JPS6111657B2 - - Google Patents

Info

Publication number
JPS6111657B2
JPS6111657B2 JP54121834A JP12183479A JPS6111657B2 JP S6111657 B2 JPS6111657 B2 JP S6111657B2 JP 54121834 A JP54121834 A JP 54121834A JP 12183479 A JP12183479 A JP 12183479A JP S6111657 B2 JPS6111657 B2 JP S6111657B2
Authority
JP
Japan
Prior art keywords
adsorbent
exhaust gas
dust
sulfur
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121834A
Other languages
Japanese (ja)
Other versions
JPS5645746A (en
Inventor
Kyoshi Narato
Keizo Ootsuka
Makoto Shimoda
Norio Arashi
Hidetoshi Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP12183479A priority Critical patent/JPS5645746A/en
Publication of JPS5645746A publication Critical patent/JPS5645746A/en
Publication of JPS6111657B2 publication Critical patent/JPS6111657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は石炭燃焼排ガス浄化装置に係り、特に
半成コークスを賦活して得られた吸着剤によりイ
オウ酸化物を吸着除去するようにした排ガスの浄
化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal combustion exhaust gas purification apparatus, and more particularly to an exhaust gas purification apparatus in which sulfur oxides are adsorbed and removed using an adsorbent obtained by activating semi-formed coke.

石炭火力を推進する上で、いくつかの解決しな
ければならない問題があるが、石炭を燃焼した際
に発生するイオウ酸化物の除去は、一つの大きな
課題となつている。従来から、重油専焼の火力発
電所には、「石炭石−石膏法」と呼ばれる湿式の
脱流装置が設置されているが、この方式には、石
灰石の多量の運搬、多量の用水使用等の問題があ
る上に、製品の石膏の需要も少ないなどの問題が
ある。そこで、これからのエネルギー危機に対処
して、石炭火力を推進する上では、火力発電所立
地の問題から、用水や薬剤使用量の少なく、しか
も製品としても石膏よりも容積の小さいイオウと
して回収する、いわゆる乾式脱硫法の開発が強く
要請されている。
There are several problems that need to be solved in promoting coal-fired power, but one major issue is the removal of sulfur oxides that are generated when coal is burned. Traditionally, heavy oil-fired thermal power plants have been equipped with a wet deflow device called the "coal stone-gypsum method." In addition to problems, there is also a problem such as low demand for the product gypsum. Therefore, in order to deal with the upcoming energy crisis and promote coal-fired power generation, due to the problem of location of thermal power plants, it is necessary to recover sulfur as a product that uses less water and chemicals and has a smaller volume than gypsum. There is a strong demand for the development of a so-called dry desulfurization method.

乾式脱硫法は、吸着剤を用いて排ガス中のイオ
ウ酸化物を吸着除去し、その吸着剤を再生すると
ともに、脱着された二酸化イオウを還元して、イ
オウとして回収する方法である。
The dry desulfurization method is a method in which sulfur oxides in exhaust gas are adsorbed and removed using an adsorbent, the adsorbent is regenerated, and the desorbed sulfur dioxide is reduced and recovered as sulfur.

吸着剤としては従来、活性炭が使用されている
が、活性炭程の吸着性能を持つていなくとも、製
造が容易で、しかも低コストの吸着剤として石炭
を用い、それを乾留して半成コークスを作り、そ
れをスチームにより賦活して吸着剤を製造する方
法である。この吸着剤の充填方法としては、移動
層型吸着塔が採用される傾向にある。この方法は
排ガス中のイオウ酸化物を吸着し、飽和吸着量に
達した吸着剤を抜き出し、脱着する場合に有用な
方法である。しかし、この方法において、三つの
問題点がある。第一の問題点は吸着剤が移動する
際にその一部が損耗し、微粒子化して吸着塔後流
側に飛散し、二次公害の原因になることである。
従つて、移動層型吸着塔を採用する場合には、こ
こを通過する燃焼排ガスをそのまゝ大気に放出で
きず、後流側に脱塵装置を配置する必要がある。
第2の問題点は、前記したごとく飽和吸着量に達
した吸着剤を移動する場合、吸着剤の充填密度が
小さくなり、見かけの吸着量が減少して、脱硫率
が低下することである。この場合、第一の問題点
と同様、後流側に脱硫率が低下した分イオウ酸化
物を除去する簡易脱硫装置が必要となる。
Activated carbon has traditionally been used as an adsorbent, but although it does not have the same adsorption performance as activated carbon, it is easy to manufacture and is low cost. Coal is used as an adsorbent and carbonized to produce semi-formed coke. This is a method of producing an adsorbent by creating an adsorbent and activating it with steam. As a method for filling this adsorbent, there is a tendency for a moving bed type adsorption tower to be adopted. This method is useful for adsorbing sulfur oxides in exhaust gas, extracting and desorbing the adsorbent that has reached a saturated adsorption amount. However, this method has three problems. The first problem is that when the adsorbent moves, a part of it is worn out, becomes fine particles, and scatters to the downstream side of the adsorption tower, causing secondary pollution.
Therefore, when a moving bed type adsorption tower is employed, the combustion exhaust gas passing through the adsorption tower cannot be directly released into the atmosphere, and it is necessary to arrange a dust removal device on the downstream side.
The second problem is that when the adsorbent that has reached the saturated adsorption amount is moved as described above, the packing density of the adsorbent decreases, the apparent adsorption amount decreases, and the desulfurization rate decreases. In this case, similar to the first problem, a simple desulfurization device is required on the downstream side to remove sulfur oxides corresponding to the decrease in the desulfurization rate.

