JPS6111634A - Method and equipment for measuring 13co2 - Google Patents

Method and equipment for measuring 13co2

Info

Publication number
JPS6111634A
JPS6111634A JP59133541A JP13354184A JPS6111634A JP S6111634 A JPS6111634 A JP S6111634A JP 59133541 A JP59133541 A JP 59133541A JP 13354184 A JP13354184 A JP 13354184A JP S6111634 A JPS6111634 A JP S6111634A
Authority
JP
Japan
Prior art keywords
gas
concentration
sample gas
sample
flow controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59133541A
Other languages
Japanese (ja)
Other versions
JPH0412414B2 (en
Inventor
Koichi Kurihara
栗原 耕一
Hideho Hisada
久田 秀穂
Nobuhiko Kokubu
国分 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP59133541A priority Critical patent/JPS6111634A/en
Publication of JPS6111634A publication Critical patent/JPS6111634A/en
Publication of JPH0412414B2 publication Critical patent/JPH0412414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the existance ratio of <13>CO2 with high accuracy by diluting a sample gas of breath gas, etc. with N2 gas and by performing the measurement while keeping a constant CO2 density at all times. CONSTITUTION:A breath gas is passed to a mixing and buffer tank 3 with a proper carrier gas through a sample gas introducing part 1. On the other hand N2 gas is passed to the tank 3 by N2 gas for dilution introducing part 2 connecting to a N2 bomb and dilutes the breath gas. A flow controller 4 for controlling the volume of N2 gas being introduced to the tank 3 is provided at the N2 gas introducing part 2 and the breath gas diluted by N2 gas in the tank 3 is led to the main body cell of a <13>CO2 analyzer 5, and thereupon the absorption of <13>CO2 and <12>CO2 is measured, and the ratio of <13>CO2/<12>CO2 and the existance ratio of <13>CO2 are found.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は12CO2を参照し、なから13CO2ヲ赤外
分光法で測定する方法及び装置忙関し、特にCO2濃度
を一定に保ちながら高い精度で13002を測定できる
方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for measuring 12CO2, especially 13CO2, by infrared spectroscopy, and in particular to a method and apparatus for measuring 13002 with high precision while keeping the CO2 concentration constant. It relates to a method and apparatus capable of making measurements.

従来技術 呼気ガス中の13 Co2原子チが13002の吸収を
赤外分光針で測定することによって行われてお’) 、
13002 t−赤外分光法で一1定する場合にはその
参照用として CO2が必ず測定されているが、通常の
CO2ガスにおいて、その12co2と13CO2の濃
度比は99:1と大きな違いがある。このため、双方を
最良の条件で測定するのは大変に難しく、一般には12
CO2の方の感度、精度を犠牲にして13CO2の感度
を高める方法がとられている。すなわち、12 CO2
の吸収波長を最高吸収波長からずらした波長位置で測定
するようにしているが、この事によって12 CO2の
直線性は著しく損われ、測定精度(又は変動率δ13C
(permi7 (oloo) )の低下をもたらして
いた。
Conventional technology 13 Co2 atoms in exhaled gas were measured by measuring the absorption of 13002 with an infrared spectroscopic needle.
When 13002 t-infrared spectroscopy is constant, CO2 is always measured as a reference, but in normal CO2 gas, the concentration ratio of 12co2 and 13CO2 is 99:1, which is a big difference. . For this reason, it is very difficult to measure both under the best conditions, and generally 12
A method is being used to increase the sensitivity of 13CO2 at the expense of the sensitivity and accuracy of CO2. That is, 12 CO2
The absorption wavelength of 12CO2 is measured at a wavelength position shifted from the maximum absorption wavelength, but this significantly impairs the linearity of 12CO2 and reduces the measurement accuracy (or fluctuation rate δ13C).
(permi7 (oloo)).

