other than Hitaceram generally have low electrical resistance and cannot be used even at low voltages.

(発明の概要〕 本発明は前記のごとき実情に鑑み、上記SiO基板の欠
点を除去するためになされたものであり、熱膨脹係数が
半導体シリコンに近く、熱伝導度が高く、かつ、ことに
平面方向に絶縁性の高い七うミツ“り基板を提供するも
のである。
(Summary of the Invention) In view of the above-mentioned circumstances, the present invention has been made in order to eliminate the drawbacks of the SiO substrate described above. The present invention provides a seven-layer substrate with high insulating properties in both directions.

すなわち本発明は、熱伝導度が1.6W10n 01)
以上を有するSiOを主成分とするセラミック板の表面
に1最終膜厚が5μm以上、好ましくは20μm以上に
なるように絶縁膜を形成したことを特徴とするセラミッ
ク基板に関する。
That is, the present invention has a thermal conductivity of 1.6W10n 01)
The present invention relates to a ceramic substrate characterized in that an insulating film is formed on the surface of a ceramic plate having SiO as a main component so as to have a final film thickness of 5 μm or more, preferably 20 μm or more.

〔発明の実IN態様〕[Actual IN aspect of the invention]

本発明において′は、熱伝導度が1.6Vam 00以
上を有するSiCを主成分とするセラミック板(以下、
1910七2ミツク板という)が使用される0SiCを
主成分とするとは、セラミック板中にしめるSiO含有
量が90〜99%(重量%、以下同様)、好ましくは9
5〜99%であり、Biσ以外の成分としてはSl、0
である。
In the present invention, ' is a ceramic plate (hereinafter referred to as
191072 Miku plate) is used as a main component of 0SiC, which means that the SiO content in the ceramic plate is 90 to 99% (wt%, the same shall apply hereinafter), preferably 9
5 to 99%, and components other than Biσ include Sl, 0
It is.

このようなセラミック板は一般に熱伝導度が高く、約4
.5X10”’10a程度の熱膨脹係数を有し、その具
体例としては、SiC粉末に81粉末と0粉末とを混合
して反応させながら焼結してえられる反応焼結StOセ
ラミック板があげられ、このようにしてえられたセラミ
ック板は、通常1.6〜2.1Vom’にと高い熱伝導
度を有する。
Such ceramic plates generally have high thermal conductivity, about 4
.. It has a coefficient of thermal expansion of about 5 x 10'''10a, and a specific example thereof is a reaction-sintered StO ceramic plate obtained by mixing SiC powder with 81 powder and 0 powder and sintering the mixture while reacting it. The ceramic plate thus obtained usually has a high thermal conductivity of 1.6 to 2.1 Vom'.

本発明においては、SiOセラミック板表面に最終膜厚
が5μm以上、好ましくは20μm以上になるように絶
縁膜が形成される。
In the present invention, an insulating film is formed on the surface of the SiO ceramic plate so that the final film thickness is 5 μm or more, preferably 20 μm or more.

該絶縁膜を形成するのに使用可能な材料としては、ガラ
ス、結晶さガラスからなるもの、薄膜状セラミックス、
ai3N4などがあげられ、いずれを用いるかは必要と
される基板の熱伝導度および絶縁性などにより適宜選択
すればよい。たとえば基板の熱伝導度が1.4W10n
 oo以上必要になると、813N4により絶縁膜を2
0μm以下の厚さで形成する必要がある。ま・たアルミ
ニウムおよびシリコンのアル−キシドを醸化したときに
ムライトの組成になるように混合し、sioセラミック
板に塗布して加熱し、ムライト質の絶縁膜を5μmの厚
さに形成させてもよいd 形成きれる絶縁膜が、S10を主成分とするセラミック
板と熱膨脹係数の差が0〜0.8X10 100程度の
範囲にあるガラスから形成された゛ものであるばあいに
は、絶縁膜にひびわれなどを起さない効果があり、0〜
s、 ox to−’10a程癒の範囲にある結晶化ガ
ラスまたはガラスと結晶の微粉末から形成されたもので
あるばあいには、絶縁膜にひびわれがなく、またガラス
のみのばあいより高熱伝導度と。
Materials that can be used to form the insulating film include glass, crystalline glass, thin film ceramics,
Examples include ai3N4, and which one to use may be appropriately selected depending on the required thermal conductivity and insulation properties of the substrate. For example, the thermal conductivity of the board is 1.4W10n
If more than oo is required, two insulating films are added using 813N4.
It is necessary to form the layer with a thickness of 0 μm or less. Aluminum and silicon alkoxides were mixed to have a mullite composition when brewed, and then applied to a SIO ceramic plate and heated to form a mullite insulating film with a thickness of 5 μm. If the insulating film that can be formed is made of glass whose coefficient of thermal expansion differs from that of a ceramic plate whose main component is S10 in the range of about 0 to 0.8 It has the effect of not causing cracks, etc., and has a rating of 0~
If it is made of crystallized glass or a fine powder of glass and crystals, which has a heating range of s, ox to -'10a, there will be no cracking in the insulating film, and it will not tolerate higher heat than if it was made only of glass. with conductivity.