本発明の目的は、前述する従来装置の欠点に鑑
み、ダストおよび残留イオウ酸化物による環境汚
染を防止する石炭燃焼排ガス浄化装置を提供する
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a coal combustion exhaust gas purification device that prevents environmental pollution caused by dust and residual sulfur oxides in view of the drawbacks of the conventional devices described above.

上述の目的を達成する為に、本発明の浄化装置
は、吸着塔の後流側に吸着剤を粉化して得られた
粒子によりプレコートした材を有する過集塵
装置を設けたことを特徴とする。
In order to achieve the above object, the purification device of the present invention is characterized in that an excessive dust collector having a material pre-coated with particles obtained by pulverizing the adsorbent is provided on the downstream side of the adsorption tower. do.

さらに、吸着塔の上流側には、ダストに吸着さ
れた三酸化イオウをダストと共に除去する装置を
設けることにより、吸着塔の容量を小さくするこ
とが可能である。これによつて、吸着剤の粉化に
よるダストおよび未吸着イオウ酸化物は低減され
る。
Furthermore, by providing a device on the upstream side of the adsorption tower to remove sulfur trioxide adsorbed to the dust together with the dust, it is possible to reduce the capacity of the adsorption tower. This reduces dust and unadsorbed sulfur oxides due to pulverization of the adsorbent.

以下、本発明を第1図を用いて詳細に説明す
る。第1図は本発明の一実施例を示す石炭燃焼排
煙浄化装置のフローを示したものである。1はボ
イラ、2はボイラ1の燃料石炭供給装置、3は脱
硝反応とSO2酸化反応を同時に行なう(脱硝+酸
化)装置、4はエアヒータ、5は電気集塵装置、
6はフアン、7はSO2を吸着する移動層吸着塔、
8,9は移動層吸着塔7で使用する吸着剤を製造
する乾留炉、賦活炉、10は移動層吸着塔7で
SO2を吸着した吸着剤を加熱して高濃度SO2を放
出させる脱着塔、11は脱吸塔10からのSO2
元素状硫黄として回収するための硫黄回収装置、
12は脱着塔でSO2を放出した吸着剤の一部を吸
着塔7へフイードバツクするために、ダストある
いは粉化した吸着剤とを分離する分離装置、13
は電気集塵装置5での未捕集サブミクロン粒子及
び移動層吸着塔7からの損耗した吸着剤の粉塵を
除去する過集塵装置、14は吸着剤の一部を粉
砕して微粉化するための粉砕機、15は粉砕した
吸着剤の微粉を過集塵装置13内の材表面に
プレコーテイングするための微粉導入フアンであ
る。
Hereinafter, the present invention will be explained in detail using FIG. 1. FIG. 1 shows a flowchart of a coal combustion flue gas purification device showing an embodiment of the present invention. 1 is a boiler, 2 is a fuel coal supply device for boiler 1, 3 is a device that simultaneously performs denitrification reaction and SO 2 oxidation reaction (denitration + oxidation), 4 is an air heater, 5 is an electrostatic precipitator,
6 is a fan, 7 is a moving bed adsorption tower that adsorbs SO 2 ,
8 and 9 are carbonization furnaces and activation furnaces for producing the adsorbent used in the moving bed adsorption tower 7; 10 is the moving bed adsorption tower 7;
a desorption tower that heats the adsorbent that has adsorbed SO 2 to release high-concentration SO 2 ; 11 is a sulfur recovery device for recovering SO 2 from the desorption tower 10 as elemental sulfur;
12 is a separation device for separating dust or powdered adsorbent in order to feed back a part of the adsorbent that released SO 2 in the desorption tower to the adsorption tower 7; 13;
14 is an excessive dust collector that removes uncollected submicron particles in the electrostatic precipitator 5 and dust of the worn adsorbent from the moving bed adsorption tower 7, and 14 is a part of the adsorbent that is pulverized into fine powder. The pulverizer 15 is a fine powder introduction fan for pre-coating the surface of the material in the excessive dust collector 13 with fine powder of the crushed adsorbent.