この点會更に詳しく見れば、前述のととく12 CO2
濃度の検量線は直線性が悪いため、その検量線の補正t
−リニヤライブや計算機(パソコン等)等で行い、得ら
れた補正値を使って13C/12C比を求めているが1
3C/12Cの値又はδ13Cの値は、厳密な補正計算
を行っても1/100の精度がせいぜいである。つまシ
、13CO2の精度がまだ充分にあυながら、12CO
2の検量線の問題で測定精度が限界となるのが現状であ
る。
If we look at this point in more detail, the above-mentioned special point 12 CO2
Since the concentration calibration curve has poor linearity, the calibration curve must be corrected t
-The 13C/12C ratio is calculated using a linear live or a computer (PC, etc.) and the obtained correction value, but 1
The value of 3C/12C or the value of δ13C has an accuracy of 1/100 at best even if a strict correction calculation is performed. Tsumashi, while the accuracy of 13CO2 is still sufficient, 12CO
At present, measurement accuracy is at its limit due to the problem with the calibration curve (2).

12 Co2の直線性の悪化はCO2濃度が2−前後よ
シ高くなるとし、だいに著しくな)、感度の限界値をい
っそう低下させている。仁の直線性の悪さに起因するも
のだけでも、13 CO2に対して12CO2のS/N
は約173程度である。
The deterioration of the linearity of 12 Co2 is considered to be quite significant as the CO2 concentration becomes higher than about 200 nm), further lowering the limit value of sensitivity. The S/N of 12CO2 compared to 13CO2 is only due to the poor linearity of the wire.
is about 173.

又、+ 50o2の分光器出力中には12 CO2の重
なシが存在し、この重なシ分も補正する必要があるが、
これは12CO2の出力の大きさに依存するためこの補
正については上記の12coza度補正と同様の困難性
が伴ない、この結果13CO2の感度は二重に悪化し7
ていた。
Also, there is an overlap of 12 CO2 in the +50o2 spectrometer output, and it is necessary to correct this overlap as well.
Since this depends on the magnitude of the output of 12CO2, this correction involves the same difficulty as the above-mentioned 12coza degree correction, and as a result, the sensitivity of 13CO2 is doubly worsened.
was.

発明の目的 従って本発明の目的は、CO2濃度を 002の直線性
が悪化する手前の数多前後〇−一定値制御しながら測定
することKよって12CO2自体の感度低下を最小限に
抑えると共に 45002と12CO2の重なり補正に
伴う精度低下をも抑え、高い精度でI S Co2の存
在比を測定できる方法及び装置を提供することにある。
Purpose of the Invention Therefore, the purpose of the present invention is to measure the CO2 concentration while controlling it to a constant value before and after the linearity of 002 deteriorates, thereby minimizing the decrease in sensitivity of 12CO2 itself, and It is an object of the present invention to provide a method and a device that can measure the abundance ratio of I S Co2 with high accuracy while also suppressing the decrease in precision caused by the overlap correction of 12 CO2.

遍!坏υ艷匹 この目的を達成するため、本発明によるI 5CO2の
測定方法は呼気ガス等のサンプルガスt N2ガスで希
釈し、CO2濃度を常時一定に保ちながら測定を行うも
のである。
Hen! In order to achieve this objective, the method for measuring I5CO2 according to the present invention dilutes a sample gas such as exhaled gas with N2 gas, and performs the measurement while keeping the CO2 concentration constant at all times.

又本発明の一実施例による1 3 CO2の測定装置は
サンプルガス導入部とサンプルガスを希釈するためのフ
ローコントローラを備え九N2ガス導入部と、サンプル
ガスとN2ガスの混合兼バッファタンクと、バッファタ
ンク内のCO2濃度をモニターする測定器と、該測定器
からの測定値に基きCO2濃度を一定に保つ系とを C
O2アナライザの前段に設けたことを特徴とするもので
あるO 又本発明の別の実施例による13CO2の測定装置は、
サンプルガス導入部と、サンプルガスを希釈するための
フローコントローラを備えたN2ガス導入部と 13 
CO2アナライザの本体セルと、。
In addition, the 13 CO2 measurement device according to an embodiment of the present invention includes a sample gas introduction part and a flow controller for diluting the sample gas; C
Another embodiment of the present invention is a 13CO2 measuring device, which is characterized in that it is provided at the front stage of an O2 analyzer.
a sample gas introduction section; a N2 gas introduction section equipped with a flow controller for diluting the sample gas; 13
The main cell of the CO2 analyzer.

