JPS6111637A - Liquid body sensor - Google Patents

Liquid body sensor

Info

Publication number
JPS6111637A
JPS6111637A JP59132378A JP13237884A JPS6111637A JP S6111637 A JPS6111637 A JP S6111637A JP 59132378 A JP59132378 A JP 59132378A JP 13237884 A JP13237884 A JP 13237884A JP S6111637 A JPS6111637 A JP S6111637A
Authority
JP
Japan
Prior art keywords
light
liquid
plural
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132378A
Other languages
Japanese (ja)
Inventor
Motoo Shimizu
清水 基夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59132378A priority Critical patent/JPS6111637A/en
Publication of JPS6111637A publication Critical patent/JPS6111637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain the titled sensor having a high discriminating capacity and less foreign noise by constituting of plural light detectors or a light detector having plural detecting faces as its signal light detector. CONSTITUTION:The light emitted from a light source 12 is converted to the beam of light having a certain widening angle phi by a beam of light adjusting means 13 and is made incident on an optical prism 11. The incident beam of light is emitted from the prism 11 with repeated reflections by a detecting face (a) and the face (b) which is parallel thereto and is made incident on plural light detectors or light detectors 14, 15, 16 having plural detecting faces. If the positions of these light detectors 14, 15, 16 are arranged properly the beam of light detected by respective light detector is made to correspond with the beam of light having different plural angles of incidence, and if respective electrical output signal is amplified by plural amplifiers 17, 18, 19..., outputted as output signals V1, V2, V3... and compared with combining the output signal V1, V2, V3..., it is usable for a sensor, etc. detecting the sort of liquid having approaching refractive index.

Description

【発明の詳細な説明】 [技術分野] 本発明は光学プリズムの反射面に接する液体物質の、屈
折率の差異により全反射角が変化することを利用して、
液体の有無、種類および濃度等を検知・識別する光学式
液体センサに関する。
[Detailed Description of the Invention] [Technical Field] The present invention utilizes the fact that the angle of total reflection changes due to the difference in refractive index of a liquid substance in contact with the reflective surface of an optical prism.
This invention relates to an optical liquid sensor that detects and identifies the presence, type, concentration, etc. of liquid.

[従来技術] 光の全反射を利用して液体の検知または識別を行なうセ
ンサの構成の一例として、実願昭58−1208H号の
考案がある。この考案の構成を第7図によって説明する
と、光ファイバlから出射した信号光が、レンズ3によ
りはy平行な光束に変換されプリズム5に入射する。プ
リズムが空気中にある場合、信号光は検知反射面aで全
反射するような入射角θを有しており、全反射した信号
光はレンズ4で集光され光ファイバ2に結合される。
[Prior Art] As an example of the structure of a sensor that detects or identifies liquid by utilizing total reflection of light, there is a device proposed in Utility Model Application No. 1208H/1983. The configuration of this invention will be explained with reference to FIG. 7. Signal light emitted from the optical fiber 1 is converted into a y-parallel light beam by the lens 3 and enters the prism 5. When the prism is in the air, the signal light has an incident angle θ such that it is totally reflected by the detection reflection surface a, and the totally reflected signal light is focused by the lens 4 and coupled to the optical fiber 2.

つぎに、検知反射面aの外側に屈折率nの液体が接して
いる場合、入射角θを適当な範囲に選べば、入射光は全
反射状態から部分反射状態に変化する。従って、受光側
の光ファイバ2の検知端で、光出力レベルを監視すれば
、検知反射面aの外側に液体が接している場合には、受
光レベルが低下するゆで、液体の有無を検知することが
できる。
Next, when a liquid having a refractive index n is in contact with the outside of the detection reflection surface a, if the incident angle θ is selected within an appropriate range, the incident light changes from a total reflection state to a partial reflection state. Therefore, if the optical output level is monitored at the sensing end of the optical fiber 2 on the light receiving side, if liquid is in contact with the outside of the sensing reflective surface a, the received light level will drop and the presence or absence of liquid can be detected. be able to.

