JPS61117221A - Production of low-iron loss grain-oriented electrical steel sheet - Google Patents

Production of low-iron loss grain-oriented electrical steel sheet

Info

Publication number
JPS61117221A
JPS61117221A JP59237445A JP23744584A JPS61117221A JP S61117221 A JPS61117221 A JP S61117221A JP 59237445 A JP59237445 A JP 59237445A JP 23744584 A JP23744584 A JP 23744584A JP S61117221 A JPS61117221 A JP S61117221A
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
grain
electrical steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237445A
Other languages
Japanese (ja)
Inventor
Toshiya Wada
和田 敏哉
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59237445A priority Critical patent/JPS61117221A/en
Publication of JPS61117221A publication Critical patent/JPS61117221A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To segment finely magnetic domains with an infiltrated body and to produce a low-iron loss grain-oriented electrical steel sheet by forming a film of an infilterative body to the grain-oriented electrical steel sheet subjected to finish annealing and arranging strained regions in the rolling direction before or after the formation of said film then subjecting the steel sheet to a heat treatment. CONSTITUTION:The film of the infilterative body of a metal, non-metal, etc. is formed to the grain-oriented electrical steel sheet subjected to finish annealing and the spot- or wire-shaped strained regions are arranged in the rolling direc tion before and/or after the formation of such film; thereafter, the steel sheet is subjected to the heat treatment at about 500-1200 deg.C. The infiltrated body having the different steel component or structure is thus formed at intervals in the strained regions of the above-mentioned steel sheet and the magnetic domains are finely segmented without the loss of the effect of improving the segmented without the loss of the effect of improving the iron loss even after the subsequent heat treatment such as stress relief annealing. The grain-oriented electrical steel sheet having extremely low iron loss is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低鉄損方向性電磁鋼板の製造方法に係り、さら
に詳しく述べるならば熱処理されても鉄損改善効果が消
失しない、磁区細分化により鉄損が極めて低い方向性電
磁鋼板を提供する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a grain-oriented electrical steel sheet with low core loss, and more specifically, the present invention relates to a method for producing a grain-oriented electrical steel sheet with a low core loss, and more specifically, a method for magnetic domain refining that does not eliminate the core loss improvement effect even after heat treatment. The present invention relates to a method for providing a grain-oriented electrical steel sheet with extremely low iron loss.

(従来の技術) 方向性電磁鋼板は主として変圧器、その他電気機器の鉄
芯材料として使用されるので、励磁特性、鉄損特性が良
好である必要がある。
(Prior Art) Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, so they need to have good excitation characteristics and iron loss characteristics.

この方向性電磁鋼板は2次再結晶現象を利用し、圧延面
に(110’)面を、圧延方向に<001 >軸をもつ
、いわゆるゴス方位を有する2次再結晶粒組織が発達し
ている。該(110)  <001 >方位の集積度を
高めるとともに、圧延方向からの偏りをできるだけ減少
せめることにより、励磁特性、鉄損特性等のすぐれたも
のが製造されるようになっている。
This grain-oriented electrical steel sheet utilizes the secondary recrystallization phenomenon to develop a secondary recrystallized grain structure with a so-called Goss orientation, with a (110') plane on the rolled surface and a <001> axis in the rolling direction. There is. By increasing the degree of integration of the (110) <001> orientation and reducing deviation from the rolling direction as much as possible, products with excellent excitation characteristics, iron loss characteristics, etc. can be manufactured.

ところで、(110)  <001 >方位の集積度を
高めるにつれて結晶粒は大きくなり、また磁壁が粒界を
貫通するために磁区が大となり、方向性を高めた割りに
は鉄損が低下しない現象がある。
By the way, as the degree of integration of the (110) <001> orientation increases, the crystal grains become larger, and since the domain wall penetrates the grain boundary, the magnetic domain becomes larger, which is a phenomenon in which the iron loss does not decrease even though the orientation is increased. There is.