バッファタンクとを循環ポンプを介してつないだ循環系
を構成し、サンプルガスとN2ガスを別個に又は同時に
循環系へ導く切換バルブと、本体セルで測定したCO2
濃度の値に基きこのCO2濃度を一定に保つ系とを備え
たことを特徴とするものである。
A circulation system is configured in which the buffer tank is connected via a circulation pump, and a switching valve that guides the sample gas and N2 gas to the circulation system separately or simultaneously, and the CO2 measured in the main cell.
The present invention is characterized by comprising a system that maintains the CO2 concentration constant based on the concentration value.

実施例 以下本発明の実施例を図面を参照しながら更に詳しく説
明する。
EXAMPLES Hereinafter, examples of the present invention will be described in more detail with reference to the drawings.

まず本発明による CO2の測定方法では従来技術の項
で見たように、 CO2濃度が高くなると13CO2測
定の参照として用いる12CO2の直線性が悪化する点
に着目;−1呼気ガス等のサングルガス’k N2ガス
で希釈し7、CO2濃度を常時一定濃度に保ちながら測
定を行う。ここでCO2濃度の制御は、そO濃度をある
範囲内に収め、れば良いため厳密に一定値に制御する必
要はなく±0.1%の精度程度とするのが好ましい。尚
、呼気ガスをサンプルとして用いた場合そのCO2濃度
は約2〜5チである。
First, the CO2 measurement method according to the present invention focuses on the fact that as the CO2 concentration increases, the linearity of 12CO2 used as a reference for 13CO2 measurement deteriorates, as seen in the section on prior art; Dilute with N2 gas 7 and measure while keeping the CO2 concentration constant. Here, the control of the CO2 concentration only needs to keep the O2 concentration within a certain range, so it is not necessary to strictly control it to a constant value, and it is preferable to control the CO2 concentration to an accuracy of about ±0.1%. Note that when exhaled gas is used as a sample, its CO2 concentration is approximately 2 to 5 cm.

この測定方法を実施する装置としては CO2アナライ
ザと独立した形でCO2濃度の制御を行うか、又はアナ
ライザの本体セルを含めてその制御を行うかによって次
の2つの場合が考えられる。
The following two cases can be considered as a device for carrying out this measurement method, depending on whether the CO2 concentration is controlled independently of the CO2 analyzer or whether the control is performed including the main cell of the analyzer.