なる〇 つぎに本発明のセラミック基板を図面にもとづき説明す
る@ 第1図は本発明のセラミック基板を説明するための説明
図であり、S1〇セラミツク板(1)上に絶縁膜・(2
)が形成されている。発熱をともなう牛導体、工0など
の素子部品および回路などからなる発熱部分(3)は、
絶縁膜(2)の上に搭載されており、発熱部分(3)か
ら発生した熱の多くは絶縁膜(2)およびSiOセラミ
ック板(1)を通り、大気中またはヒートシンク(4)
に放熱される。絶縁膜(2)の厚さをLl、熱伝導度を
に1とし、81Cセラミツク板(1)の厚さを、L2、
熱伝導度をx2とし、SiCセラミツク板(1)および
絶縁膜(2)からなるセラミック基板の熱伝導度をXと
すると、 であられされる。
〇Next, the ceramic substrate of the present invention will be explained based on the drawings @ Fig. 1 is an explanatory diagram for explaining the ceramic substrate of the present invention.
) is formed. The heat-generating part (3) consists of the conductor, element parts such as wires, circuits, etc. that generate heat.
It is mounted on the insulating film (2), and most of the heat generated from the heat generating part (3) passes through the insulating film (2) and the SiO ceramic plate (1) and is released into the atmosphere or the heat sink (4).
Heat is radiated to The thickness of the insulating film (2) is Ll, the thermal conductivity is 1, and the thickness of the 81C ceramic plate (1) is L2,
If the thermal conductivity is x2 and the thermal conductivity of the ceramic substrate consisting of the SiC ceramic plate (1) and the insulating film (2) is X, then it is expressed as follows.

SiOセラミック板(1)の厚さ′L2を1.0mm 
s絶縁膜の厚さLlを20μmまたは5μmとしたとき
のセラミック基板の熱伝導度を、絶縁膜の熱伝導度をパ
ラメーターとしてSiCセラミツク板の熱伝導度に対し
て計算し、プ四ッ卜すると第2図に示すようになる。
The thickness 'L2 of the SiO ceramic plate (1) is 1.0 mm.
s The thermal conductivity of the ceramic substrate when the thickness Ll of the insulating film is 20 μm or 5 μm is calculated with respect to the thermal conductivity of the SiC ceramic board using the thermal conductivity of the insulating film as a parameter, and then The result is as shown in FIG.

既述のように、反応焼結EIiOセラミック板は1.6
〜2. I Wlon oa  と高い熱伝導度を有す
る。本発明では熱伝導度1.6W10!II oa以上
の1310セラミツク板が使用される。
As already mentioned, the reaction sintered EIiO ceramic plate is 1.6
~2. It has a high thermal conductivity of I Wlon oa . In the present invention, the thermal conductivity is 1.6W10! 1310 ceramic board of II oa or higher is used.

