JPS61115356A - Photodetecting element - Google Patents

Photodetecting element

Info

Publication number
JPS61115356A
JPS61115356A JP59237347A JP23734784A JPS61115356A JP S61115356 A JPS61115356 A JP S61115356A JP 59237347 A JP59237347 A JP 59237347A JP 23734784 A JP23734784 A JP 23734784A JP S61115356 A JPS61115356 A JP S61115356A
Authority
JP
Japan
Prior art keywords
semiconductor
energy band
band width
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237347A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiyasu
洋 藤安
Akihiro Ishida
明広 石田
Koji Mochizuki
望月 孔二
Toshiaki Kawai
河合 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP59237347A priority Critical patent/JPS61115356A/en
Publication of JPS61115356A publication Critical patent/JPS61115356A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To form a photodetecting element, which cannot be obtained by a single semiconductor and has large dark resistance and high sensitivity, by laminating and constituting a semiconductor having large energy band width and a semiconductor having small one in superlattice structure. CONSTITUTION:An element having superlattice laminating type structure is formed by semiconductors of two kinds of PbTe and Pb0.8Sn0.2Te as semiconductors for a photodetector within an infrared-ray region, and a (111) crystal face of BaF2 is used as a substrate 1. A second layer 2-2 (500Angstrom film thickness) consisting of the semiconductor having large energy band width is formed onto a first layer 3-1 composed of the semiconductor having small energy band width. A second layer 3-2 consisting of the semiconductor having small energy band width is shaped onto the second layer 2-2 composed of the semiconductor having large energy band width in thickness of 500Angstrom and each 30 layer to 3-30 from 2-30 is formed in thickness of 500Angstrom . Lastly, a 31th layer 2-31 composed of the semiconductor having large energy band width is evaporated in thickness of 4-5mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエネルギーバンド幅の大きい半導体とそれの小
さい半導体を超格子構造に積層して構成した光検出素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a photodetector element constructed by laminating a semiconductor with a large energy band width and a semiconductor with a small energy band width in a superlattice structure.

前記構造により暗抵抗の高い、暗電流の小さい高感度高
速応答の光検出素子が得られる。
With the above structure, a photodetecting element with high dark resistance, low dark current, and high sensitivity and high speed response can be obtained.

(従来の技術) 従来の光導電形の光検出素子を第3〜5図を参照して説
明する。
(Prior Art) A conventional photoconductive type photodetecting element will be explained with reference to FIGS. 3 to 5.

第3図は従来の光導電形の光検出素子の構成例を示す断
面図である。
FIG. 3 is a sectional view showing an example of the configuration of a conventional photoconductive type photodetecting element.

半導体1)内には入射窓17を介して入射した入射光1
8によって電子−正孔対が生成される。
Incident light 1 enters the semiconductor 1) through the entrance window 17.
8 generates electron-hole pairs.

電極パット12・12は前記半導体1)内のキャリア(
電子と正孔)を収集する電極パットで前記半導体1)の
表面両側に設けられている。
The electrode pads 12, 12 are carriers (
Electrode pads for collecting electrons and holes are provided on both sides of the surface of the semiconductor 1).

電極パット12・12はリードワイヤ13・13によっ
て金属ステム15内にハーメチックシール19・19を
介して支持されている電極に接続されている。
The electrode pads 12, 12 are connected by lead wires 13, 13 to electrodes supported within the metal stem 15 via hermetic seals 19, 19.

これら電極間に外部から電圧を印加することによって、
当該半導体1)中に生じた電子あるいは正孔は各電極1
2・12に走行し、入射光18に応・じた信号電流とし
て取り出される。
By applying an external voltage between these electrodes,
Electrons or holes generated in the semiconductor 1) are transferred to each electrode 1.
2.12, and is taken out as a signal current according to the incident light 18.

なお図において14は絶縁体で金属ステム15と半導体
1)との電気的分離をしている。16はステム15のキ
ャンプである。
In the figure, 14 is an insulator that electrically isolates the metal stem 15 and the semiconductor 1). 16 is the camp of stem 15.