第1図は独立式装置の実施例を示すブロック図で、lは
呼気ガス等の補集器につながったサングルガス導入部で
、呼気ガスはここを通じ適当なキャリアガスと一緒に混
合兼バッファタンク3へと入る。一方2はN2&ンペに
接続した希釈用N2ガスの導入部で、がンベからのN2
ガスはここを通じて混合兼バッファタンク3へ入部、呼
気ガスを希釈する。N21tス導入部2にはタンク3へ
導かれるN2ガスの量を制御するためのフローコントロ
ーラ4が設けられている。混合兼バッファタンク3でN
2ガスによりて希釈された呼気ガスは13 co2アナ
ライザ50本体セルへ導かれ、そζで従来のごと<13
CO2及び12CO2のWjL収カ測定す:h 1sC
O2/ 12CO2O比サラK ” Cことでタンク3
内の混合気に含まれるCO2濃度を求める測定器6がタ
ンク3に付設されている。測定器6で検知したCO2濃
度はサーが増巾器7を含む制御系へ送られ、そとで測定
値が設定値と比較され、その差に応じN2ガスのフロー
コント四−ラ4t−制御することによってタンク3内つ
まp I S CO2アナライプ5中の本体セルへ所定
濃度のCO2を含む混合ガスが導かれる。
Figure 1 is a block diagram showing an embodiment of an independent device, where l is a sample gas inlet connected to a collector for exhaled gas, etc., through which exhaled gas is mixed with a suitable carrier gas and mixed in a buffer tank 3. Enter. On the other hand, 2 is the introduction part of N2 gas for dilution connected to N2 &amp;
The gas enters the mixing/buffer tank 3 through this, and the exhaled gas is diluted. The N21t gas introduction section 2 is provided with a flow controller 4 for controlling the amount of N2 gas introduced into the tank 3. N in mixing/buffer tank 3
The exhaled gas diluted with 2 gases is guided to the main cell of the 13 CO2 analyzer 50, where ζ
WjL yield measurement of CO2 and 12CO2: h 1sC
O2/ 12CO2O ratio Sara K”C tank 3
A measuring device 6 for determining the concentration of CO2 contained in the air-fuel mixture is attached to the tank 3. The CO2 concentration detected by the measuring device 6 is sent to the control system including the amplifier 7, where the measured value is compared with the set value, and the N2 gas flow controller 4t is controlled according to the difference. By doing so, a mixed gas containing CO2 at a predetermined concentration is introduced into the main cell in the pIS CO2 analyzer 5 inside the tank 3.

次に、第2図は13 CO2アナライザ組込式の実施例
を示すブロック図である。この実施例社、100g2ア
ナライザ自体でCO2濃度の測定を行うと共に、サンプ
ルガス希釈用のN2ガスで本体セルの洗浄を行えるよう
に構成されている。
Next, FIG. 2 is a block diagram showing an embodiment of the 13 CO2 analyzer built-in type. The 100g2 analyzer manufactured by this example company is configured so that the CO2 concentration can be measured by itself, and the main cell can be cleaned with N2 gas for diluting the sample gas.

すなわち第2図に示すとと(13CO2アナライプの本
体セル13を含め、そこからバッファタンク14.ドレ
ン16との選択的切換えを行う切換バルブ13.循環ポ
ンプ17及び管路18を経て循環系路が形成される。そ
して呼気ガス醇のサンプルガス導入部11が切換バルブ
12を介して上記循環系路へ接続され、サンプルガスを
含むキャリアガスが選択的に循環系路内へ導かれる。一
方、N2ボンベからのN2ガス導入部20が切換バルブ
19を介して上記循環系路へ接続され、N2ガスが選択
的に循環系路内へ導かれる。又N2ガス導入部20には
、N2ガスの流量を制御するフローコントローラ21が
設けられている。尚図中、22はニードルバルブ、23
は流量計である。
In other words, as shown in FIG. Then, the sample gas inlet 11 for exhaled gas is connected to the circulation path via the switching valve 12, and the carrier gas containing the sample gas is selectively guided into the circulation path. The N2 gas introduction section 20 from the cylinder is connected to the circulation system via the switching valve 19, and the N2 gas is selectively introduced into the circulation system. A flow controller 21 is provided to control the flow.In the figure, 22 is a needle valve, 23
is a flow meter.

このように構成された装置の動作を次に説明する。The operation of the device configured in this manner will be described next.

操作(1): 11−12−13−14−13−160
流路で装置及び系を安定させる。
Operation (1): 11-12-13-14-13-160
Stabilize the device and system in the flow path.

(2);ある時間(約30称間)同じ糸路でサンプルを
流す。
(2); Run the sample through the same thread path for a certain period of time (approximately 30 stitches).

(3): 12−13−14−13−17−180流路
でガスを循環させる。
(3): Circulate gas through 12-13-14-13-17-180 channels.

(4);循環によシガス濃度が一定となった所で13C
O2アナライプによjo CO2濃度を測定する。
(4); 13C at the point where the concentration of gas becomes constant due to circulation.
Measure the jo CO2 concentration using an O2 analyzer.

操作(5) : CO2濃度に応じてフローコントロー
ラ21’t:制御し、20−19−18−12−。
Operation (5): Flow controller 21't: Control according to CO2 concentration, 20-19-18-12-.

、13−14−13−16  の流路でガスを循環させ
る。
, 13-14-13-16 to circulate the gas.

(6): 12−13−14−13−17−180流路
でサンプルガスとN2ガスを循環させる。
(6): Circulate the sample gas and N2 gas in the 12-13-14-13-17-180 flow path.

(7) : CO2濃度を再び測定し、もし一定値よシ
濃度が高ければ上記操作(5) 、 (6)を再び行う
(7): Measure the CO2 concentration again, and if the CO2 concentration is higher than the constant value, repeat the above operations (5) and (6).

(8) : CO2濃度が一定値であれば CO2と1
3 CO2の双方を一定時間積算して測定を行い、結果
を求める。
(8): If the CO2 concentration is constant, CO2 and 1
3 Measure by integrating both CO2 over a certain period of time and obtain the results.

(9):測定終了後、N2ガスを20−19−18−1
2−13−14−13−16 と流し、流路を洗浄する
(9): After the measurement is completed, add N2 gas to 20-19-18-1
2-13-14-13-16 to clean the channel.

αO): 18−12−13−14−13−17とN2
ガスを循環させる。
αO): 18-12-13-14-13-17 and N2
Circulate the gas.

(11): 20−19−18−12−13−14−1
3−160流路で再びN2ガスを流[2洗浄を完了する
(11): 20-19-18-12-13-14-1
Flow N2 gas again through the 3-160 channel [2 to complete cleaning.

操作(12):洗浄が不足ならば上記操作(9)〜α1
)f:再び行う。
Operation (12): If cleaning is insufficient, perform the above operation (9) ~ α1
)f: Do it again.

α3):上記操作(2)〜(12)を繰シ返し、測定を
行う。
α3): Repeat the above operations (2) to (12) and perform the measurement.

沖の実施例によれば、以上の操作によって循環系の安定
化、サンプルガスの導入、N2ガスによる所望の希釈制
御、N2ガスによる洗浄を行うことができ−る。
According to Oki's embodiment, the above operations allow stabilization of the circulation system, introduction of sample gas, desired dilution control with N2 gas, and cleaning with N2 gas.

発明の効果 上記のようにサンプルガスをN2ガスで希釈シ、CO2
濃度を一定値に保ちなから13 CO2の存在比を測定
したところ、δ13C〜2〜6(Cv値で0.06〜0
.2%)という結果が得られた。CO2濃度の制御を行
わない従来法ではδ130〜8〜13 (C。
Effects of the invention As mentioned above, by diluting the sample gas with N2 gas, CO2
While maintaining the concentration at a constant value, the abundance ratio of 13CO2 was measured, and it was found that δ13C~2~6 (Cv value 0.06~0
.. 2%) was obtained. In the conventional method that does not control the CO2 concentration, δ130~8~13 (C.

値で0.2〜0.4%)でアシ、測定精度の向上したこ
とが明らかである。
It is clear that the measurement accuracy was improved with a value of 0.2 to 0.4%).

次にアミノビリンとグリシンを被検者に経口投与した場
合の呼気ガスを経時測定した結果を第3.4図に示す。
Next, Figure 3.4 shows the results of measuring exhaled gas over time when aminovirine and glycine were orally administered to subjects.

第3図は、被検者A、B、Cにそれぞれ13Cアミノピ
リン2 my/Ky b、w、を生理食塩水で溶解し、
経口投与した後の130上昇分を経時的に測定した結果
である。縦軸は” CAtom %の上昇率、横軸は経
口投与後の経過時間を表わしている。
Figure 3 shows that 13C aminopyrine 2 my/Ky b, w was dissolved in physiological saline for subjects A, B, and C.
These are the results of measuring the increase in 130 over time after oral administration. The vertical axis represents the rate of increase in CAtom %, and the horizontal axis represents the elapsed time after oral administration.