第2図から、1. GW/am oa以上の熱伝導度の
セラミック基板を作製するには% 2.0W10noO
のSiOセラミック板を用いて、もし熱伝導度が[L 
01 Wlon ’0程度のガラスをコーティングする
とすれば膜厚を約5μm以下にしなければならない。こ
こで1.OWlomqoを熱伝導度の目標としたのは、
AjNを用いたセラミック基板は近い将来この程度の材
料になることが予想されるからである。もし、SiOセ
ラミック板の熱伝導度が1.6であり、絶縁性の関係で
20μmの絶縁膜を必要とするばあいには、O,0SW
10n qO程度の熱伝導性膜を付着させなげればなら
ない。一方、絶縁膜の絶縁破壊電圧の安全域は約10K
V/mm以下であり、この点から、膜厚20μmでは約
200v、10μmでは約1007,5μmでは約so
vということになる。これらの点から、膜厚どしては少
なくとも5μm以上、好ましくは20μm以上あること
が望°ましい。
From Figure 2, 1. To produce a ceramic substrate with a thermal conductivity of GW/am oa or higher, %2.0W10noO
If the thermal conductivity is [L
If glass of approximately 01 Wlon '0 is to be coated, the film thickness must be approximately 5 μm or less. Here 1. The thermal conductivity target for OWlomqo was
This is because it is expected that ceramic substrates using AjN will be of this quality in the near future. If the thermal conductivity of the SiO ceramic plate is 1.6 and an insulating film of 20 μm is required for insulation, O,0SW
A thermally conductive film on the order of 10 nqO must be deposited. On the other hand, the safety range of the dielectric breakdown voltage of the insulating film is approximately 10K.
V/mm or less, and from this point, it is about 200V for a film thickness of 20μm, about 100V for a film thickness of 10μm, and about soV for a film thickness of 5μm.
This means v. From these points of view, it is desirable that the film thickness be at least 5 μm or more, preferably 20 μm or more.

第3図は熱伝導度が1.9W10n oa(7) Si
C * ’) Z 7り板に種々の熱伝導性絶縁膜を形
成したばあいのセラミック基板の熱伝導度を示す。1.
OW/am qo以上の熱伝導度のセラミック基板が必
要なばあい、絶縁膜の熱伝導度がQ、 01W/am 
cvJならば5μm以下でなければなら゛ないが、1.
 □W/am oaならば55μm程の膜厚の絶縁膜が
可能である。絶縁膜として使用可能な材料は、ガラス、
結晶化ガラス、薄膜状セラミックスなどがあるが、絶縁
膜の熱伝導度が0.1Vomoo以上必要となると51
3M4膜を形成しなければならない。
Figure 3 shows thermal conductivity of 1.9W10n oa(7) Si
C * ') Z 7 It shows the thermal conductivity of the ceramic substrate when various thermally conductive insulating films are formed on the board. 1.
If a ceramic substrate with a thermal conductivity higher than OW/am qo is required, the thermal conductivity of the insulating film is Q, 01 W/am.
For cvJ, it must be 5 μm or less, but 1.
□W/am oa allows an insulating film with a thickness of about 55 μm. Materials that can be used as an insulating film include glass,
There are crystallized glass, thin film ceramics, etc., but if the thermal conductivity of the insulating film is required to be 0.1Vomoo or more, 51
A 3M4 film must be formed.

絶縁膜の材料に対するもう1つの主たる制限は、熱膨脹
係数である。
Another major limitation on insulating film materials is the coefficient of thermal expansion.

第1図において、絶縁膜(2)の熱膨脹係数をα1.S
iCセラミツク板(1)の熱膨脹係数をα2、絶縁膜(
2)のヤング率をml、絶縁膜がガラスのばあいには歪
の除去できる温度を、また微細な結晶化ガラスのみから
なるばあいには処理温度をT1、室温をTrとすると、
絶縁膜にがかる力σは σ= II!(al−ag)(T1−’I’r)   
  値)であられされる。σが正のばあいには、絶縁膜
に引張り応力、負のばあいには、絶縁膜に圧縮応力がか
かることになる。S10セラミツク板に対する応力のか
かり方は、絶縁膜に対するものと逆になる。σが材料の
有する破壊強度以上になると破壊するので、熱膨脹係数
がalzα2であるような絶縁膜を選択することが好ま
しい。
In FIG. 1, the coefficient of thermal expansion of the insulating film (2) is α1. S
The coefficient of thermal expansion of the iC ceramic plate (1) is α2, and the insulating film (
If the Young's modulus of 2) is ml, the temperature at which strain can be removed if the insulating film is made of glass, and the processing temperature is T1 and room temperature is Tr if it is made of only fine crystallized glass, then
The force σ applied to the insulating film is σ = II! (al-ag) (T1-'I'r)
value). When σ is positive, tensile stress is applied to the insulating film, and when σ is negative, compressive stress is applied to the insulating film. The stress applied to the S10 ceramic plate is opposite to that applied to the insulating film. Since the insulating film will break if σ exceeds the breaking strength of the material, it is preferable to select an insulating film whose coefficient of thermal expansion is alzα2.