次に前記半導体光検出器の動作を第4図および第5図を
参照して説明する。
Next, the operation of the semiconductor photodetector will be explained with reference to FIGS. 4 and 5.

第4図は真性半導体を光導電形光検出素子として使用し
たときのバンド構造を示す略図である。
FIG. 4 is a schematic diagram showing a band structure when an intrinsic semiconductor is used as a photoconductive type photodetecting element.

この種の光検出素子用の半導体では不純物を可能な限り
少なくしており、半導体の化学的ポテンシャルであるフ
ェルミレベルは、当該半導体のエネルギーバンド幅Eg
の中央付近になっている。
In semiconductors for this type of photodetector, impurities are kept as low as possible, and the Fermi level, which is the chemical potential of the semiconductor, is the energy band width Eg of the semiconductor.
It is near the center of.

エネルギーバンド幅Egより大なるエネルギーをもつ光
の入射によって半導体中で励起された電子−正孔対は外
部から印加された電界に沿って走行し電極から信号電流
として得られる。
Electron-hole pairs excited in the semiconductor by the incidence of light having an energy greater than the energy band width Eg travel along an externally applied electric field and are obtained as a signal current from the electrode.

第5図は外因性の不純物レベルを導入する光導電形半導
体光検出素子のバンド構造を示す略図である。
FIG. 5 is a schematic diagram illustrating the band structure of a photoconductive semiconductor photodetector device incorporating extrinsic impurity levels.

ドナーレベルと伝導帯の底の間のエネルギー幅E gf
が光検出の限界波長である。このエネルギーより大なる
光の入射で励起された伝導帯内の電子は外部回路が供給
する電界に沿って走行し光信号として取り出される。
Energy width E gf between the donor level and the bottom of the conduction band
is the critical wavelength for photodetection. Electrons in the conduction band excited by the incident light with energy greater than this travel along an electric field supplied by an external circuit and are extracted as an optical signal.

前記第4図に示す、バンド構造の光検出素子を得るため
には、不純物の混入しない真性半導体を製造することが
必要である。不純物の混入しない真性半導体を製造する
ためには、不純物除去のために高度の技術が要求される
In order to obtain the photodetecting element with the band structure shown in FIG. 4, it is necessary to manufacture an intrinsic semiconductor that is free from impurities. In order to manufacture an intrinsic semiconductor free of impurities, advanced technology is required to remove impurities.

この技術はよく発展したシリコンプロセス技術において
も困難さがあり、特にエネルギーバンド幅の小さい■−
■族あるいはIV−Vl族あるいは■−■族化合物半導
体においては、非常に高度な技術となる。
This technology is difficult even with well-developed silicon process technology, especially the narrow energy bandwidth.
This is a very advanced technology for group (1), IV-Vl, or (2)-(2) group compound semiconductors.

また相図の上からIV−Vl族化合物半導体例えばPb
Te、あるいはP b+−Ls nz T e等では理
論的にも真性半導体とはなり得ない。
Also, from the top of the phase diagram, IV-Vl group compound semiconductors such as Pb
Te, Pb+-LsnzTe, etc. cannot theoretically become an intrinsic semiconductor.

したがって、通常はどうしてもフェルミレベルがエネル
ギーバンド幅の中央付近からずれた状態で製作されるこ
とになる。
Therefore, normally the device is manufactured with the Fermi level deviating from around the center of the energy band width.

このために熱励起された電子あるいは正孔が、光入射の
ない状態にも存在することになり、暗電流が大きくなり
暗抵抗も小さいという好ましくない特性が現れる。
For this reason, thermally excited electrons or holes exist even in a state where no light is incident, resulting in unfavorable characteristics such as increased dark current and decreased dark resistance.

この光検出素子のS/Nは光入射時の光励起された電子
−正孔対数と暗状態との比から与えられるが、エネルギ
ーバンド幅の小さい赤外線検出素子の場合、特にこのS
/Nを大きくすることができないという問題がある。
The S/N of this photodetecting element is given by the ratio of the photoexcited electron-hole logarithm at the time of light incidence and the dark state.
There is a problem that /N cannot be increased.