ボイラ1には燃料石炭が微粉化され、いわゆる
微粉炭が供給装置2により導入される。一方では
5〜10mmの粒状石炭の一部を乾留炉8に導入し
て、こゝで半成コークスを造り、さらに賦活炉9
で半成コークスは賦活され、SO2吸着剤を造る。
この方法によれば、燃料石炭を一還して利用でき
ることから、別途吸着剤を運搬する必要がなく、
経済的である。乾留、賦活された吸着剤は移動層
吸着塔7に供給される。また、本実施例では前記
吸着剤の一部を粉砕機14で微粉化してフアン1
5により過集塵装置13に導入することにより
材をプレコーテイングする。この操作の必要性
は、材に燃焼ガスを通気するに当つて初期吹き
抜け現象がでないようにするためで高集塵率を得
るための手段となる。先ず、ボイラ1からの燃焼
排ガスは(脱硝+SO2酸化)装置3に入る。この
装置は凹凸のあるステンレス製薄板にTi、Vの
2種類の金属酸化物が混練された後添着され、
530℃前後で予備焼成され、さらに470℃前後で数
時間焼成して造られた板状触媒が、前記(脱硝+
酸化)装置3に等間隔でガス流と平行に配置す
る。このパラレルフロー反応器によれば高濃度の
ばいじんを含む排ガスを通気してもばい塵の反応
器内への堆積は少なく、ばい塵による幣害は防止
できる。又、本装置3の最大の特徴は、装置3の
前段よりNH3を注入し、前記触媒の活性で、下記
の(1)式からなる還元反応を起こさせNOxを無害
化すると共に、酸化活性をも有していることから
(1)式で示す還元 NO+NH3+1/4O2→N2+3/2H2O ………(1) 反応の外に、(2)式で示す酸化反応も同時に起る。
このSO3の生成の目的は、ばい塵の電気抵抗が SO2+1/2O2→SO3 ………(2) 高いために、ばい塵に前記SO3を吸着させて、電
気伝導率を良くし、抵抗を低くする目的である。
従つて(脱硝+酸化)装置3を経た排ガスはエア
ヒータ4を介して電気集塵装置5に入るが、抵抗
が低くなつたばい塵が電気集塵装置5で良好に集
塵されることになる。すなわち、排ガス中のSO2
の一部をSO3に転換する操作を脱硝と同じ領域で
行なわせれば、他に調質剤等を新らたに添加する
ことなくばいじんの集塵率をも向上することがで
き、非常に経済的である。電気集塵装置5の設置
を(脱硝+酸化)装置3の後段にした目的はここ
に有り、さらに移動層吸着塔5の前段に配置した
目的は、移動層吸着塔へのばい塵の流入を少なく
し、吸着剤の移動をスムーズに行なわせるためで
ある。電気集塵装置5でばい塵の大半が除去され
た排ガスは移動層吸着塔7に入り、こゝで排ガス
中のSO2は吸着される。飽和吸着量に達した触媒
は吸着塔7の下部より抜き出され、脱着塔10に
導かれる。こゝでは吸着剤は高温に加熱され、
SO2を放出し、吸着剤は再生されて大部分が吸着
塔7にフイードバツクされ再利用される。一部は
損耗するから分離装置12で微粉が分離排除す
る。前記したごとく、吸着塔7の前段での(脱硝
+酸化)装置3で排ガス中のSO2は一部SO3に酸
化され、ばい塵に吸着されて、電気集塵装置5で
除去されるから、一部脱硫効果を得ており、その
分脱硫用吸着塔7での負荷を軽減していることに
つながるため、吸着剤の飽和吸着量に達する時間
を前処理のない場合に比して長くできるから、脱
着再生に必要な操作、ランニングコストを軽減す
る付加的効果があるのが特徴である。「一方、移
動層吸着塔7で移動時に損耗粉化した吸着剤(粉
じん)及び電気集塵装置5で未捕集のサブミクロ
ン粒子が予めプレコーテイングされた材を有す
る過集塵装置13に入り、これらばいじん、粉
じんが除去されて大気に放出する構成になつてい
る。過集塵装置13は、前述したごとく、材
に吸着剤の一部を粉砕機14で粉化して、プレコ
ーテイングするが、プレコーテイングの条件とし
ては、過集塵装置13で集塵対象となるばい塵
の粒径および、材から捕集したばい塵を払い落
とす際の払い落し程度によつて決定される。測定
対称となるばい塵の粒径は、前述した吸着塔7で
の吸着剤の損耗した微粉で約50〜100μmであ
り、且つ、払い落し易さから、200〜300μmの粒
径に粉砕した吸着剤をプレコーテイングすること
が好ましい。また、材にプレコーテイングする
厚みは通風損失、払い落し易さの程度から2〜5
mm程度が好ましい。すなわち、吸着剤を200〜300
μmに粉砕した微粉を2〜5mmの厚さでプレコー
テイングすることにより、前述した吸着塔7から
の飛散ばい塵を高い効率で捕集できると共に、吸
着塔7からの未吸着のイオウ酸化物を前記プレコ
ーテイング材によつて吸着でき、脱塵の外に簡易
脱硫の効果も得ることができる特徴があり、二次
公害を防止できる。
Fuel coal is pulverized and so-called pulverized coal is introduced into the boiler 1 by a supply device 2 . On the other hand, a part of the granular coal of 5 to 10 mm is introduced into the carbonization furnace 8 to produce semi-formed coke, and then to the activation furnace 9.
The semi-formed coke is activated to create SO 2 adsorbent.
According to this method, fuel coal can be recycled and used, so there is no need to transport adsorbent separately.
Economical. The carbonized and activated adsorbent is supplied to a moving bed adsorption tower 7. Further, in this embodiment, a part of the adsorbent is pulverized by a pulverizer 14, and the fan 1
5, the material is precoated by introducing it into the excessive dust collector 13. This operation is necessary to prevent the initial blow-through phenomenon when blowing combustion gas through the material, and is a means of obtaining a high dust collection rate. First, the combustion exhaust gas from the boiler 1 enters the (denitrification + SO 2 oxidation) device 3. In this device, two types of metal oxides, Ti and V, are kneaded and attached to a thin stainless steel plate with uneven surfaces.
A plate-shaped catalyst is prepared by pre-calcining at around 530°C and further firing at around 470°C for several hours.
oxidation) device 3 at equal intervals and parallel to the gas flow. According to this parallel flow reactor, even if exhaust gas containing a high concentration of soot and dust is vented, there is little accumulation of soot and dust in the reactor, and damage caused by soot and dust can be prevented. In addition, the biggest feature of this device 3 is that NH 3 is injected from the front stage of the device 3, and the activity of the catalyst causes a reduction reaction according to the following equation (1) to detoxify NOx, and also increases the oxidation activity. Since it also has