つぎに、絶縁膜に比べてSiOセラミック板の強度は大
きいので、絶縁膜についての を具体例にそくしたばあ
いの計算を試みる。
Next, since the strength of the SiO ceramic plate is greater than that of the insulating film, we will try to calculate the following for the insulating film using a specific example.

第4図は、TI −Tr=800 qOとしたときの絶
縁膜破壊強度と熱膨脹係数の差との関係を示すグラフで
ある。第4図から、ガラスを絶縁膜としてコーティング
したばあいには、その強度は5に4/mm”ぐらいであ
り、ヤング率(IIりは6000〜8000に4/4I
m”ぐらいであるから、セラミック基板との熱膨脹係数
の差は0.8X10”’〜0.6×1O−610a以下
、すなわち反応焼結SiOセラミック板の熱膨脹係数を
4.3×1O−610oとすると、絶縁膜の熱膨脹係数
は5.1×10−6〜4.9X10  /’0以下であ
ることが必要である0すなわち、ガラスを絶縁膜とする
ばあいには、ヤング率が6000kp/mm”のもので
熱膨脹係数の差が0〜0.8X10−’10o(7)も
の、’r ン/ 率カ8000kp/mmj!のもので
0〜0.6×107qOのものが使用されなければなら
ない。また結晶化ガラスまたは結晶とガラスとか1らな
4材料ではヤング率が12000〜15000に11/
mm” 程度となり、強度は20〜1kg/mm2とな
るから、熱膨脹係数の差としては1.6X10 〜3.
0X10/qO必要であり、熱膨―係数としては5.9
×10−6〜7.3X1010a程度のものが用いられ
なければならない。
FIG. 4 is a graph showing the relationship between the dielectric breakdown strength and the difference in thermal expansion coefficient when TI-Tr=800 qO. From Figure 4, when glass is coated as an insulating film, its strength is about 5 to 4/mm'', and Young's modulus (II is 6000 to 8000 to 4/4I).
m", the difference in thermal expansion coefficient with the ceramic substrate is less than 0.8x10"'~0.6x1O-610a, that is, the thermal expansion coefficient of the reaction sintered SiO ceramic plate is 4.3x1O-610a. Then, the thermal expansion coefficient of the insulating film must be 5.1 x 10-6 to 4.9 x 10 /'0 or less. In other words, when glass is used as the insulating film, the Young's modulus is 6000 kp/mm. Those with a thermal expansion coefficient difference of 0 to 0.8 x 10-'10o(7) and those with a thermal expansion coefficient of 8000 kp/mmj! must be used. .Furthermore, the Young's modulus of four materials with unity such as crystallized glass or crystal and glass is 11/12,000 to 15,000.
mm" and the strength is 20 to 1 kg/mm2, so the difference in thermal expansion coefficient is 1.6X10 to 3.
0x10/qO is required, and the thermal expansion coefficient is 5.9
A material of the order of x10-6 to 7.3x1010a must be used.

つぎに本発明のセラミック基板を実施例にもとづき説明
する〇 実施例1 白金ルツボ中で5in254%、B2O33%、AJ2
0321%、O&014%、BaO3%の組成物を14
0000で溶融し、鉄板上に流し出したのち、少し冷却
したところでこのガラスを水中に投下し、こまかい塊と
した0このガラスのこまかい塊をアルミナ製ボールミル
に入れ、水中で50時間粉砕したのち、湿式のまま40
0メツシユふるいでふるったのち、ふるい通過分を金属
性バットに゛移し、100°0で乾燥してガラス粉末を
えた。
Next, the ceramic substrate of the present invention will be explained based on examples.〇Example 1 5in 254%, B2O33%, AJ2
0321%, O&014%, BaO3% composition 14
After melting at 0000 and pouring it out onto a steel plate, after cooling it a little, this glass was dropped into water and made into fine lumps.0 The fine lumps of this glass were placed in an alumina ball mill and crushed in water for 50 hours. 40 as wet
After sieving with a 0 mesh sieve, the portion that passed through the sieve was transferred to a metal vat and dried at 100°0 to obtain a glass powder.