さらに第5図の場合には第4図の真性半導体とは逆に不
純物を導入し、不純物準位に電子をつめておくことにな
る。
Furthermore, in the case of FIG. 5, impurities are introduced contrary to the intrinsic semiconductor shown in FIG. 4, and electrons are packed in the impurity level.

このとき禁止帯中に不純物準位を形成する場合には、こ
の不純物濃度を十分大きくすることができるかが感度を
決定する。しかし、この不純物準位の状態密度は価電子
帯、伝導帯のそれとは比較にならない程小さいので感度
が小さいという欠点がある。
If an impurity level is formed in the forbidden band at this time, sensitivity is determined by whether the impurity concentration can be made sufficiently large. However, the density of states of this impurity level is much smaller than that of the valence band and conduction band, so it has the disadvantage of low sensitivity.

また不純物濃度を大きくするとホッピング伝導あるいは
不純物準位での伝導が生じ、暗抵抗が低く、暗電流が大
きくなるという問題も生じる。
Furthermore, when the impurity concentration is increased, hopping conduction or conduction at the impurity level occurs, resulting in problems such as low dark resistance and large dark current.

(発明の目的) 本発明の目的は単一半導体では得ることができない、暗
抵抗が大きくかつ高感度の光検出素子を提供することに
ある。
(Objective of the Invention) An object of the present invention is to provide a photodetecting element with high dark resistance and high sensitivity, which cannot be obtained with a single semiconductor.

(発明の構成) 前記目的を達成するために、本発明による光検出素子は
、エネルギーバンド幅の大きい半導体とそれの小さい半
導体を超格子構造にa層して構成されている。
(Structure of the Invention) In order to achieve the above-mentioned object, a photodetecting element according to the present invention is constructed by forming a layer A of a semiconductor having a large energy band width and a semiconductor having a small energy band width in a superlattice structure.

(実施例) 以下、図面等を参照して本発明をさらに詳しく説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第1図は本発明による光検出素子の実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a photodetecting element according to the present invention.

この実施例は、赤外線域の光検出器の半導体としてPb
TeとPbO,8SnO,2Teの2種の半導体で超格
子積層形構造の素子を形成したものである。
In this example, Pb is used as a semiconductor for a photodetector in the infrared region.
An element with a superlattice stacked structure is formed using two types of semiconductors: Te, PbO, 8SnO, and 2Te.

基板1として、蒸着される半導体結晶の格子定数とほぼ
一致する格子定数をもち、かつ熱膨張係数も互いに殆ど
等しい結晶を用いる。
As the substrate 1, a crystal is used which has a lattice constant that almost matches that of the semiconductor crystal to be deposited, and whose thermal expansion coefficients are also almost the same.

この実施例では、BaF2の(1)1)結晶面を使用し
ている。KCI、NaC1の(100)結晶面等を用い
てもよい。
In this example, the (1)1) crystal plane of BaF2 is used. The (100) crystal plane of KCI, NaCl, etc. may be used.

エネルギーバンド幅の大きい半導体として、この実施例
では室温でエネルギーバンド幅0.29 e Vをもつ
PbTeを用いる。
In this embodiment, PbTe, which has an energy band width of 0.29 eV at room temperature, is used as a semiconductor with a large energy band width.

エネルギーバンド幅の大きい半導体の第1層2−1を4
〜5μm厚に基板上に蒸着する。この膜厚は本素子を基
板1に緊密に保持させるために必要な厚さである。
The first layer 2-1 of a semiconductor with a large energy band width is
Deposit on the substrate to a thickness of ~5 μm. This film thickness is necessary for tightly holding this element to the substrate 1.

このとき蒸着速度を制御してP形結晶で大略2X101
8e1m−’の不純物濃度とする。
At this time, by controlling the deposition rate, approximately 2×101
The impurity concentration is 8e1m-'.

エネルギーバンド幅の小さい半導体として、この実施例
ではエネルギーバンド幅が室温で0.21 evThp
bO,8SnO,2Teを用いる。
As a semiconductor with a small energy band width, this example has an energy band width of 0.21 evThp at room temperature.
bO, 8SnO, and 2Te are used.

エネルギーバンド幅の小さい半導体の第1層3−1を5
00人の厚さに蒸着して形成する。
The first layer 3-1 of a semiconductor with a small energy band width is
It is formed by vapor deposition to a thickness of 0.00 mm.

このとき本半導体の構成元素であるToの蒸気圧制御で
n形半導体で大略lXl0”elm−3の不純物濃度と
する。
At this time, by controlling the vapor pressure of To, which is a constituent element of the present semiconductor, the impurity concentration is set to approximately 1X10"elm-3 in an n-type semiconductor.

さらに前記エネルギーバンド幅の小さい半導体の第1層
3−1の上に前記エネルギーバンド幅の大きい半導体の
第2層2−2(膜厚500人)を前述のようにして形成
する。
Furthermore, on the first layer 3-1 of the semiconductor with a small energy band width, the second layer 2-2 (thickness: 500 layers) of the semiconductor with a large energy band width is formed as described above.

次に前記エネルギーバンド幅の大きい半導体の第2ti
2−2の上にエネルギーバンド幅の小さい半導体の第2
層3−2を500人の厚さでというようにして次々に、
500人の厚さで各30層、2−30から3−30まで
を形成する。そして最後にエネルギーバンド幅の大きい
半導体の第31層2−31を4〜5μmの厚さに蒸着す
る。
Next, the second ti of the semiconductor with a large energy band width is
A second semiconductor with a narrow energy band width is added on top of 2-2.
Layer 3-2 is 500 people thick, and so on, one after another.
Form 30 layers each, from 2-30 to 3-30, with a thickness of 500 people. Finally, a 31st layer 2-31 of a semiconductor having a large energy band width is deposited to a thickness of 4 to 5 μm.

前述した各半導体層の特性を要約して回連する。The characteristics of each semiconductor layer described above will be summarized and repeated.

○エネルギーバンド幅の大きい半導体層(2−1〜2−
31) エネルギーバンド幅: 0.29 e V不純物濃度 
   、: 2X10” am−3導電形      
:p形 Oエネルギーバンド幅の小さい半導体層(3−1〜3−
30) エネルギーバンド幅:0.21eV 不純物濃度    ’lXl017C1)1−3導電形
      In形 次に前述のようにして積層された素子の実装工程を説明
する。
○Semiconductor layer with large energy band width (2-1 to 2-
31) Energy band width: 0.29 eV impurity concentration
,: 2X10” am-3 conductivity type
: p-type O semiconductor layer with small energy band width (3-1 to 3-
30) Energy band width: 0.21eV Impurity concentration 'lXl017C1) 1-3 Conductivity type In type Next, the mounting process of the elements stacked as described above will be explained.

積層された素子の側面をメサエッチングし容器台7に取
り付ける。
The side surfaces of the stacked elements are mesa-etched and attached to the container stand 7.

エネルギーバンド幅の大きい半導体層の最上および最下
位の層2−31と2−1にIn金属4aと4bを載置す
る。
In metals 4a and 4b are placed on the top and bottom layers 2-31 and 2-1 of the semiconductor layer having a large energy band width.

それぞれを金線5aと5bを介して各電極6aと6bに
接続する。
Each is connected to each electrode 6a and 6b via gold wires 5a and 5b.

なお各電極6aと6bは予め容器台7にハーメチックシ
ール10aとlObで絶縁されて支持されている。容器
台7にキャップ8を封着する。
Note that the electrodes 6a and 6b are supported in advance on the container stand 7 while being insulated by hermetic seals 10a and 1Ob. A cap 8 is sealed on a container stand 7.

前述した素子の光検出器としての動作原理を第2図を参
照して説明する。
The principle of operation of the above-mentioned element as a photodetector will be explained with reference to FIG.

前記エネルギーバンド幅の大きいn形半導体(以下半導
体■という)の禁止帯幅をEglとし、前記エネルギー
バンド幅の小さいn半導体(以下半導体■という)の禁
止帯幅を8g2とする。
Let Egl be the bandgap of the n-type semiconductor with a large energy band width (hereinafter referred to as semiconductor 2), and let 8g2 be the bandgap of the n-type semiconductor with a small energy band width (hereinafter referred to as semiconductor 2).

この実施例の場合、EglをもつPbTeの結晶と8g
2となるPbO,8SnO,2Te結晶は界面でΔEc
、  ΔEVのステップをもつ接合が形成される。
In this example, PbTe crystal with Egl and 8g
2, PbO, 8SnO, 2Te crystals have ΔEc at the interface.
, a junction with steps of ΔEV is formed.

本例の場合Eg+側の結晶は高濃度(2X10”elm
−1)のP形となっている。
In this example, the crystals on the Eg+ side have a high concentration (2X10”elm
-1) P type.

ΔEc、  ΔEvの大きさは半導体I、Ifの種類と
不純物濃度の大きさで決定される。
The magnitudes of ΔEc and ΔEv are determined by the types of semiconductors I and If and the magnitude of impurity concentration.

この実施例の場合、ΔECは2QmeV、ΔEVは80
meVとなっている。
In this example, ΔEC is 2QmeV and ΔEV is 80
meV.

Egx側の多数キャリアである価電子帯にある正孔はよ
りエネルギー準位の低い8g2側に移動し、822例の
電子を補償したのち8g2側の価電子帯へ落ちこむ。
Holes in the valence band, which are majority carriers on the Egx side, move to the 8g2 side, which has a lower energy level, and after compensating for 822 electrons, fall into the valence band on the 8g2 side.

このとき2g1側から8g2側へ正孔が移動し、捕獲さ
れて、フェルミレベルが半導体1,1)間で一定となり
定常状態がつくり出される。
At this time, holes move from the 2g1 side to the 8g2 side and are captured, and the Fermi level becomes constant between the semiconductors 1 and 1), creating a steady state.

この積層された結晶に(8g2+ΔEc)以上のエネル
ギーの光が入射すると価電子帯の電子は励起され、伝導
帯中に上がり、積層結晶に印加された電界によって、伝
導帯のこれらの励起電子は移動し信号電流となる。
When light with an energy of (8g2 + ΔEc) or more is incident on this stacked crystal, electrons in the valence band are excited and rise into the conduction band, and due to the electric field applied to the stacked crystal, these excited electrons in the conduction band are moved. becomes a signal current.

積層結晶の厚さは光に対する吸収係数によって決定され
る。
The thickness of the laminated crystal is determined by the absorption coefficient for light.

この実施例の場合、波長6μmの光に対して吸収係数は
10’Cl1−1であるから2〜3μmが適当である。
In the case of this embodiment, the absorption coefficient is 10'Cl1-1 for light with a wavelength of 6 μm, so 2 to 3 μm is appropriate.

また積層する各結晶の厚さは価電子帯の正孔の拡散移動
距離によって決定される。この実施例の場合、PbTe
は半導体の中でも拡散距離は大きく、500人の膜厚が
適当である。
Further, the thickness of each crystal layered is determined by the diffusion distance of holes in the valence band. For this example, PbTe
has a long diffusion distance even among semiconductors, and a film thickness of 500 people is appropriate.

三元系の化合物半導体であるPb、Sn、Teは金属学
での相図の上からTe蒸気圧が高いので真性半導体を実
現するのは困il!で、101)016e1まで不純物
濃度を下げることも現状では不可能である。
Pb, Sn, and Te, which are ternary compound semiconductors, have a high Te vapor pressure based on the phase diagram in metallurgy, so it is difficult to realize an intrinsic semiconductor! Therefore, it is currently impossible to lower the impurity concentration to 101)016e1.

この実施例では、エネルギーバンドの大なる半導体■を
それの小さい半導体■に超格子構造で隣接することによ
って、半導体■の伝導正孔を拡散移動し、半導体■の価
電子帯に詰めることによって、多数キャリア濃度を単体
結晶のそれより下げることができる。
In this example, by arranging a semiconductor (2) with a large energy band adjacent to a semiconductor (2) with a small energy band in a superlattice structure, conductive holes in the semiconductor (2) are diffused and moved and packed into the valence band of the semiconductor (2). The majority carrier concentration can be lower than that of a single crystal.

したがって、製造容易な不純物濃度の半導体でありなが
ら、上述の構造とすることで非常に製造困難な、あるい
は相図の上からはでき得ない不純物濃度を得ることがで
きる。
Therefore, although it is a semiconductor with an impurity concentration that is easy to manufacture, by using the above structure, it is possible to obtain an impurity concentration that is extremely difficult to manufacture or that cannot be achieved from the phase diagram.

(変形例) 以上詳しく説明した実施例につき本発明の範囲内で種々
の変形を施すことができる。
(Modifications) Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

実施例での半導体■、■の伝導形をn、pにそれぞれ替
えても伝導電子の移動によって上述の結果と同一の動作
原理により光検出器となることはもちろんである。
Of course, even if the conduction types of the semiconductors (1) and (2) in the embodiment are changed to n and p, respectively, a photodetector can be obtained based on the same operating principle as described above due to the movement of conduction electrons.

実施例の他にも製法上、不純物濃度が高くなる半導体あ
るいは三元系化合物半導体で超格子構造にできるGaA
s−GaP、GaAj2As−InGaP、In5b−
1nAs等についても同様にして製作できる。
In addition to the examples, GaA, which can be made into a superlattice structure using a semiconductor with a high impurity concentration or a ternary compound semiconductor due to the manufacturing method, is also available.
s-GaP, GaAj2As-InGaP, In5b-
1nAs etc. can also be manufactured in the same manner.

また前記実施例は光導電性を持つものについて詳しく説
明したが、光起電性の光検出素子にも応用可能である。
Further, although the above embodiments have been described in detail with respect to photoconductive elements, it is also applicable to photovoltaic photodetecting elements.

(発明の効果) この発明によれば、ハンド幅の大きい半導体の多数キャ
リアが拡散移動し、バンド幅の小さい半導体のバンドの
井戸中に閉じ込めることができる。
(Effects of the Invention) According to the present invention, majority carriers in a semiconductor with a large band width can diffuse and move and be confined in a well in a band of a semiconductor with a small band width.

このため、バンド幅の大きい半導体の不純物濃度は、従
来技術でできるものより低くなり比抵抗は大きくなる。
For this reason, the impurity concentration of the semiconductor with a large band width is lower than that which can be achieved with the conventional technology, and the resistivity becomes large.

したがって暗抵抗の大きい、暗電流の小さい素子とする
ことができる。
Therefore, an element with high dark resistance and low dark current can be obtained.

また光検出感度はバンド幅の大きい半導体(Egt )
と小さい半導体(Eg2)との接合バリヤ(ΔEc)と
(Egt)との和より大きい光で励起された小数キャリ
アが印加された電界によって信号電流として得られる。
In addition, the photodetection sensitivity is achieved using a semiconductor with a large bandwidth (Egt).
Minority carriers excited by the light, which is larger than the sum of the junction barrier (ΔEc) and (Egt) between the small semiconductor (Eg2) and the small semiconductor (Eg2), are obtained as a signal current by the applied electric field.

したがって従来の多数キャリアでの信号増加を比較する
より、小数キャリアの増加分は元のキャリア数との比で
は大きくなる。
Therefore, compared to comparing signal increases with conventional majority carriers, the increase in minority carriers is larger in ratio to the original number of carriers.

このため高感度の検出器となる。また小数キャリアは電
界によって走行するとき障害は少なく高速でドリフトす
るので応答速度の大きい素子を実現できる。
This makes it a highly sensitive detector. Furthermore, when minority carriers travel due to an electric field, they drift at high speed with few disturbances, so it is possible to realize an element with a high response speed.

6μmの入射光に対する従来のGe(Auドープ)の光
検出素子のディチクティビイティ (D*)はI X 
10 ” cmHZ1)2/ Wである。
The detictivity (D*) of a conventional Ge (Au-doped) photodetector element for an incident light of 6 μm is I
10” cmHZ1)2/W.

この実施例の場合では6μmの入射光に対するそれは4
 X 10 ” c+sHZI/2/Wが得られる。
In this example, for an incident light of 6 μm, it is 4
X 10 ”c+sHZI/2/W is obtained.

また暗電流は前記従来のGeの光検出素子のそれの1/
10の1〜3nAである。
In addition, the dark current is 1/1 that of the conventional Ge photodetector.
1-3 nA of 10.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光検出素子の実施例を示す断面図
である。 第2図は前記実施例のバンド構造を示す略図である。 第3図は従来の光導電形の光検出素子の構成例を示す断
面図である。 第4図は真性半導体を光導電形光検出素子として使用し
たときのバンド構造を示す略図である。 第5図は外因性の不純物レベルを導入する光導電形半導
体光検出素子のバンド構造を示す略図である。 1・・・基板 2−1.2−2.2−3〜2−31 ・・・エネルギーバンド幅の大きい半導体層3−1. 
3−2. 3−3〜3−30・・・エネルギーバンド幅
の小さい半導体層4a、4b”−In金属 5a、5b・・・金線 5a、5b・・・電極 7・・・容器台 8・・・キャップ 10 a、  10 b−tz−メチツクシール特許出
願人 浜松ホトニクス株式会社 代理人 弁理士  井 ノ ロ  毒 牙1m ソ 才2図 才3m 才4図     才5図
FIG. 1 is a sectional view showing an embodiment of a photodetecting element according to the present invention. FIG. 2 is a schematic diagram showing the band structure of the embodiment. FIG. 3 is a sectional view showing an example of the configuration of a conventional photoconductive type photodetecting element. FIG. 4 is a schematic diagram showing a band structure when an intrinsic semiconductor is used as a photoconductive type photodetecting element. FIG. 5 is a schematic diagram illustrating the band structure of a photoconductive semiconductor photodetector device incorporating extrinsic impurity levels. 1... Substrate 2-1.2-2.2-3 to 2-31... Semiconductor layer 3-1 with a large energy band width.
3-2. 3-3 to 3-30... Semiconductor layer 4a, 4b'' with small energy band width - In metal 5a, 5b... Gold wire 5a, 5b... Electrode 7... Container stand 8... Cap 10 a, 10 b-tz-methic seal patent applicant Hamamatsu Photonics Co., Ltd. agent Patent attorney Inoro Dokuga 1m Sosai 2sai 3m Sosai 4sai sai 5s

Claims (6)

【特許請求の範囲】[Claims] (1)エネルギーバンド幅の大きい半導体とそれの小さ
い半導体を超格子構造に積層して構成した光検出素子。
(1) A photodetector element constructed by laminating a semiconductor with a large energy band width and a semiconductor with a small energy band width in a superlattice structure.
(2)前記積層の全厚はエネルギーバンド幅の小さい半
導体が検出する光波長を吸収するに最適な厚さである特
許請求の範囲第1項記載の光検出素子。
(2) The photodetector element according to claim 1, wherein the total thickness of the laminated layer is an optimum thickness for absorbing the light wavelength detected by a semiconductor having a narrow energy band width.
(3)前記各積層の厚さは、エネルギーバンド幅の大き
い半導体の多数キャリアの拡散長の長さ以下である特許
請求の範囲第1項記載の光検出素子。
(3) The photodetecting element according to claim 1, wherein the thickness of each of the laminated layers is equal to or less than the diffusion length of majority carriers of a semiconductor having a large energy band width.
(4)前記各積層の厚さは、エネルギーバンド幅の大き
い半導体の多数キャリアの拡散長の長さ以下とした光検
出器において、エネルギーバンド幅の大きい半導体の多
数キャリアをエネルギーバンド幅の小さい半導体のエネ
ルギーバンドの井戸中に入れるようにした特許請求の範
囲第3項記載の光検出素子。
(4) In a photodetector in which the thickness of each of the laminated layers is equal to or less than the diffusion length of majority carriers in a semiconductor with a large energy band width, 4. The photodetecting element according to claim 3, wherein the photodetecting element is placed in a well of an energy band.
(5)エネルギーバンド幅の小さい半導体のエネルギー
バンドの井戸中に入れることによって真性半導体化ある
いは低不純物濃度化されたエネルギーバンド幅の大きい
半導体中を、エネルギーバンド幅が小さい半導体部から
の光励起されたキャリアを走行させる特許請求の範囲第
4項記載の光検出素子。
(5) Photoexcitation from a semiconductor part with a small energy band width is applied to a semiconductor with a large energy band width that has been made into an intrinsic semiconductor or has a low impurity concentration by placing it in the well of the energy band of a semiconductor with a small energy band width. The photodetecting element according to claim 4, in which a carrier travels.
(6)前記エネルギーバンド幅の大きい半導体はPbT
e、前記エネルギーバンド幅の小さい半導体はPb0.
8Sn0.2Teである特許請求の範囲第1項記載の光
検出素子。
(6) The semiconductor with a large energy band width is PbT.
e, the semiconductor with a small energy band width is Pb0.
The photodetecting element according to claim 1, which is made of 8Sn0.2Te.
JP59237347A 1984-11-09 1984-11-09 Photodetecting element Pending JPS61115356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237347A JPS61115356A (en) 1984-11-09 1984-11-09 Photodetecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237347A JPS61115356A (en) 1984-11-09 1984-11-09 Photodetecting element

Publications (1)

Publication Number Publication Date
JPS61115356A true JPS61115356A (en) 1986-06-02

Family

ID=17014040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237347A Pending JPS61115356A (en) 1984-11-09 1984-11-09 Photodetecting element

Country Status (1)

Country Link
JP (1) JPS61115356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212072A (en) * 1985-03-18 1986-09-20 Nec Corp Semiconductor light-receiving element
JPS62115786A (en) * 1985-06-14 1987-05-27 アメリカン テレフオン アンド テレグラフ カムパニ− Optical device
JPS6377169A (en) * 1986-09-19 1988-04-07 Nec Corp Photoconductive light detector
JP2007335686A (en) * 2006-06-15 2007-12-27 National Univ Corp Shizuoka Univ Quantum well intersubband transition device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212072A (en) * 1985-03-18 1986-09-20 Nec Corp Semiconductor light-receiving element
JPS62115786A (en) * 1985-06-14 1987-05-27 アメリカン テレフオン アンド テレグラフ カムパニ− Optical device
JPS6377169A (en) * 1986-09-19 1988-04-07 Nec Corp Photoconductive light detector
JP2007335686A (en) * 2006-06-15 2007-12-27 National Univ Corp Shizuoka Univ Quantum well intersubband transition device

Similar Documents

Publication Publication Date Title
EP1342272B1 (en) Semiconductor diode device
JPS6193681A (en) Semiconductor device
KR102069788B1 (en) Semiconductor structure, device comprising such a structure, and method for producing a semiconductor structure
JPS62160776A (en) Photovoltage detector and manufacture of the same
JPS61115356A (en) Photodetecting element
US5241196A (en) Photoresponsive device including composition grading and recessed contacts for trapping minority carriers
JPH0728050B2 (en) Semiconductor device
JPS60247979A (en) Semiconductor optical element
KR100422294B1 (en) Passivation of HgCdTe Junction Diode By Annealing In Cd/Hg Atmosphere
JPS6285477A (en) Photosemiconductor device
JPS60161679A (en) Infrared ray detector
US5079610A (en) Structure and method of fabricating a trapping-mode
JP7027969B2 (en) Semiconductor light receiving element
JPH0732260B2 (en) Photodetector having superlattice structure of amorphous semiconductor
JP2754652B2 (en) Avalanche photodiode
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JP2671554B2 (en) Manufacturing method of infrared detector
JPH0494579A (en) Semiconductor photodetector
JP2825929B2 (en) Semiconductor light receiving element
KR950009930B1 (en) Device including a radiation sensor
WO2023205085A1 (en) Systems and methods for hybrid pin pbse mid-wavelength infrared (mwir) photodetectors
JP2825930B2 (en) Semiconductor light receiving element
JPS61139073A (en) Manufacture of infrared detector
WO1987003743A1 (en) Structure and method of fabricating a trapping-mode photodetector
FR2545275A1 (en) Tandem photodetector