この現象を解消し、鉄損の低下を図る技術として、例え
ば特公昭5B −5968号がある。これは最終仕上焼
鈍後の一方向性電磁鋼板の表面に小球等を押圧して深さ
5μ以下の凹みを形成して線状の微小ひずみを付与する
ことで磁区細分化を行い、鉄損を改善させるものである
。また、持分間第58−26410号には、最終仕上焼
鈍により生成した2次再結晶の各結晶粒表面にレーザー
照射による痕跡を少な(とも1個形成せしめて、磁区を
細分化し鉄損を低下させることが提案されている。
As a technique for eliminating this phenomenon and reducing iron loss, there is, for example, Japanese Patent Publication No. 5B-5968. This is done by pressing small balls etc. on the surface of the unidirectional electrical steel sheet after final finish annealing to form a depression with a depth of 5μ or less and applying a linear microstrain to refine the magnetic domains, resulting in iron loss. It is intended to improve the In addition, in No. 58-26410, the laser irradiation marks are formed on the surface of each crystal grain of secondary recrystallization generated by final finish annealing, thereby dividing the magnetic domain into smaller pieces and reducing iron loss. It is proposed that

これら特公昭第58−5968号及び特公昭第58−2
6410号に示された方法によれば一方向性電磁鋼板表
面に局部的な微小ひずみを付与することで鉄損が改善さ
れ、超低鉄損材料を得ることができる。
These Special Publications No. 58-5968 and Special Publication No. 58-2
According to the method disclosed in No. 6410, iron loss is improved by applying local minute strain to the surface of a grain-oriented electrical steel sheet, and an ultra-low iron loss material can be obtained.

(発明が解決しようとする問題点) しかしながら、上記の如く得られた超低鉄損材料も焼鈍
すると鉄損等の改善効果が失われる3例えば巻鉄心を製
造する際の歪取り焼鈍では、M鉄損改善効果が消失する
問題がある。
(Problems to be Solved by the Invention) However, when the ultra-low iron loss material obtained as described above is annealed, the effect of improving iron loss etc. is lost.3 For example, in strain relief annealing when manufacturing a wound core, M There is a problem that the iron loss improvement effect disappears.

本発明は熱処理例えば歪取焼鈍されても鉄損改善効果が
消失しない磁区細分化を行ない、鉄損の極めて低い方向
性電磁鋼板を提供することを第1の目的とする。
A first object of the present invention is to provide a grain-oriented electrical steel sheet with extremely low core loss by performing magnetic domain refining that does not lose its core loss improving effect even after heat treatment, such as stress relief annealing.

第2の問題は、前述した従来の痕跡や歪付与の方法は磁
区を細分化するため圧延方向と直交或いはほぼ直交する
方向にこれらの痕跡、歪を付与しなければならず、鋼板
の通板速度つまり生産性の面で制約を受けることである
The second problem is that in the conventional methods of applying traces and strains described above, in order to subdivide the magnetic domains, these marks and strains must be applied in a direction perpendicular or almost perpendicular to the rolling direction, which makes it difficult to thread the steel sheet. This means that there are constraints on speed, or productivity.

本発明はかかる痕跡や歪を圧延方向に付与して通板速度
或いは逆に付与手段の操作速度の制約を解消することを
第2の目的とする。
A second object of the present invention is to apply such marks and distortions in the rolling direction to eliminate restrictions on the sheet passing speed or, conversely, the operating speed of the applying means.

(問題点を解決するための手¥It) まず本発明者らは磁区細分化後に歪取焼鈍など例えば7
00〜900℃の温度で熱処理されても鉄損改善効果が
消失しない磁区細分化を行ない、鉄損の極めて低い方向
性電磁鋼板を製造するため、多くの実験を行ない検討し
た。
(Measures to solve the problem) First, the present inventors carried out strain relief annealing after magnetic domain refining, for example 7
In order to manufacture grain-oriented electrical steel sheets with extremely low core loss by performing magnetic domain refining that does not lose the iron loss improvement effect even when heat treated at temperatures of 00 to 900° C., many experiments were conducted and studies were conducted.

その結果、仕上焼鈍された方向性電磁鋼板に、該鋼板の
鋼成分或いは鋼組織と異なった侵入体、例えば鋼板や表
面被膜等との反応による合金層、表面反応生成物、拡散
体等を、間隔をおいて網板に入り込ませて形成すると、
その両側に磁区の芽が生じ、鋼板が磁化されるとき磁区
が細分化され、その後に歪取焼鈍などの熱処理を施して
も磁区細分化による鉄損改善効果は消失せず、鉄損の極
めて低い方向性電磁鋼板が得られることを見出した。
As a result, in the finish annealed grain-oriented electrical steel sheet, intruders different from the steel composition or steel structure of the steel sheet, such as alloy layers, surface reaction products, diffusers, etc. due to reactions with the steel sheet or surface coating, etc. When formed by inserting them into the mesh board at intervals,
Magnetic domain sprouts occur on both sides, and when the steel plate is magnetized, the magnetic domains are subdivided, and even if heat treatment such as strain relief annealing is performed afterwards, the iron loss improvement effect of magnetic domain subdivision does not disappear, and the iron loss becomes extremely small. It has been found that a low grain oriented electrical steel sheet can be obtained.