えられたガラス粉末100gにエチルセル四−ス3g、
ポリビニルブチラールD−7g、ジブチル7タレート5
y、分散剤(デモール8T(花王アトラス■製))1g
、ブチルカルピトール15pqテルピネオール15gを
添加し、再びボールミルで24時間混合したのち、該混
合物を反応焼結によって作製した厚さ1mmのSiOセ
ラミック板(商品名:レツ7エル)に、印刷法によって
スクリーンメツシュを通して板の全面に印刷した。その
のち80°aでよく乾燥し、ついで50曳^rの速度で
1400句まで加熱し、3時間保持したのち、50°O
/hrの速度で冷却し、厚さ約5μmのガラス膜を表面
に形成したSiOセラミック板をえた。
3 g of ethyl cellulose to 100 g of the obtained glass powder,
Polyvinyl butyral D-7g, dibutyl 7 tallate 5
y, dispersant (Demol 8T (manufactured by Kao Atlas ■)) 1 g
After adding 15 pq of butyl calpitol and 15 g of terpineol and mixing again in a ball mill for 24 hours, the mixture was screened by a printing method onto a 1 mm thick SiO ceramic plate (trade name: Retsu 7L) prepared by reaction sintering. Printed on the entire surface of the board through mesh. After that, it was thoroughly dried at 80°A, then heated at a speed of 50°C to 1400°C, held for 3 hours, and heated to 50°C.
/hr to obtain a SiO ceramic plate on which a glass film with a thickness of about 5 μm was formed.

実施例2 Sin252.5%、ム13!0326.5%、TlO
211%、Mg010%からなる混合物を実施例1と同
様にしてガラス粉末をえた。
Example 2 Sin252.5%, Mu13!0326.5%, TlO
A glass powder was obtained using a mixture consisting of 211% Mg and 10% Mg in the same manner as in Example 1.

このガラス粉末をエチルアルコールに分散させ、レツフ
エルの上に沈殿させたのち、50°’O/hrの速度で
1600’0まで加熱して溶解したガラスの膜とし、一
旦冷却してガラス中に結晶核を形成したのち再度130
0 qOで10時間加熱して、ガラス中に結晶を成長さ
せ50°’o/hrの速度で冷却し、厚さ!lJ5μm
のコージェライトを主成分とする結晶化ガラスの膜をコ
ーティングすることができた。
This glass powder is dispersed in ethyl alcohol and precipitated on a retuffel, heated at a rate of 50°'O/hr to 1600'0 to form a molten glass film, and once cooled to form crystals in the glass. 130 again after forming the nucleus
Heating at 0 qO for 10 hours to grow crystals in the glass, cooling at a rate of 50°'o/hr, thickness! lJ5μm
We were able to coat a film of crystallized glass whose main component is cordierite.

実施例3 アルミニウムおよびシリコンのアルコキシドを酸化した
ときに、5112.03・2510g (ムライト)の
組成となるように混合し、この液をSiOセラミック板
に塗布して50°’a/hrの速度でsoo 6oまで
加熱し、つぎに100 ckoArの速度テ1400°
’atで加it、、また塗布して加熱することを3回行
なって、約5μmの膜厚の絶縁物を付着させた。
Example 3 When aluminum and silicon alkoxides are oxidized, they are mixed to have a composition of 5112.03.2510 g (mullite), and this liquid is applied to a SiO ceramic plate and heated at a rate of 50°'a/hr. Heat to soo 6o, then heat to 1400° at a speed of 100 ckoAr.
Adding at 'at, coating and heating were performed three times to deposit an insulator with a thickness of about 5 μm.

実施例4 SiOj4およびNH3の気体を石英ガラス管の中を通
しながら、石英ガラス管中に入れたSiCセラミツク板
を高周波によって1500qoに加熱したOこのように
してSiCセラミツク板の表面に5t3N4膜を膜厚的
5μm付着させることができた。
Example 4 While SiOj4 and NH3 gases were passed through the quartz glass tube, the SiC ceramic plate placed in the quartz glass tube was heated to 1500 qo by high frequency. In this way, a 5t3N4 film was formed on the surface of the SiC ceramic plate. A thickness of 5 μm could be deposited.

実施例5 実施例4と同様にして、191Lセラミツク板に813
N4膜を膜厚的20μm付着させることができた。
Example 5 In the same manner as in Example 4, 813 was applied to a 191L ceramic plate.
The N4 film could be deposited to a thickness of 20 μm.

以上の実施例によってえられたものの熱伝導度および耐
圧を、各材料の特性値を用いて計算により求めた結果を
第1表に示す。
Table 1 shows the results of calculations of the thermal conductivity and breakdown voltage of the materials obtained in the above examples using the characteristic values of each material.