Reduction shown by equation (1) NO + NH 3 + 1/4O 2 →N 2 + 3/2H 2 O In addition to the reaction (1), the oxidation reaction shown by equation (2) also occurs simultaneously.
The purpose of generating SO 3 is to make the SO 3 adsorb to the dust and improve its electrical conductivity since the electrical resistance of dust is high. The purpose is to lower the resistance.
Therefore, the exhaust gas that has passed through the (denitrification + oxidation) device 3 enters the electrostatic precipitator 5 via the air heater 4, but the soot and dust, which has a low resistance, is effectively collected in the electrostatic precipitator 5. . That is, SO 2 in exhaust gas
If the operation of converting a part of SO 3 into SO 3 is performed in the same area as denitrification, it is possible to improve the dust collection rate without adding any other conditioning agents, which is extremely effective. Economical. This is the purpose of installing the electrostatic precipitator 5 after the (denitrification + oxidation) device 3, and the purpose of installing the electrostatic precipitator 5 before the moving bed adsorption tower 5 is to prevent dust from flowing into the moving bed adsorption tower. This is to reduce the amount of adsorbent and to allow smooth movement of the adsorbent. The exhaust gas from which most particulate matter has been removed by the electrostatic precipitator 5 enters the moving bed adsorption tower 7, where SO 2 in the exhaust gas is adsorbed. The catalyst that has reached the saturated adsorption amount is extracted from the lower part of the adsorption tower 7 and guided to the desorption tower 10. Here, the adsorbent is heated to a high temperature,
SO 2 is released, the adsorbent is regenerated, and most of it is fed back to the adsorption tower 7 and reused. Since some of the powder is wasted, the fine powder is separated and removed by the separator 12. As mentioned above, part of the SO 2 in the exhaust gas is oxidized to SO 3 in the (denitrification + oxidation) device 3 at the front stage of the adsorption tower 7, which is adsorbed by dust and removed by the electrostatic precipitator 5. , a partial desulfurization effect is obtained, which leads to a reduction in the load on the desulfurization adsorption tower 7, so the time required to reach the saturated adsorption amount of the adsorbent is longer than in the case without pretreatment. Because it can be used, it has the additional effect of reducing the operation and running costs required for desorption and regeneration. On the other hand, the adsorbent (dust) worn out during movement in the moving bed adsorption tower 7 and the submicron particles that have not been collected in the electrostatic precipitator 5 enter the excessive dust collector 13, which has a pre-coated material. , these soot and dust are removed and released into the atmosphere.As mentioned above, the excessive dust collector 13 pulverizes a part of the adsorbent onto the material using the pulverizer 14 and pre-coats it. The pre-coating conditions are determined by the particle size of the dust to be collected by the excessive dust collector 13 and the extent to which the dust collected from the material is brushed off.Measurement target The particle size of the soot dust is about 50 to 100 μm, which is the fine powder of the adsorbent worn out in the adsorption tower 7 mentioned above. It is preferable to pre-coat the material.The thickness of the pre-coating on the material should be 2 to 5 mm depending on ventilation loss and ease of brushing off.
Approximately mm is preferable. i.e. adsorbent 200-300
By pre-coating the fine powder pulverized to micrometers with a thickness of 2 to 5 mm, the above-mentioned scattered dust from the adsorption tower 7 can be collected with high efficiency, and the unadsorbed sulfur oxides from the adsorption tower 7 can be collected. It can be adsorbed by the pre-coating material, and in addition to dust removal, it can also have the effect of simple desulfurization, and secondary pollution can be prevented.

以上説明したごとく、本発明によれば、従来技
術における課題である脱硝反応器のダスト対策、
電気集塵装置の高抵抗障害、石灰−石膏法脱硫で
の副生物の処理及びサブミクロン粒子の大気放出
等の諸問題を解消することができる特徴があり、
今後増設計画の有る石炭火力発電所における最適
な排ガス処理装置を提供できるものである。
As explained above, according to the present invention, measures against dust in denitrification reactors, which are problems in the prior art, can be solved.
It has the characteristics of being able to solve various problems such as high resistance failure of electrostatic precipitators, treatment of byproducts in lime-gypsum desulfurization, and atmospheric release of submicron particles.
This makes it possible to provide an optimal exhaust gas treatment device for coal-fired power plants that have expansion plans in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の石炭火力発電に於ける排ガス処理
装置の構成を示す図である。 1……ボイラ、3……酸化装置、5……電気集
塵装置、7……移動層吸着塔、8……乾留炉、9
……賦活炉、13……過集塵装置、14……粉
砕機。
The figure is a diagram showing the configuration of an exhaust gas treatment device in coal-fired power generation according to the present invention. 1... Boiler, 3... Oxidation device, 5... Electrostatic precipitator, 7... Moving bed adsorption tower, 8... Carbonization furnace, 9
...Activation furnace, 13...Super dust collector, 14...Crusher.