なお、本発明において「侵入体」とは鋼板上の被膜が、
そのもの単独、又は他の被膜を含む鋼板側成分、さらに
は雰囲気成分等と結合した状態で鋼板中に粒又は塊りと
なって存在する様子を表現するものである。「可侵入体
」とは侵入体を形成しうる物質を指す。また「被膜」と
は、鋼板上の少な(とも一部において機械的な塗装膜、
メッキ等の化学的な付着膜或いは接着、さらに一部が反
応層をもつ膜など全てを含む総称であり、又その厚みに
ついても特定されない。
In addition, in the present invention, the "intruder" refers to a film on a steel plate,
It expresses the state in which it exists as grains or lumps in the steel sheet, either alone or in combination with other components on the steel sheet side including other coatings, and furthermore, with atmospheric components. "Penetrable body" refers to a substance that can form a penetrant. In addition, "coating" refers to a small (sometimes mechanically coated) coating on a steel plate.
It is a general term that includes all chemically attached films or adhesives such as plating, as well as films that partially have a reaction layer, and its thickness is not specified.

この耐熱性のある磁区細分化は次のようにして行える。This heat-resistant magnetic domain subdivision can be performed as follows.

即ち、仕上焼鈍された方向性電磁鋼板に、金属、非金属
やそれらの混合物、合金、酸化物、リン酸、ホウ酸、リ
ン酸塩、及びホウ酸塩等さらにはそれらの混合物の薬剤
を間隔をおいて塗布し、次いで熱処理すると、可侵入体
が鋼板や表面被膜等と反応して、鋼板に入り込むかたち
で鋼板地鉄の鋼成分或いは鋼組織と異なった侵入体が間
隔をおいて形成され、耐熱性のある磁区細分化が行われ
る。
That is, a finishing annealed grain-oriented electrical steel sheet is coated with chemicals such as metals, nonmetals, mixtures thereof, alloys, oxides, phosphoric acid, boric acid, phosphates, borates, and mixtures thereof. When the steel is coated and then heat treated, the penetrants react with the steel plate, surface coating, etc., and penetrate into the steel plate, forming penetrants that differ from the steel composition or steel structure of the base steel sheet at intervals. , heat-resistant magnetic domain refinement is performed.

又他の方法として、これらの薬剤を鋼板上に全面的に塗
布し、間隔をおいて部分加熱処理すること、或いはメッ
キを部分的に或いは全面的に施すこと、さらにはメッキ
に替えて蒸着、その他の付着方法など種々の手段が°採
用される。
Other methods include applying these chemicals to the entire surface of the steel plate and subjecting the steel plate to partial heat treatment at intervals, or applying plating partially or completely, or using vapor deposition or plating instead of plating. Various means, including other attachment methods, may be employed.

又可侵入体を形成する物質としては、具体的には一例を
後述しているが、熱処理によって鋼板やその表面被膜と
反応して鋼板に侵入するものであればよい。
A specific example of the substance forming the penetrant body will be described later, but any substance that can penetrate the steel plate by reacting with the steel plate or its surface coating through heat treatment may be used.

゛  即ちこの方法による磁区の細分化は、従来のよう
に痕跡や歪によって行なうのではなく、前述した間隔を
おいて入り込んだ侵入体によって行なわれるという点に
注目されるべきである。
In other words, it should be noted that the subdivision of magnetic domains by this method is not done by traces or distortions as in the conventional method, but by intruders inserted at the above-mentioned intervals.

従ってかかる新しい磁区細分化の方法を合理的に具現化
するためには長時間の熱処理にのみ頼るべきではなく、
その浸入体の形成を確実且つ迅速ならしめるために、痕
跡や歪(本発明ではこれを総称して単に歪という)を利
用し、これらを介して可侵入体の鋼板への侵入を容易に
すべきである。
Therefore, in order to rationally implement such a new method of magnetic domain refining, one should not rely only on long-term heat treatment;
In order to ensure the formation of the penetrant body quickly and reliably, traces and distortions (in the present invention, these are simply referred to as distortions) are used to facilitate the penetration of the penetrant body into the steel plate. Should.