上記の考察を計算により示したものが第2図で、これは
入射角θに対するプリズムの検知反射面での反射損失の
計算値を図表化したものである。図において、実線はプ
リズムの屈折率no −1,51光の入射角θ= 82
’の場合で、プリズムの検知反射面aに接する液体が水
(屈折率が1.333)の場合には光はは髪全反射し、
水より屈折率の太きい油類(屈折率が1.4〜1.5)
の場合にはセンサの反射損失が大きく増加することを示
している。
The above considerations are illustrated in FIG. 2, which is a graphical representation of the calculated reflection loss at the detection reflection surface of the prism with respect to the incident angle θ. In the figure, the solid line is the refractive index of the prism no -1,51 and the incident angle of light θ = 82
In the case of ', if the liquid in contact with the detection reflection surface a of the prism is water (with a refractive index of 1.333), the light is totally reflected by the hair,
Oils with a higher refractive index than water (refractive index of 1.4 to 1.5)
This shows that the reflection loss of the sensor increases significantly in the case of .

この構成を利用すれば、水には影響されず少量の油液を
検出することが可能であり、換言すれば2種の液体の識
別が可能であることがわかる。このよ−うなセンサを屈
折率の近接した液体の識別、たとえば、水とエチルエー
テル(u = 1.354)やエチルアルコール(n 
= 1.382)などの識別に用いようとすると、セン
サの製造上のバラツキ、液体の屈折率の温度による変化
、光源のレベル変動等の各種要因により識別の信頼性が
低下するという問題が生じる。これを回避する方法とし
て、第2図の破線で例示するように、異る入射角θ(第
2図では64°と660)をもつセンサを、2個、3個
と並列に使用し、その出力を比較すれば、識別の精度を
向上することができる。しかし、このように構成した場
合には、光源・光学プリズムΦ光検出器等を含めたセン
サ全体が大形化し、また高価になることは明らかであり
、その上洛センサが、異る光源・光伝送系を用いるため
に、これらの各要素の特性の温度変化や経時変化等の差
異による誤差が発生することが避けられないという欠点
を生じる。
It can be seen that by using this configuration, it is possible to detect a small amount of oil without being affected by water, and in other words, it is possible to distinguish between two types of liquid. Such a sensor can be used to distinguish liquids with similar refractive indices, for example, water and ethyl ether (u = 1.354) or ethyl alcohol (n
= 1.382), the problem arises that the reliability of identification decreases due to various factors such as variations in sensor manufacturing, changes in the refractive index of the liquid due to temperature, and fluctuations in the level of the light source. . To avoid this, two or three sensors with different incident angles θ (64° and 660° in Fig. 2) are used in parallel, as illustrated by the broken line in Fig. 2. By comparing the outputs, the accuracy of identification can be improved. However, when configured in this way, it is clear that the entire sensor including the light source, optical prism Φ photodetector, etc. becomes larger and more expensive, and the sensor is Since a transmission system is used, there is a disadvantage in that errors due to differences in the characteristics of each of these elements due to temperature changes, changes over time, etc. are unavoidable.

[発明の目的] 本発明の目的は、光源と光学プリズムと、光束調整手段
と、信号光検出器とからなる光学式液体センサにおいて
、前記光束調整手段が、光源からの出射光を一定の拡が
り角をもち、かつ光学プリズムの検知面に対し、検知対
象の液体の屈折率によって定められる適切な入射角をも
って入射するように調整する機能を看するか、あるいは
光源からの出射光を複数の光束に分け、光学プリズムの
検知面に対し、検知対象の液体の屈折率に応じて設定さ
れるそれぞれの入射角をもって、入射するように調整す
る機能を有し、前記信号光検出器が複数の検出器または
複数の検出面を有する光検出器により構成されるととも
に、光源と光束調整手段との間、および光学プリズムと
信号光検出器との間のいずれかもしくは双方が、光ファ
イバを用いて結合されることを特徴とする、低価格で高
度の識別能力を有し、かつ外来雑音等の少ない光学式液
体センサを提供することにある。
[Object of the Invention] An object of the present invention is to provide an optical liquid sensor comprising a light source, an optical prism, a light flux adjustment means, and a signal light detector, in which the light flux adjustment means spreads out light from the light source to a certain extent. The function is to adjust the angle so that the light enters the detection surface of the optical prism at an appropriate angle of incidence determined by the refractive index of the liquid to be detected, or to convert the light emitted from the light source into multiple beams. The signal light detector has a function of adjusting the detection surface of the optical prism so that the light enters the detection surface at each incident angle set according to the refractive index of the liquid to be detected, and the signal light detector detects multiple detection surfaces. or a photodetector having a plurality of detection surfaces, and either or both of the light source and the light flux adjusting means and the optical prism and the signal photodetector are coupled using an optical fiber. It is an object of the present invention to provide an optical liquid sensor that is low in price, has high discrimination ability, and has little external noise.

[発明の構成] 本発明は光源と光学プリズムと光束調整手段と、信号光
検出器からなる光学式液体センサにおいて、光束調整手
段として、第3図−(a)−(b)に示すレンズ、或い
は、白色光とプリズムの組合せにより光束を一定範囲の
拡がり角に制御できるものを用いるか、或いは対象液体
や検出感度の条件によっては、開口数(NA)の小さな
光ファイバの出射端そのものを用いることにより、光源
から出射された出射光を一定の拡がり角をもつ光束に変
換する方法、または、第5図−(a)−(b)に示す回
折格子或いはプリズムよりなる光束調整手段により、人
工、入2、入3・・・の複数の波長の光に分離する方法
により、1個のプリズムで同時に複数の検出光を得るこ
とができ、これらを複数の検出器または、複数の検出面
を有する1個の信号光検出器で検知することにより従来
の液体センサにくらべて、その構造を簡単にすること、
および、光源と光調整手段との間、および光学プリズム
と信号光検出器との間のいずれか又は尽力を光ファイバ
で結合することにより構成されている。
[Structure of the Invention] The present invention provides an optical liquid sensor comprising a light source, an optical prism, a luminous flux adjusting means, and a signal light detector, in which the lenses shown in FIGS. 3-(a)-(b) are used as the luminous flux adjusting means, Alternatively, use a combination of white light and a prism that can control the luminous flux within a certain range of divergence angles, or depending on the target liquid and detection sensitivity conditions, use the output end of an optical fiber itself with a small numerical aperture (NA). Artificial , input 2, input 3, etc., it is possible to obtain multiple detection lights at the same time with one prism, and these can be transmitted through multiple detectors or multiple detection surfaces. simplifies the structure compared to conventional liquid sensors by detecting with one signal photodetector;
The light source and the light adjusting means and the optical prism and the signal photodetector are coupled by optical fibers.

[実施例] 以下、本発明を実施例により図面を参照して説明する。[Example] Hereinafter, the present invention will be explained by way of examples with reference to the drawings.

第1図は、本発明の実施例の1つを示すもので、光1i
X12から出射された出射光は、光束調整手段13によ
って一定の°拡が、り角φをもつ光束に変換され、光学
プリズム11に入射する。入射した光束は、検知面aと
これに平行なり面とによって繰返し反射して、プリズム
から出射し、複数の光検出器又は、複数の検出面をもつ
光検出器14.15.16に入射する。光検出器として
は、フォトダイオードやアレイ形フォトダイオード等が
用いられる。ご覧で、図に示すアパーチャー20は、通
常は、各光検出器の光検出面そのものが、等価的にアパ
ーチャーの役割を果たす、従って光検出器14.15.
16の位置を適切に配置すれば、それぞれの光検出器で
検出される光束は、異なる複数の入射角の光束に対応す
ることになり、それぞれの電気出力信号を複数の増幅器
17.18.19・・・にょって増幅し、出力信号V1
 、 V2 、 V’3・・・としてアウトプットされ
る。このような方法によって第2図で説明したように、
出力信号Vl 、V2 、’V3・・・を組み合わせて
比較すれば、屈折率の近接した液体の種類を検出するセ
ンサ、また濃度により屈折率の変化する液体の濃度を検
出するセンサ等として用いることができる。
FIG. 1 shows one embodiment of the present invention, in which light 1i
The light emitted from X12 is converted by the light flux adjusting means 13 into a light flux having a constant degree expansion and angle of inclination φ, and enters the optical prism 11. The incident light flux is repeatedly reflected by the detection surface a and a surface parallel thereto, exits the prism, and enters a plurality of photodetectors or a photodetector 14, 15, or 16 having a plurality of detection surfaces. . A photodiode, an array type photodiode, or the like is used as the photodetector. As can be seen, the aperture 20 shown in the figure usually means that the photodetecting surface of each photodetector itself equivalently acts as an aperture, so that the photodetector 14.15.
If the positions of 16 are properly arranged, the light beams detected by each photodetector correspond to light beams with different incident angles, and the respective electrical output signals are transmitted to a plurality of amplifiers 17, 18, 19.・・・Amplify the output signal V1
, V2, V'3... By this method, as explained in Figure 2,
By combining and comparing the output signals Vl, V2, 'V3,... I can do it.