第4図は被検者1名にグリシン−1+ 13CI50 
mW764 Kgを経口投与し、30秒間の積算によシ
ロ0秒間隔で連続測定した結果を示すもので一定濃度C
O2において測定したため安定した13CO2の変化を
示している。図中Aか CAt(2)チ、BがCO2チ
である。尚、縦横両軸は第3図の場合と同じである。
Figure 4 shows glycine-1+ 13CI50 for one subject.
This shows the results of oral administration of 764 kg of mW and continuous measurement at 0 second intervals by integration over 30 seconds, with a constant concentration C.
It shows a stable change in 13CO2 since it was measured in O2. In the figure, A is CAt(2) and B is CO2. Note that both the vertical and horizontal axes are the same as in FIG. 3.

以上述べたように本発明によれば CO2の直線性が悪
化する手前のCO2濃度(約2%)を保ちながら1!+
002の存在比を測定しているため、12CO2の直線
性悪化と13CO2と12CO2の重なpによる測定誤
差を最小限に抑え、従来法と比べ精度の高い13CO2
の赤外分光測定法を得ることができる。又、上記の方法
を実施するためN2ガスで呼気ガス等のサンプルガスを
希釈し、CO2濃度を一定値に保つ装置が得られ、特釦
13 Co2アナライザでCO2濃度も測定する構成と
すれば、別個の測定器を設ける必要がなく、又希釈用の
N2ガスで本体セルを含む系を洗浄できるという利点が
得られる。
As described above, according to the present invention, while maintaining the CO2 concentration (approximately 2%) before CO2 linearity deteriorates, it is possible to achieve 1! +
Since the abundance ratio of 002 is measured, measurement errors due to deterioration of linearity of 12CO2 and overlapping p of 13CO2 and 12CO2 are minimized, and 13CO2 has higher accuracy than conventional methods.
infrared spectroscopy can be obtained. In addition, in order to carry out the above method, if a device is obtained that dilutes a sample gas such as exhaled gas with N2 gas and maintains the CO2 concentration at a constant value, and the CO2 concentration is also measured using the special button 13 Co2 analyzer, There is an advantage that there is no need to provide a separate measuring device, and that the system including the main cell can be cleaned with N2 gas for dilution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による CO2測定装置の一実施例を示
すブロック図、第2図は本発明の別の実施例を示すブロ
ック図、第3図はアミノビリンを経口投与した場合の 
CAtom ’16 ’it経時測定した結果を示す測
定図、第4図はグリシンを経口投与した場合の13CA
tom %とCO24’e経時測定した結果を示す測定
図である。 l、10・・・サンプルガス導入部、2,20・・・N
2ガス導入部、3・・・混合兼バッファタンク、4,2
11.13
FIG. 1 is a block diagram showing one embodiment of the CO2 measuring device according to the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing an example of the CO2 measuring device according to the present invention.
A measurement diagram showing the results of CAtom '16'it measurement over time. Figure 4 shows 13CA when glycine is orally administered.
It is a measurement diagram showing the results of measuring tom % and CO24'e over time. l, 10...sample gas introduction part, 2,20...N
2 Gas introduction part, 3...Mixing and buffer tank, 4,2
11.13

Claims (4)

【特許請求の範囲】[Claims] (1)^1^2CO_2を参照しながら^1^3CO_
2を赤外分光法で測定する方法において、呼気ガス等の
サンプルガスをN_2ガスで希釈し、CO_2濃度を常
時一定に保ちながら測定を行うことを特徴とする^1^
3CO_2の測定方法。
(1) ^1^3CO_ while referring to ^1^2CO_2
2 by infrared spectroscopy, the method is characterized by diluting a sample gas such as exhaled gas with N_2 gas and performing measurements while keeping the CO_2 concentration constant at all times.
3CO_2 measurement method.
(2)上記CO_2濃度が数%前後の一定値である特許
請求の範囲第(1)項に記載の方法。
(2) The method according to claim (1), wherein the CO_2 concentration is a constant value of around several percent.
(3)^1^2CO_2を参照しながら^1^3CO_
2を赤外分光法で測定する装置において、呼気ガス等の
サンプルガス導入部と、サンプルガスを希釈するための
フローコントローラを備えたN_2ガス導入部と、サン
プルガスとN_2ガスの混合兼バッファタンクと、該バ
ッファタンク内のCO_2濃度をモニターする測定器と
、該測定器からの測定値を設定値と比較し、その差に応
じN_2ガスのフローコントローラを制御し、CO_2
濃度を一定に保つ系とを、^1^3CO_2アナライザ
の前段に設けたことを特徴とする装置。
(3) ^1^3CO_ while referring to ^1^2CO_2
2 by infrared spectroscopy, a sample gas introduction section such as exhaled gas, an N_2 gas introduction section equipped with a flow controller for diluting the sample gas, and a buffer tank for mixing the sample gas and N_2 gas. and a measuring device that monitors the CO_2 concentration in the buffer tank, and compares the measured value from the measuring device with the set value, controls the N_2 gas flow controller according to the difference, and controls the CO_2 gas concentration in the buffer tank.
An apparatus characterized in that a system for keeping the concentration constant is provided at the front stage of the ^1^3CO_2 analyzer.
(4)^1^2CO_2を参照しながら^1^3CO_
2を赤外分光法で測定する装置において、呼気ガス等の
サンプルガス導入部と、サンプルガスを希釈するための
フローコントローラを備えたN_2ガス導入部と、^1
^3CO_2アナライザの本体セルと、バッファタンク
とを循環ポンプを介してつないだ循環系を構成し、サン
プルガスとN_2ガスをそれぞれ別個に又は同時に該循
環系へ導く切換バルブと、本体セルで測定したCO_2
濃度を設定値と比較し、その差に応じN_2ガスのフロ
ーコントローラを制御し、CO_2濃度を一定に保つ系
とを備えたことを特徴とする装置。
(4) ^1^3CO_ while referring to ^1^2CO_2
In an apparatus for measuring 2 by infrared spectroscopy, a sample gas introduction section such as exhaled gas, an N_2 gas introduction section equipped with a flow controller for diluting the sample gas, and ^1
^3 A circulation system was constructed in which the main cell of the CO_2 analyzer and the buffer tank were connected via a circulation pump, and measurements were made using the main cell and a switching valve that guided the sample gas and N_2 gas to the circulation system separately or simultaneously. CO_2
An apparatus comprising a system that compares the concentration with a set value and controls a flow controller of N_2 gas according to the difference to keep the CO_2 concentration constant.
JP59133541A 1984-06-28 1984-06-28 Method and equipment for measuring 13co2 Granted JPS6111634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133541A JPS6111634A (en) 1984-06-28 1984-06-28 Method and equipment for measuring 13co2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133541A JPS6111634A (en) 1984-06-28 1984-06-28 Method and equipment for measuring 13co2

Publications (2)

Publication Number Publication Date
JPS6111634A true JPS6111634A (en) 1986-01-20
JPH0412414B2 JPH0412414B2 (en) 1992-03-04

Family

ID=15107222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133541A Granted JPS6111634A (en) 1984-06-28 1984-06-28 Method and equipment for measuring 13co2

Country Status (1)