この手段として前述した従来の方法が活用できるが、こ
れらの手段はそのものによって磁区を細分化するのでは
なく、可侵入体の侵入を促進させることに特色がある。
The above-mentioned conventional methods can be used as means for this purpose, but these methods are characterized by promoting the invasion of penetrants rather than by themselves subdividing the magnetic domain.

このことは侵入促進手段は最早圧延方向と直交する方向
に適用する制限は解除され、圧延方向に間隔をおいて点
状、線状の歪付与領域を配列することにより所期の目的
が達成される。この点状、線状に配列された歪付与領域
は勿論直線的である必要はなく、圧延方向に伸びる曲線
或いはジグザグでもよい。又この歪の付与は前述した被
膜を形成する工程の前及び/又は後どちらでもよいが、
後で行なう場合には低温で焼付けを行なって被膜を強化
しておくことが好ましい。
This means that the restriction that the penetration promoting means is no longer applied in a direction perpendicular to the rolling direction is lifted, and the intended purpose can be achieved by arranging point-like or linear strain applying regions at intervals in the rolling direction. Ru. Of course, the strain imparting regions arranged in dotted or linear shapes do not need to be straight, but may be curved or zigzag extending in the rolling direction. Further, this strain may be applied either before and/or after the step of forming the film described above,
If the coating is to be carried out later, it is preferable to carry out baking at a low temperature to strengthen the coating.

以下本発明を圧延方向に、間隔をおいて歪付与領域を形
成し、次いで圧延方向と直交する方向に間隔をおいて薬
剤を塗布して熱処理する例に基づいて具体的に説明する
The present invention will be specifically described below based on an example in which strain imparting regions are formed at intervals in the rolling direction, and then a chemical is applied at intervals in a direction perpendicular to the rolling direction and heat treated.

本発明では、仕上焼鈍された方向性電磁鋼板に磁区細分
化を行うが、該方向性電磁鋼板は鋼成分および仕上焼鈍
されるまでの製造条件については特定する必要はない。
In the present invention, magnetic domain refining is performed on a finish annealed grain-oriented electrical steel sheet, but it is not necessary to specify the steel composition and manufacturing conditions of the grain-oriented electrical steel sheet until it is finish annealed.

すなわち例えばインヒビターとして八j2N 、MnS
 、MnSe、BNzCu2 S等が適宜用いられる。
That is, for example, 8j2N, MnS as an inhibitor
, MnSe, BNzCu2S, etc. are used as appropriate.

また必要に応じてCo p Sn p Cr 、 Ni
In addition, Co p Sn p Cr, Ni
.

Mo 、 Sb 、 W等の元素が含有され、熱間圧延
し、焼鈍して1回、または中間焼鈍を工程によりそれぞ
れ1回以上、計2回以上の冷間圧延により最終板厚とし
、脱炭焼鈍し、焼鈍分離剤を塗布して仕上焼鈍されてい
る。
Contains elements such as Mo, Sb, and W, and is hot-rolled and annealed once, or intermediate annealing is performed at least once in each step, resulting in a total of two or more cold-rolling steps to obtain the final thickness, followed by decarburization. It is annealed, coated with an annealing separator, and finished annealed.

ところで、本発明では仕上げ焼鈍された方向性電磁鋼板
の圧延方向に歪付与領域を間隔をおいて線状あるいは点
状に形成するが、この手段及び、その模様は特定する必
要はなく、周知のものが適用される。
Incidentally, in the present invention, the strain imparting regions are formed in the shape of lines or dots at intervals in the rolling direction of the finish annealed grain-oriented electrical steel sheet, but the means and pattern thereof do not need to be specified and may be any well-known method. things are applied.

而してこの鋼板表面にその圧延方向とほぼ直交する方向
に間隔をおいて線状2点状好ましくは連続した直線状に
薬剤が塗布される。この薬剤としては、A I 、 S
i p Ti 、 Sb 、 Sr 、 Cu 、 S
n 、 Zn 、 Fe 。
The chemical is then applied to the surface of the steel plate in two linear dots spaced apart in a direction substantially perpendicular to the rolling direction, preferably in a continuous straight line. This drug includes AI, S
i p Ti, Sb, Sr, Cu, S
n, Zn, Fe.