つぎに、第4図は光束調整手段として、光束の角度の異
なる複数の光束に分離する素子を用いた別の実施例の1
つを示すもので、測定に用いる光束は、前記実例のよう
に、角度の拡がりを有する1つの光束としてではなく、
異なる角度の複数の平行光束として、プリズムIIに入
射する。入射した光束は、第1図番3よって説明した経
過と全く同じ課程を経て出力信号V1、■2.V3・・
・としてアウトプットされる。この方法は、拡がった光
束の中から目的の信号をアパーチャーで取り出す第1図
の方式よりも、光信号の利用効率がすぐれているという
特長がある。
Next, FIG. 4 shows another embodiment using an element that separates the light beam into a plurality of light beams having different angles as the light beam adjusting means.
The light beam used for measurement is not a single light beam with an angular spread as in the above example, but
The light enters the prism II as a plurality of parallel light beams at different angles. The incident light beam undergoes the same process as explained with reference to number 3 in Figure 1, and output signals V1, 2. V3...
・It is output as. This method has the advantage of being more efficient in the use of optical signals than the method shown in FIG. 1, in which a target signal is extracted from a spread beam of light using an aperture.

つぎに、第6図は、光源と光束調整手段、および、光学
プリズムと信号光検出器との間に光ファイバを用いるさ
らに別の1実施例示す図で、光源12を発した光は、光
ファイバ21により光束調整手段13に導かれる。また
光学プリズム11より出射した複数の光束は、それぞれ
光ファイバ22.23.24に入射し光検出器14.1
5.1Bに伝送される。光ファイバを用いたこの構成で
は、センサ部分が小型化できること、光検出側への光源
側の駆動回路等からの電気信号により廻り込みやその他
の外来電気雑音を除去できること等の実用上のすぐれた
特長がある。尚、上記説明中発明の主旨に関係のないレ
ンズ等の説明は省略した。
Next, FIG. 6 is a diagram showing still another embodiment in which an optical fiber is used between the light source and the light flux adjusting means, and between the optical prism and the signal light detector, and the light emitted from the light source 12 is The light is guided to the light flux adjusting means 13 by the fiber 21. Further, the plurality of light beams emitted from the optical prism 11 enter the optical fibers 22, 23, 24, and the photodetector 14.1.
5.1B. This configuration using optical fiber has practical advantages such as the sensor part can be miniaturized and the electric signal from the drive circuit on the light source side to the photodetection side can eliminate interference and other external electrical noise. It has its features. In the above description, descriptions of lenses and the like that are not related to the gist of the invention are omitted.

[発明の効果] 以上説明した通り、本発明によれば、光源と、光学プリ
ズムと、光束調整手段と、信号光検出器とからなる光学
式液体センサにおいて、光源より発した出射光の、検知
面への複数の入射角を同時に実現することにより、光源
やプリズム部分および検出器として1つの共通部分を用
いることができ、また光源と光束調整手段との間、光学
プリズムと信号光検出器との間に、光ファイバを用いた
結合手段を附加することにより低価格で高い識別能力を
有し、かつ外来雑音等の少ない光学式液体センサを提供
することができる。
[Effects of the Invention] As explained above, according to the present invention, in an optical liquid sensor including a light source, an optical prism, a luminous flux adjusting means, and a signal light detector, detection of emitted light emitted from the light source is possible. By simultaneously realizing multiple angles of incidence on the surface, one common part can be used as the light source, prism part, and detector, and between the light source and the light flux adjustment means, the optical prism and the signal light detector can be used. By adding a coupling means using an optical fiber between them, it is possible to provide an optical liquid sensor that has high discrimination ability at a low cost and has little external noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1実施例、第2図は、液体センサの
検知面に対する光束の入射角と反射損失の関係を示す計
算値を図表化した図、第3図は、第1図の実施例に用い
られる光束調整手段の実例、第4図は、本発明の別の実
施例、第5図は、第4図の実施例に用いられる光束調整
手段の実例、第6図は、本発明のさらに別の実施例、第
7図は、従来の液体センサの構造を示す図である。 1−シー人射光    2−m=出射光3−−−レンズ
    4−−−レンズ5−m−プリズム   11−
m−光学プリズム12−−−光源 13−一一光束調整手段 14 、15.18−m−光検出器 17.18.19−−−増幅器 20−m−アパーチャー 21−−一光ファイバ
FIG. 1 shows one embodiment of the present invention, FIG. 2 is a graph showing calculated values showing the relationship between the incident angle of the light beam on the detection surface of the liquid sensor and the reflection loss, and FIG. 3 is the same as FIG. An example of the luminous flux adjusting means used in the embodiment of FIG. 4, FIG. 4 is another embodiment of the present invention, FIG. 5 is an example of the luminous flux adjusting means used in the embodiment of FIG. Still another embodiment of the present invention, FIG. 7, is a diagram showing the structure of a conventional liquid sensor. 1-Sea human radiation 2-m=Emitted light 3--Lens 4--Lens 5-m-Prism 11-
m-optical prism 12---light source 13--luminous flux adjustment means 14, 15.18-m-photodetector 17.18.19---amplifier 20--m-aperture 21--optical fiber

Claims (1)

【特許請求の範囲】 1)光源と、光学プリズムと、光束調整手段と、信号光
検出器とからなる光学式液体センサにおいて、前記光束
調製手段が、光源からの出射光を、一定の拡がり角をも
ちかつ光学プリズムの検知面に対し検知対象液体の屈折
率によって定められる適切な範囲の入射角をもって入射
するように調整する機能を有するとともに、前記信号光
検出器が、複数の光検出器、または複数の検出面を有す
る光検出器により構成されていることを特徴とする液体
センサ。 2)光源と、光学プリズムと、光束調整手段と、信号光
検出器とからなる光学式液体センサにおいて、前記光束
調整手段が、光源からの出射光を複数の光束に分け、光
学プリズムの検知面に対し、検知対象液体の屈折率に応
じて適切に設定されるそれぞれの入射角をもって入射す
るように調整する機能を有するとともに、前記信号光検
出器が複数の光検出器、または複数の検出面を有する光
検出器により構成されていることを特徴とする液体セン
サ。 3)光源と、光束調整手段との間、および光学プリズム
と信号光検出器との間のいずれかもしくは双方が、光フ
ァイバを用いて結合されていることを特徴とする特許請
求の範囲第1項および第2項記載の液体センサ。
[Scope of Claims] 1) An optical liquid sensor comprising a light source, an optical prism, a light flux adjustment means, and a signal light detector, wherein the light flux adjustment means adjusts the light emitted from the light source to a certain divergence angle. and has a function of adjusting the detection surface of the optical prism so that the incident angle is within an appropriate range determined by the refractive index of the liquid to be detected, and the signal photodetector includes a plurality of photodetectors, Alternatively, a liquid sensor comprising a photodetector having a plurality of detection surfaces. 2) In an optical liquid sensor comprising a light source, an optical prism, a light flux adjustment means, and a signal light detector, the light flux adjustment means divides the light emitted from the light source into a plurality of light fluxes, and divides the light emitted from the light source into a plurality of light fluxes, and The signal light detector has a function of adjusting the incident angle so that the light enters the liquid at an appropriately set angle of incidence according to the refractive index of the liquid to be detected, and the signal light detector has a plurality of light detectors or a plurality of detection surfaces. A liquid sensor comprising a photodetector having: 3) Claim 1, characterized in that either or both of the light source and the light flux adjusting means and the optical prism and the signal photodetector are coupled using an optical fiber. The liquid sensor according to Items 1 and 2.
JP59132378A 1984-06-27 1984-06-27 Liquid body sensor Pending JPS6111637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132378A JPS6111637A (en) 1984-06-27 1984-06-27 Liquid body sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132378A JPS6111637A (en) 1984-06-27 1984-06-27 Liquid body sensor

Publications (1)

Publication Number Publication Date
JPS6111637A true JPS6111637A (en) 1986-01-20

Family

ID=15079977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132378A Pending JPS6111637A (en) 1984-06-27 1984-06-27 Liquid body sensor

Country Status (1)

Country Link
JP (1) JPS6111637A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132139A (en) * 1986-11-21 1988-06-04 Nippon Sheet Glass Co Ltd Liquid refractive index meter
US4778270A (en) * 1987-01-20 1988-10-18 Allied Corporation Spectral optic temperature sensor
US4912319A (en) * 1987-02-26 1990-03-27 Ngk Spark Plug Co., Ltd. Detector device for mixing ratio for gasoline and alcohol or the like
WO1994024543A1 (en) * 1993-04-15 1994-10-27 Japan Energy Corporation Total reflection type sensor for measuring refraction index
WO1995001561A1 (en) * 1993-07-02 1995-01-12 Gerd Reime Arrangement for measuring or detecting a change in a retro-reflective component
US5617201A (en) * 1993-09-01 1997-04-01 Janesko Oy Method for refractometer measuring using mathematical modelling
US5726547A (en) * 1993-07-02 1998-03-10 Reime; Gerd Windshield wiper arrangement including wiper control system
EP1647458A1 (en) * 2004-10-12 2006-04-19 Denso Corporation Sensor device and wiper controller
JP2008157962A (en) * 2008-02-06 2008-07-10 Atago:Kk Refractometer
JP2011164102A (en) * 2010-02-05 2011-08-25 Jan Kaahre Optical system
US8697193B2 (en) 2008-05-22 2014-04-15 Ethicon, Inc. Process and apparatus for coating a porous substrate with a coating liquid

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132139A (en) * 1986-11-21 1988-06-04 Nippon Sheet Glass Co Ltd Liquid refractive index meter
US4778270A (en) * 1987-01-20 1988-10-18 Allied Corporation Spectral optic temperature sensor
US4912319A (en) * 1987-02-26 1990-03-27 Ngk Spark Plug Co., Ltd. Detector device for mixing ratio for gasoline and alcohol or the like
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
WO1994024543A1 (en) * 1993-04-15 1994-10-27 Japan Energy Corporation Total reflection type sensor for measuring refraction index
US5726547A (en) * 1993-07-02 1998-03-10 Reime; Gerd Windshield wiper arrangement including wiper control system
US5666037A (en) * 1993-07-02 1997-09-09 Reime; Gerd Arrangement for measuring or detecting a change in a retro-reflective element
WO1995001561A1 (en) * 1993-07-02 1995-01-12 Gerd Reime Arrangement for measuring or detecting a change in a retro-reflective component
US5617201A (en) * 1993-09-01 1997-04-01 Janesko Oy Method for refractometer measuring using mathematical modelling
EP1647458A1 (en) * 2004-10-12 2006-04-19 Denso Corporation Sensor device and wiper controller
US7385216B2 (en) 2004-10-12 2008-06-10 Denso Corporation Sensor device and wiper controller having sensor device
US7429745B2 (en) 2004-10-12 2008-09-30 Denso Corporation Sensor device for detecting wetting on a windshield based on received reference light
JP2008157962A (en) * 2008-02-06 2008-07-10 Atago:Kk Refractometer
US8697193B2 (en) 2008-05-22 2014-04-15 Ethicon, Inc. Process and apparatus for coating a porous substrate with a coating liquid
US8991882B2 (en) 2008-05-22 2015-03-31 Ethicon, Inc. Process and apparatus for coating a porous substrate with a coating liquid
JP2011164102A (en) * 2010-02-05 2011-08-25 Jan Kaahre Optical system

Similar Documents

Publication Publication Date Title
JP7253327B2 (en) Polarity, power, and loss measurements of optical arrays using position sensitive detectors and optical test equipment with photodetectors
US11940263B2 (en) Detector for determining a position of at least one object
JPS6111637A (en) Liquid body sensor
CN102183359B (en) Method and device for detecting collimation of light beams
US20210364610A1 (en) A measurement head for determining a position of at least one object
JP2002277348A (en) Transmissivity measuring method and device
JPS6348294B2 (en)
JPS6111635A (en) Liquid sensor
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPS6111633A (en) Liquid sensor
JPS5924397B2 (en) light wave distance meter
US4492859A (en) Dual axes multiple prism optical system for azimuth and elevation variation detection
JP2573029Y2 (en) Photo detector
JP3570048B2 (en) Reflective photoelectric sensor
JPH0345192Y2 (en)
CN85100867B (en) Refractivity measuring and testing system
JPS5766535A (en) Focus detector
JPS6122250Y2 (en)
KR900002735B1 (en) Automatic focus adjusting device of camera
WO2021084544A1 (en) Optical power meter for safe operation of optical wireless power systems
JPS583075Y2 (en) Housiyaondokei
JPS61228304A (en) Optical strain measuring device
JPH03273138A (en) Optical liquid quality measuring instrument
JPS61259115A (en) Optical fiber sensor
JPS6484119A (en) Object state detector