第1表から、実施例1でもよいが、効果の大きいのは実
施例2〜4であることがわかる。
From Table 1, it can be seen that although Example 1 may be used, Examples 2 to 4 are more effective.

以上の実施例におけるガラス組成および結晶化ガラスの
組成は、前記のものに限定されるものではない。また実
施例においては結晶化ガラスを用いたが、ガラスとセラ
ミックスの微粉から構成された絶縁膜であってもよい。
The glass composition and the composition of the crystallized glass in the above examples are not limited to those described above. Further, although crystallized glass is used in the embodiment, an insulating film made of fine powder of glass and ceramics may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のセラミック基板は熱伝導
性の高い1.6W10n ’に以上のSiCセラミツク
板に絶縁膜をコーティングしたので、0.9W/am 
’に以上の高い熱伝導度を有する@まだ半導体シリコン
との熱膨脹係数が近いので、半導体に応力がか゛からず
、かつ、ことに耐圧50v(ガラスのばあい)あるいは
耐圧2oov(結晶化ガラスのばあい)以上あるので、
信頼性の高いセラミック基板かえられる。その上、電圧
と電流との関係がオーミックであり、電圧が高くなって
も突然電流が多く流れるようなことはない。
As explained above, the ceramic substrate of the present invention is a 1.6W10n' or higher SiC ceramic board with high thermal conductivity coated with an insulating film.
It has a high thermal conductivity higher than that of semiconductor silicon, so the coefficient of thermal expansion is close to that of semiconductor silicon, so no stress is applied to the semiconductor, and the breakdown voltage is 50V (in the case of glass) or 2oOV (in the case of crystallized glass). Since there are more than that,
Highly reliable ceramic substrate can be replaced. Furthermore, the relationship between voltage and current is ohmic, so even if the voltage increases, a large amount of current will not suddenly flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセラミック基板に関する説明図、第2
図はSiOセラミック板に絶縁膜を形成したセラミック
基板の熱伝導度と1910セラミツク板の熱伝導度との
関係を絶縁膜の厚さおよび熱伝導度をパラメーターとし
てあられしたグラフ、第3図は絶縁膜の厚さとセラミッ
ク基板の熱伝導度との関係を絶縁膜の熱伝導度をパラメ
ーターとしてあられしたグラフ、第4図は絶縁膜破壊強
度と、SiOセラミック板の熱膨脹係数と絶縁膜の熱膨
脹係数との差との関係を絶縁膜のヤング率(llt)を
パラメーターとしてあられしたグラフである。 (図面の主要符号) (z) + staセラミック板 (2):絶縁膜
FIG. 1 is an explanatory diagram of the ceramic substrate of the present invention, and FIG.
The figure is a graph showing the relationship between the thermal conductivity of a ceramic substrate with an insulating film formed on a SiO ceramic board and the thermal conductivity of a 1910 ceramic board using the thickness and thermal conductivity of the insulating film as parameters. A graph showing the relationship between the thickness of the film and the thermal conductivity of the ceramic substrate using the thermal conductivity of the insulating film as a parameter. 2 is a graph showing the relationship between the difference in and the Young's modulus (llt) of the insulating film as a parameter. (Main symbols in the drawing) (z) + sta ceramic plate (2): Insulating film

Claims (7)