Ni 、 Cr p Mn 、 B等の金属、非金属粉
末またはそれらの酸化物の1種あるいは2種以上または
、リン酸、ホウ酸、リン酸塩、ホウ酸塩、硫酸塩の1種
あるいは2種以上や、それらの混合物が用いられ、スラ
リー状あるいは溶液として塗布される。
One or more kinds of metals such as Ni, Cr p Mn , B, nonmetal powders, or oxides thereof, or one or more kinds of phosphoric acid, boric acid, phosphates, borates, and sulfates. The above or mixtures thereof are used and applied as a slurry or solution.

金属、非金属粉末は数10ミクロン以下のサイズのもの
が用いられる。
The metal and non-metal powders used have a size of several tens of microns or less.

金属、非金属粉末或いはその酸化物をスラリーとして使
用する場合は水と懸濁させて塗布するのが作業性がよい
ため、水100!:1部に対し2〜100重量部程重量
部塵にする。
When using metal or non-metal powders or their oxides as a slurry, it is easier to apply by suspending them in water, so water 100! : 1 part to 2 to 100 parts by weight of dust.

金属、非金属粉末或いは酸化物を酸又は塩類と混合して
使用する際は原液のままか、水で適当な濃度にうすめて
塗布すればよい。
When metal, nonmetallic powder or oxide is used in combination with acid or salts, it may be applied as a undiluted solution or diluted with water to an appropriate concentration.

薬剤は1〜30mmの間隔をおいて方向性電磁鋼板に塗
布するが、予め、機械的に例えば小球、ローラー等で鋼
板表面に微小な凹みを、あるいは例えばレーザーを照射
することによって光学的に痕跡を、それぞれ可及的に小
さな間隔にて形成したのち、前記薬剤を塗布する。また
塗布の際の薬剤の塗布量は塗布乾燥後の重量で 0.1
〜50 g / %の範囲であればよく、0.3〜10
g/n(がより好ましい。
The chemical is applied to the grain-oriented electrical steel sheet at intervals of 1 to 30 mm, but the chemical is applied mechanically, for example, by making minute dents on the surface of the steel sheet with a small ball or roller, or optically, for example, by irradiating it with a laser. After the traces have been formed at as small a distance as possible, the agent is applied. Also, the amount of drug applied during application is 0.1 based on the weight after application and drying.
~50 g/% and 0.3 to 10
g/n (is more preferred.

次いで、乾燥後、500−1200℃の温度で熱処理す
ると、歪部分と薬剤塗布部分とが一致した箇所の薬剤が
鋼板や表面被膜と反応し、板厚方向に入り込むかたちで
拡散体、合金層または/および表面反応生成物などの侵
入体が間隔をおいて形成される。
Next, after drying, heat treatment is performed at a temperature of 500-1200°C, and the chemical at the location where the strained area and the chemical-applied area coincide reacts with the steel plate and surface coating, penetrating in the thickness direction of the steel plate and forming a diffuser, alloy layer, or Intruders such as/and surface reaction products are formed at intervals.

なお、本発明者等が歪付与磁区細分化法の研究において
得た知見によると、磁区細分化の効果は700〜900
℃の温度で数時間保定されると消失するから、歪自体も
700〜900℃の温度では少なくなると考察している
。一方、本発明の歪付与を利用した侵入体形成熱処理法
では侵入体の形成が促進されているから、全消失以前に
その効果によって被膜構成物質が鋼板内に活発に伝播す
るものと推察される。そこで、この熱処理においては鋼
板中に被膜の構成物質が伝播時に歪の作用が伝播を促進
するように、例えば昇温速度、さらに保温温度および時
間の設定を適切にして、伝播が活発に行なわれる時に歪
が消失しないようにする。該昇温速度や保温温度又処理
時間は被膜構成物質の成分(種類)、濃度等によって最
適範囲が異なる。
According to the findings obtained by the present inventors in research on the strain-imparting magnetic domain refining method, the effect of magnetic domain refining is 700 to 900
Since the strain disappears after being maintained at a temperature of 700 to 900 degrees Celsius, it is considered that the strain itself decreases at a temperature of 700 to 900 degrees Celsius. On the other hand, since the formation of intruders is promoted in the heat treatment method for forming intruders using strain imparting according to the present invention, it is inferred that the film constituent substances actively propagate into the steel sheet due to this effect before they completely disappear. . Therefore, in this heat treatment, the propagation is carried out actively by, for example, setting the heating rate, as well as the holding temperature and time appropriately, so that the action of strain accelerates the propagation of the constituent substances of the coating when it propagates into the steel sheet. To prevent distortion from disappearing. The optimal range of the heating rate, insulating temperature, and treatment time varies depending on the components (types), concentrations, etc. of the coating material.