Country Link
JP (1) JPS6111634A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129983A (en) * 1992-10-16 1994-05-13 Japan Radio Co Ltd Method and device for isotopic ratio compensation
JPH06148070A (en) * 1992-11-05 1994-05-27 Japan Radio Co Ltd Method and instrument for analyzing isotopic ratio
JPH06300727A (en) * 1993-04-19 1994-10-28 Osaka Gas Co Ltd Gas detector
WO1997014029A2 (en) * 1995-10-09 1997-04-17 Otsuka Pharmaceutical Co., Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
DE4419458C2 (en) * 1994-06-03 2003-11-27 Fisher Rosemount Gmbh & Co Ges Method for measuring the purity of carbon dioxide
US7749436B2 (en) 2003-10-31 2010-07-06 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus
CN104181123A (en) * 2014-08-21 2014-12-03 长沙开元仪器股份有限公司 Sulfur determination gas circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129983A (en) * 1992-10-16 1994-05-13 Japan Radio Co Ltd Method and device for isotopic ratio compensation
JPH06148070A (en) * 1992-11-05 1994-05-27 Japan Radio Co Ltd Method and instrument for analyzing isotopic ratio
JPH06300727A (en) * 1993-04-19 1994-10-28 Osaka Gas Co Ltd Gas detector
DE4419458C2 (en) * 1994-06-03 2003-11-27 Fisher Rosemount Gmbh & Co Ges Method for measuring the purity of carbon dioxide
WO1997014029A2 (en) * 1995-10-09 1997-04-17 Otsuka Pharmaceutical Co., Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
WO1997014029A3 (en) * 1995-10-09 1997-05-29 Otsuka Pharma Co Ltd Method for spectrometrically measuring isotopic gas and apparatus thereof
AU707754B2 (en) * 1995-10-09 1999-07-22 Otsuka Pharmaceutical Co., Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
US6274870B1 (en) 1995-10-09 2001-08-14 Otsuka Pharmaceutical Co.,Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
US7749436B2 (en) 2003-10-31 2010-07-06 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus
CN104181123A (en) * 2014-08-21 2014-12-03 长沙开元仪器股份有限公司 Sulfur determination gas circuit

Also Published As

Publication number Publication date
JPH0412414B2 (en) 1992-03-04

Similar Documents

Publication Publication Date Title
US4572208A (en) Metabolic gas monitoring apparatus and method
EP0797765B1 (en) Method of spectrometrically measuring the concentration ratio of two isotopes in a gas
TW421713B (en) Stable isotope measurement method and apparatus by spectroscopy
US6955652B1 (en) Non-invasive, miniature, breath monitoring apparatus
US20070081162A1 (en) Method And Apparatus For Determining Marker Gas Concentration Using An Internal Calibrating Gas
TW542910B (en) Isotopic gas analyzer and method of judging absorption capacity of carbon dioxide absorbent
Marshall A comparison of methods of measuring the diffusing capacity of the lungs for carbon monoxide. Investigation by fractional analysis of the alveolar air
Fowler et al. Lung function studies. I. The rate of increase of arterial oxygen saturation during the inhalation of 100 per cent O 2
Shorter et al. Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers
JPS6111634A (en) Method and equipment for measuring 13co2
JP3176302B2 (en) Isotope gas spectrometry method and measuring device
JP3238318B2 (en) Breath bag and gas measuring device
Mitchell et al. Application of the single-breath method of total lung capacity measurement to the calculation of the carbon monoxide diffusing capacity
JP3014652B2 (en) Isotope gas spectrometry
Lanphier Determination of residual volume and residual volume/total capacity ratio by single breath technics
JP2947742B2 (en) Isotope gas spectrometry method and measurement device
JP2947737B2 (en) Isotope gas spectrometry method and measurement device
JPH0328762A (en) Data processing method for water quality analyzer
US20070173729A1 (en) Simple approach to precisely 02 consumption, and anesthetic absorption during low flow anesthesia
JP4460134B2 (en) Isotope gas analysis measurement method
JPH09166546A (en) Isotope gas spectrometry and its device
JP3090412B2 (en) Isotope gas spectrometry method and measurement device
JP2969066B2 (en) Isotope gas spectrometer
JP2996611B2 (en) Isotope gas spectrometer
Mastenbrook Jr et al. Ventilation-perfusion ratio distributions by mass spectrometry with membrane catheters