Claims (1)

【特許請求の範囲】 1 半成コークスを賦活して得られた吸着剤によ
り石炭燃焼排ガス中のイオウ酸化物を吸着除去す
るようにした石炭燃焼排ガス浄化装置において、
内部に吸着剤の移動層を形成し、イオウ酸化物を
吸着する吸着塔と、吸着剤を粉化して得られる粉
末をプレコートした材を有し、前記吸着塔通過
後の排ガスからダストと残留イオウ酸化物を除去
する過集塵装置とを組合せてなることを特徴と
する石炭燃焼排ガス浄化装置。 2 半成コークスを賦活して得られた吸着剤によ
り石炭燃焼排ガス中のイオウ酸化物を吸着除去す
るようにした石炭燃焼排ガス浄化装置において、
前記燃焼排ガス中の二酸化イオウを三酸化イオウ
に酸化して排ガスのダストに付着させダストと共
に三酸化イオウを排出する装置と、前記吸着剤の
移動層を有し、排ガス中のイオウ酸化物を吸着剤
に吸着除去する装置と、吸着剤を粉化して得られ
る粉末をプレコートした材を有し、排ガス中の
ダストとイオウ酸化物を除去する過集塵装置と
を順次組合せてなる石炭燃焼排ガス浄化装置。
[Claims] 1. A coal combustion exhaust gas purification device that adsorbs and removes sulfur oxides in coal combustion exhaust gas using an adsorbent obtained by activating semi-formed coke,
It has an adsorption tower that forms a moving bed of adsorbent inside and adsorbs sulfur oxides, and a material pre-coated with powder obtained by pulverizing the adsorbent, and removes dust and residual sulfur from the exhaust gas after passing through the adsorption tower. A coal combustion exhaust gas purification device characterized by being combined with an excessive dust collector for removing oxides. 2. In a coal combustion exhaust gas purification device that adsorbs and removes sulfur oxides in coal combustion exhaust gas using an adsorbent obtained by activating semi-formed coke,
The apparatus includes a device that oxidizes sulfur dioxide in the combustion exhaust gas to sulfur trioxide, causes the sulfur trioxide to adhere to dust in the exhaust gas, and discharges the sulfur trioxide along with the dust; and a moving bed of the adsorbent, which adsorbs sulfur oxides in the exhaust gas. A coal combustion exhaust gas purification system that sequentially combines a device that adsorbs and removes the adsorbent with an adsorbent, and an excessive dust collector that removes dust and sulfur oxides from the exhaust gas and has a material pre-coated with powder obtained by pulverizing the adsorbent. Device.
JP12183479A 1979-09-20 1979-09-20 Purification equipment for coal combustion waste gas Granted JPS5645746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12183479A JPS5645746A (en) 1979-09-20 1979-09-20 Purification equipment for coal combustion waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12183479A JPS5645746A (en) 1979-09-20 1979-09-20 Purification equipment for coal combustion waste gas

Publications (2)

Publication Number Publication Date
JPS5645746A JPS5645746A (en) 1981-04-25
JPS6111657B2 true JPS6111657B2 (en) 1986-04-04

Family

ID=14821076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12183479A Granted JPS5645746A (en) 1979-09-20 1979-09-20 Purification equipment for coal combustion waste gas

Country Status (1)

Country Link
JP (1) JPS5645746A (en)

Also Published As

Publication number Publication date
JPS5645746A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
EP2111906B1 (en) Method and apparatus for removing mercury from flue gas of solid fuel combustion
CA2477635C (en) Method and apparatus for removing mercury species from hot flue gas
US20050039598A1 (en) Control of mercury emissions from solid fuel combustion
CN1331571C (en) Flue gas hydrargyrum-removing method by catalytic oxidation
JPS5824174B2 (en) Exhaust gas treatment method
JP2007530256A (en) Bromine addition to improve mercury removal from flue gas
CN106975331A (en) A kind of smoke catalytic absorbing synergic mercury removal device and its method
US4640825A (en) Process for simultaneous removal of SO2 and NOx from gas streams
CN110755999B (en) Full-flow fluidized active coke demercuration recovery process and system
CN108870988A (en) A kind of sintering smoke purifying system and its purification method
US10486105B2 (en) Clean gas stack
CN103307621A (en) Pulverized coal fired boiler system and method with function of simultaneously removing multiple pollutants
WO2014129402A1 (en) Exhaust gas treatment system and exhaust gas treatment method
WO2004080574A1 (en) Mercury and process for removing mercury from gases
CN208859618U (en) A kind of useless activated coke Incineration in CFB system
JP2010125377A (en) Wet-type desulfurization apparatus
JPS6111657B2 (en)
CN114733344A (en) Flue gas mercury circulating capture method and system
CN210584472U (en) In-situ desulfurization and denitrification device for coal-to-coke powder in power plant
JP3086156B2 (en) RDF incineration / exhaust gas treatment equipment
CN112495151A (en) Method for eliminating blue smoke plume of chimney of coal-fired boiler
CN111001292A (en) Coal chemical looping combustion demercuration device and method
CN109092008A (en) A kind of sintering flue gas active carbon high-efficiency purification process
Peters Mercury control with regenerative activated coke technology
JP2002263440A (en) Flue gas treatment equipment for boiler using oil containing much sulfur-component as fuel