該熱処理は中性又はH2を含む還元性雰囲気でなされる
。この侵入体の1例の顕微鏡組織写真(x 1000)
を第1図に示す。図にAで示すようにこの1例の該侵入
体は点状の集合体を形成している。侵入体の組成は鋼成
分組成と異なり、また組織も異なって、その両側に磁区
の芽が多数つくられ、鋼板を磁化したとき、該磁区の芽
が伸びて、磁区が細分化されると推察される。
The heat treatment is performed in a neutral or reducing atmosphere containing H2. Microscopic photograph of one example of this invader (x 1000)
is shown in Figure 1. As shown by A in the figure, the intruders in this example form a dot-like aggregate. It is inferred that the composition of the intruder is different from that of the steel, and its structure is also different, so many magnetic domain buds are formed on both sides of the intruder, and when the steel plate is magnetized, the magnetic domain buds extend and the magnetic domains become subdivided. be done.

以下実施例を説明する。Examples will be described below.

実施例 重量%でC: 0.076 、Si : 3.24  
、Mn : 0.078、八6:0.032  、 S
 : 0.024  、Cu : 0.13、Sn :
 0.09、残部鉄からなる珪素鋼スラブを周知の方法
によって熱間圧延−焼鈍−冷間圧延を経て0.225+
u+厚の鋼板を得た。
Example weight %: C: 0.076, Si: 3.24
, Mn: 0.078, 86:0.032, S
: 0.024, Cu: 0.13, Sn:
A silicon steel slab consisting of 0.09, balance iron is hot rolled, annealed, and cold rolled by a well-known method to give 0.225+.
A steel plate having a thickness of u+ was obtained.

次いで更に周知の説炭焼鈍−焼鈍分離剤塗布−最終仕上
焼鈍の各工程を実施した。得られた鋼板コイルから巾I
Qcn+X長さ50cmのサンプルを切出し、「処理前
」の供試材とした。
Next, the well-known steps of charcoal drying annealing, application of an annealing separator, and final finish annealing were carried out. Width I from the obtained steel plate coil
A sample with a length of Qcn+X of 50 cm was cut out and used as a "before treatment" test material.

次いでこの供試材の圧延方向に巾間隔0.7 snでレ
ーザー照射し、微小なキズ(歪)を入れ、第1表に示す
薬剤を塗布乾燥后の重量で0.5 g / rlになる
ように塗布し、炉温400℃で乾燥後積層し、800℃
×30分の熱処理を行って「処理後」の供試材とした。
Next, this test material was irradiated with a laser at a width interval of 0.7 sn in the rolling direction to make small scratches (distortions), and the chemicals shown in Table 1 were applied to the material to give a weight of 0.5 g/rl after drying. After drying at an oven temperature of 400℃, lamination and heating at 800℃
A heat treatment was performed for 30 minutes to obtain a "post-treated" test material.

この後火に800℃×2時間の歪取焼鈍を行なって「歪
取焼鈍後」の供試材とした。
After this, strain relief annealing was performed at 800° C. for 2 hours to obtain a “strain relief annealed” test material.

以上、「処理前」 「処理後」及び「歪取焼鈍後」のそ
れぞれの供試材の磁気特性を測定し、これを第2表に示
した。
As described above, the magnetic properties of each sample material were measured "before treatment", "after treatment", and "after strain relief annealing", and are shown in Table 2.

第  1  表 以上の実施例から明らかなように磁区細分化後に歪取焼
鈍されても鉄損改善効果は失われず、鉄損の極めて低い
方向性電磁鋼板が製造される。
As is clear from the examples in Table 1 and above, even if strain relief annealing is performed after magnetic domain refining, the iron loss improving effect is not lost, and grain-oriented electrical steel sheets with extremely low iron loss are manufactured.

なお本発明の説明においては圧延方向と直交する方向に
薬剤を塗布する例を用いたが、若干効果は落ちるも、歪
付与領域に沿って、或いは全面的に塗布することも有効
であることは当然であり、本発明はこれらを含むもので
ある。
In the explanation of the present invention, an example was used in which the agent was applied in a direction perpendicular to the rolling direction, but it is also effective to apply the agent along the strain-applying area or over the entire surface, although the effect may be slightly lower. Naturally, the present invention includes these.