【特許請求の範囲】[Claims] (1)熱伝導度が1.6W/cm℃以上を有するSiC
を主成分とするセラミック板の表面に、最終膜厚が5μ
m以上になるように絶縁膜を形成したことを特徴とする
セラミック基板。
(1) SiC with thermal conductivity of 1.6 W/cm°C or higher
The final film thickness is 5μ on the surface of the ceramic plate whose main component is
A ceramic substrate characterized in that an insulating film is formed to have a thickness of m or more.
(2)形成した絶縁膜の最終膜厚が20μm以上である
特許請求の範囲第(1)項記載のセラミック基板。
(2) The ceramic substrate according to claim (1), wherein the final thickness of the formed insulating film is 20 μm or more.
(3)前記絶縁膜が、該絶縁膜の熱膨脹係数とSiCを
主成分とするセラミック板熱膨脹係数との差が0〜0.
8×10^−^6/℃の範囲にあるガラスである特許請
求の範囲第(1)項または第(2)項記載のセラミック
基板。
(3) The insulating film has a difference between the coefficient of thermal expansion of the insulating film and the coefficient of thermal expansion of a ceramic plate mainly composed of SiC.
The ceramic substrate according to claim (1) or (2), which is glass having a temperature in the range of 8×10^-^6/°C.
(4)前記絶縁膜が、該絶縁膜の熱膨脹係数とSiCを
主成分とするセラミック板の熱膨脹係数との差が0〜3
.0×10^−^6/℃の範囲にある結晶化ガラスまた
はガラスと結晶の微粉末から形成されたものからなる特
許請求の範囲第(1)項または第(2)項記載のセラミ
ック基板。
(4) The insulating film has a difference between the coefficient of thermal expansion of the insulating film and the coefficient of thermal expansion of the ceramic plate mainly composed of SiC of 0 to 3.
.. The ceramic substrate according to claim 1 or 2, which is formed from crystallized glass or glass and crystal fine powder in the range of 0x10^-^6/°C.
(5)前記絶縁膜がムライト質の膜である特許請求の範
囲第(1)項または第(2)項記載のセラミック基板。
(5) The ceramic substrate according to claim (1) or (2), wherein the insulating film is a mullite film.
(6)前記絶縁膜がSi_3N_4膜である特許請求の
範囲第(1)項または第(2)項記載のセラミック基板
(6) The ceramic substrate according to claim (1) or (2), wherein the insulating film is a Si_3N_4 film.
(7)SiCを主成分とするセラミック板が、SiC粉
末にSi粉末とC粉末とを混合して、反応・焼結させて
作られたセラミック板である特許請求の範囲第(1)項
、第(2)項、第(3)項、第(4)項、第(5)項ま
たは第(6)項記載のセラミック基板。
(7) Claim (1), wherein the ceramic plate containing SiC as a main component is a ceramic plate made by mixing Si powder with Si powder and C powder, reacting and sintering the mixture; The ceramic substrate according to item (2), item (3), item (4), item (5), or item (6).
JP13367384A 1984-06-26 1984-06-26 Ceramic substrate Pending JPS6112039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13367384A JPS6112039A (en) 1984-06-26 1984-06-26 Ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13367384A JPS6112039A (en) 1984-06-26 1984-06-26 Ceramic substrate

Publications (1)

Publication Number Publication Date
JPS6112039A true JPS6112039A (en) 1986-01-20

Family

ID=15110221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13367384A Pending JPS6112039A (en) 1984-06-26 1984-06-26 Ceramic substrate

Country Status (1)

Country Link
JP (1) JPS6112039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272111A1 (en) * 2006-01-13 2008-11-06 Ngk Insulators, Ltd. Support structure of heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272111A1 (en) * 2006-01-13 2008-11-06 Ngk Insulators, Ltd. Support structure of heater
US8411723B2 (en) * 2006-01-13 2013-04-02 Ngk Insulators, Ltd. Support structure of heater

Similar Documents

Publication Publication Date Title
US5242867A (en) Composition for making multilayer ceramic substrates and dielectric materials with low firing temperature
JP3033852B2 (en) Resistor and resistor paste composition for aluminum nitride heater
JPS6112039A (en) Ceramic substrate
JPS636503B2 (en)
JPH0447978B2 (en)
CN115385666A (en) High-thermal-conductivity low-temperature co-fired ceramic material and preparation method thereof
JPS60128625A (en) Base board for mounting of semiconductor element
JPH02225339A (en) Calcined body of glass ceramics
US3558346A (en) Double glazed ceramic substrates
JPH05144316A (en) Conductive paste composition
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPH0360443A (en) Low-temperature calcined glass ceramic body
KR100432639B1 (en) Process for Providing a Glass-Ceramic Dielectric Layer on a Ceramic Substrate and Electrostatic Chuck Made by the Process
JP2500691B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JPS59184586A (en) Circuit board for placing semiconductor element
JPH0212888A (en) Enameled wiring board having high heat dissipating properties
JPH01272192A (en) Ceramics substrate
JPH0260236B2 (en)
Sergent ‘‘‘Ceramics and Ceramic Composites
JPH0450186A (en) Method for forming metallized layer on aluminum nitride substrate
JPH0323513B2 (en)
JPS63134694A (en) Formation of insulating film on aluminum alloy
Partridge et al. High Thermal Dissipation Glass-Ceramic/Metal Substrates
JPH02283684A (en) Production of sintered aluminum nitride