名かかる歪付与は可侵入体の被膜を形成した後で行なっ
てもよい。但し、この場合は歪付与によって被膜が破壊
されることが多いので、薬剤を塗布する場合には塗布後
例えば500℃程度の熱処理を行なって被膜を強くする
工程を導入することにより解決できる。
Such imparting of strain may be performed after forming the coating of the penetrant. However, in this case, the coating is often destroyed by applying strain, so if a chemical is applied, this can be solved by introducing a step to strengthen the coating by performing heat treatment at, for example, about 500° C. after coating.

(発明の効果) 以上説明したように本発明によれば、該侵入体による磁
区細分化で鋼板の鉄損が低くなるとともに、その後に、
高温に加熱される歪取焼鈍が行われても、鉄In改善効
果が消失しないという、これまでの磁区細分化法に見ら
れないすぐれた特長がある。さらに、圧延方向に歪付与
領域を形成するために、通板速度の制限を受けずに歪を
付与することができ、磁区細分化を工業的に実施するう
えで本発明法は利点が多い。
(Effects of the Invention) As explained above, according to the present invention, the iron loss of the steel plate is reduced by magnetic domain refining by the intruder, and after that,
It has an excellent feature not seen in previous magnetic domain refining methods, in that the iron In improvement effect does not disappear even when strain relief annealing is performed at high temperatures. Furthermore, since the strain applying region is formed in the rolling direction, strain can be applied without being limited by the sheet passing speed, and the method of the present invention has many advantages in industrially implementing magnetic domain refining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって鋼板に形成された点状集合体の
侵入体を示す金属顕微鏡組織写真(x 1000)であ
る。
FIG. 1 is a metallographic micrograph (x 1000) showing intrusions of dot-like aggregates formed on a steel plate according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、仕上焼鈍された方向性電磁鋼板に、可侵入体の被膜
を形成し、該被膜形成の前及び/又は後に圧延方向に歪
付与領域を配列し、ついで熱処理することにより該鋼板
に鋼成分あるいは鋼組織と異なった侵入体を間隔をおい
て形成し、磁区細分化を図ることを特徴とする低鉄損方
向性電磁鋼板の製造方法。
1. A film of penetrants is formed on a finish annealed grain-oriented electrical steel sheet, strain applying regions are arranged in the rolling direction before and/or after the film is formed, and then heat treatment is performed to change the steel composition of the steel sheet. Alternatively, a method for manufacturing a grain-oriented electrical steel sheet with low iron loss, characterized in that intruders different from the steel structure are formed at intervals to refine magnetic domains.
JP59237445A 1984-11-13 1984-11-13 Production of low-iron loss grain-oriented electrical steel sheet Pending JPS61117221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237445A JPS61117221A (en) 1984-11-13 1984-11-13 Production of low-iron loss grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237445A JPS61117221A (en) 1984-11-13 1984-11-13 Production of low-iron loss grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS61117221A true JPS61117221A (en) 1986-06-04

Family

ID=17015455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237445A Pending JPS61117221A (en) 1984-11-13 1984-11-13 Production of low-iron loss grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS61117221A (en)

Similar Documents

Publication Publication Date Title
US4960652A (en) Grain-oriented electrical steel sheet having a low watt loss
EP0957180A2 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPH02200732A (en) Manufacture of grain-oriented silicon steel sheet having excellent magnetic properties
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JP7260799B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS61117221A (en) Production of low-iron loss grain-oriented electrical steel sheet
JPS6330968B2 (en)
JPS61284529A (en) Manufacture of grain oriented magnetic steel sheet having extremely low iron loss
JPS61139677A (en) Production of low iron loss grain oriented electrical steel sheet
CN113302317A (en) Method for producing grain-oriented electromagnetic steel sheet
JPS61117220A (en) Production of low-iron loss electrical steel sheet
JPS61117217A (en) Manufacture of ultralow iron loss grain oriented magnetic steel plate
JPS61117216A (en) Manufacture of grain oriented magnetic steel plate of ultralow iron loss
JPH0327634B2 (en)
JPS61117283A (en) Production of low-iron loss grain-oriented electrical steel sheet
JPS6319568B2 (en)
EP0345937B1 (en) Method of refining magnetic domains of electrical steels
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS61133319A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61117219A (en) Production of low-iron loss grain-oriented electrical steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss