JPS6111496B2 - - Google Patents

Info

Publication number
JPS6111496B2
JPS6111496B2 JP8907578A JP8907578A JPS6111496B2 JP S6111496 B2 JPS6111496 B2 JP S6111496B2 JP 8907578 A JP8907578 A JP 8907578A JP 8907578 A JP8907578 A JP 8907578A JP S6111496 B2 JPS6111496 B2 JP S6111496B2
Authority
JP
Japan
Prior art keywords
light
light emitting
fiber
receiving element
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8907578A
Other languages
Japanese (ja)
Other versions
JPS5516547A (en
Inventor
Akimoto Serizawa
Yoshinobu Tsujimoto
Katsuji Hatsutori
Tsutomu Tanaka
Osamu Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8907578A priority Critical patent/JPS5516547A/en
Publication of JPS5516547A publication Critical patent/JPS5516547A/en
Publication of JPS6111496B2 publication Critical patent/JPS6111496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバ通信の中で特に単線双方向
通信に関するもので、発光、受光を一体化した素
子を用いることによつて簡単に単線双方向通信を
実現することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to single-wire bidirectional communication in optical fiber communication, and it is possible to easily realize single-wire bidirectional communication by using a device that integrates light emission and light reception. purpose.

光フアイバを用いた通信システムは高速、大容
量伝送、無誘導伝送、軽量などの多くの利点のた
め急速に技術的に進歩してきている。その中で、
双方向通信としては次のような2つの方法が考え
られてきた。第1図a,bにそのシステムの概略
を示す。
Communication systems using optical fibers are rapidly advancing technologically due to their many advantages such as high speed, large capacity transmission, non-guided transmission, and light weight. among them,
The following two methods have been considered for two-way communication. Figures 1a and 1b show an outline of the system.

第1図aは複線双方向システムであり、最も一
般的な方法で地点7と地点8の間は2本のフアイ
バ2,5で結ばれている。1および6はLED、
レーザ等の発光源であり、3および4は受光部で
ある。発光源1より出た光信号は受光部3で受信
され、発光源6より出た光信号は受光部4で受信
される1フアイバ単方向のシステムである。本方
法は最も実用的ではあるが双方向を行うため2本
のフアイバを必要とするという欠点を有してい
る。第1図dは単線双方向システムの例であり、
16地点と17地点は1本のフアイバ12で結ば
れている。9,14は発光素子、10,15は受
光素子、11,13は分岐結合器、18は接続点
を示している。発光素子9より出た光信号は光分
岐・結合器11を通り、光分岐結合器13で再度
分けられて受光素子15で受信される。一方、発
〓〓〓〓
光素子14より出た光信号は同様に逆の径路をた
どつて受光素子10で受信される。
FIG. 1a shows a double-track bidirectional system, in which points 7 and 8 are connected by two fibers 2 and 5 in the most general way. 1 and 6 are LEDs,
It is a light emitting source such as a laser, and 3 and 4 are light receiving parts. The optical signal emitted from the light emitting source 1 is received by the light receiving section 3, and the optical signal emitted from the light emitting source 6 is received by the light receiving section 4. This is a one-fiber, unidirectional system. Although this method is the most practical, it has the disadvantage of requiring two fibers to perform bidirectional operation. Figure 1d is an example of a single-track bidirectional system,
Points 16 and 17 are connected by one fiber 12. 9 and 14 are light emitting elements, 10 and 15 are light receiving elements, 11 and 13 are branch couplers, and 18 is a connection point. The optical signal output from the light emitting element 9 passes through the optical branch/coupler 11, is split again by the optical branch/coupler 13, and is received by the light receiving element 15. On the other hand, the release
The optical signal output from the optical element 14 similarly follows the opposite path and is received by the light receiving element 10.

本方法は2地点を単線にて双方向通信が可能で
あるという利点を有しているものの光損失が大き
いこと、分岐結合器を必要とすること、S/Nが
低下し易いことなどの欠点を生ずる。今、9→1
1→12→13→15の伝送系に着目すると、(イ)
分岐結合器11,13の前後に存在するスプライ
スやコネクター等の接続損失、(ロ)分岐結合器1
1,13による損失などが附加されて発光素子9
より入射した光の多くはこれらの損失によつて失
なわれる。現在、分岐、結合器としては低損失も
のは得難く、たとえ、分岐結合器としての接続損
失はなくても、分岐、結合というそう作によつて
本質的に損失を生ずる。今、発光素子9より入射
した光が伝送用フアイバのすべての伝搬角の光
(すべてのモードの光)を一定強度で励振してい
るとし、分岐結合器11,13を3db分岐器で構
成されていると仮定すると分岐、結合器11,1
3にフアイバ外に逸散してしまう損失がないとし
ても発光素子9から入射した光の半分しかフアイ
バ12に伝搬されず、フアイバ12の伝搬光のま
た半分しか受光素子15に伝搬されない。従つ
て、発光素子9より入射した光はフアイバの接続
や分岐器としての損失がなくても4分の1の光量
に減少される。現実的にフアイバの接続部損失と
して0.2dB、分岐器に1dBの損失を考慮すると発
光素子9より入射した光量は受光素子15では
8.8dB即ち約8分の1に附加的減少をきたす。こ
のように、両双方向システムとも短所を有してい
る。
Although this method has the advantage that bidirectional communication is possible between two points using a single line, it has disadvantages such as large optical loss, the need for a branching coupler, and the tendency for S/N to decrease. will occur. Now, 9→1
Focusing on the transmission system of 1 → 12 → 13 → 15, (a)
Connection loss of splices, connectors, etc. that exist before and after the branch couplers 11 and 13, (b) Branch coupler 1
1 and 13 are added, and the light emitting element 9
Much of the incident light is lost due to these losses. Currently, it is difficult to obtain low-loss branching and coupling devices, and even if there is no connection loss as a branching and coupling device, the branching and coupling operations inherently generate losses. Now, assume that the light incident from the light emitting element 9 excites the light of all propagation angles (light of all modes) of the transmission fiber with a constant intensity, and the branching couplers 11 and 13 are configured with 3db splitters. branch, combiner 11,1
Even if there is no loss of light dissipating out of the fiber, only half of the light incident from the light emitting element 9 is propagated to the fiber 12, and only half of the light propagated through the fiber 12 is propagated to the light receiving element 15. Therefore, the light incident from the light emitting element 9 is reduced to one-fourth the amount of light even without any loss due to fiber connections or splitters. Considering a realistic fiber connection loss of 0.2 dB and a splitter loss of 1 dB, the amount of light incident from the light emitting element 9 will be reduced to the light receiving element 15.
This results in an additional reduction of 8.8 dB, or approximately one-eighth. Thus, both bidirectional systems have drawbacks.

一方、発光、受光素子は従来、別々の素子とし
て作製されており、一体化されたものはなく、既
に本出願人が特願昭53−46978号明細書にて積層
による一体化素を出願した。本発明は、この発
光、受光一体化素子とフアイバを接続することに
よつて上記双方向システムの欠点を除いたシステ
ムを構成しようとすることを目的とするものであ
る。
On the other hand, the light-emitting and light-receiving elements have conventionally been produced as separate elements, and there are no integrated elements, and the applicant has already applied for an integrated element by lamination in Japanese Patent Application No. 1983-46978. . The object of the present invention is to construct a system that eliminates the drawbacks of the above-mentioned bidirectional system by connecting this integrated light emitting and light receiving element to a fiber.

以下本発明を図面と共に実施例に基いて説明す
る。
The present invention will be described below based on examples together with drawings.

本発明に使用する発光、受光一体化素子は既に
特願昭53−46978号明細書にて述べてあるが、フ
アイバを接続した状態を第2図に示す。第2図に
おいて発光中心波長λ<受光中心波長λであ
り、発光の光信号λはフアイバ中に結合されフ
アイバより出射した中心波長λの光信号は出力
端より電気信号としてとり出すことができる。
The integrated light-emitting and light-receiving device used in the present invention has already been described in Japanese Patent Application No. 53-46978, and FIG. 2 shows the state in which fibers are connected. In Fig. 2, the emission center wavelength λ 1 <the reception center wavelength λ 2 , and the emitted optical signal λ 1 is coupled into the fiber, and the optical signal with the center wavelength λ 2 emitted from the fiber is taken out as an electrical signal from the output end. be able to.

第3図に本発明の一実施例である構成図を示
す。28は第2図に示す発光受光一体化素子であ
り、29は伝送フアイバ、30は分岐、結合器、
31は発光素子、32は受光素子を示す。発光素
子31発光中心波長λであり、発光・受光素子
28の発光波長の中心はλである。受光素子3
2は発光・受光素子28よりの光信号に十分な感
度をもつものである。本構成においては発光素子
31よりの光信号は発光・受光素子28で、発
光・受光素子28よりの光信号は受光素子32で
受信でき、従来の方法に比べて、分岐、結合器が
1つ減少できる他、分岐器およびその前後での接
続の損失をなくすことができる。
FIG. 3 shows a configuration diagram of an embodiment of the present invention. 28 is an integrated light emitting/receiving element shown in FIG. 2, 29 is a transmission fiber, 30 is a branch, a coupler,
31 is a light emitting element, and 32 is a light receiving element. The light emission center wavelength of the light emitting element 31 is λ 2 , and the center of the emission wavelength of the light emitting/light receiving element 28 is λ 1 . Light receiving element 3
2 has sufficient sensitivity to the optical signal from the light emitting/light receiving element 28. In this configuration, the optical signal from the light emitting element 31 can be received by the light emitting/light receiving element 28, and the optical signal from the light emitting/light receiving element 28 can be received by the light receiving element 32. Compared to the conventional method, there is only one branch and coupler. In addition, it is possible to eliminate loss in the branch and connections before and after it.

第4図に2地点ともに発光、受光一体化した素
子を使用した本発明の他の実施例を示す。発光、
受光一体化素子33は構造を第5図aに示し、3
6は発光部であり中心波長λ、37は受光部で
中心波長λとし、38はフアイバ端部である。
また、発光・受光素子35の構造は第5図bに同
様に示されており、39はフアイバ端、40は発
光部で発光中心波長λである。41は受光部で
受光感度の中心波長λである。各、発光・受光
部は素子の材料および組成を選択することによつ
てエネルギーギヤツプを適当なものにすることに
よつて、次に示すような関係を満たすことができ
る。即ち、発光部36で発光した光信号は受光部
37では吸収されずフアイバ38に伝搬され、フ
アイバ端部39まで伝わり、発光部40では吸収
されて損失することなく、受光部41で電気信号
に変換される。従つて、このとき発光部36より
出た光によつて受光部37で電気信号にはほとん
ど変換されない。
FIG. 4 shows another embodiment of the present invention using an element that integrates light emission and light reception at both points. luminescence,
The structure of the integrated light receiving element 33 is shown in FIG.
6 is a light emitting part with a center wavelength λ 1 , 37 is a light receiving part with a center wavelength λ 2 , and 38 is a fiber end.
The structure of the light-emitting/light-receiving element 35 is similarly shown in FIG. 5b, where 39 is a fiber end, 40 is a light-emitting part, and has a light emission center wavelength λ 3 . Reference numeral 41 denotes a light receiving portion, which has a center wavelength λ 4 of light receiving sensitivity. Each of the light-emitting and light-receiving parts can satisfy the following relationship by selecting an appropriate energy gap by selecting the material and composition of the element. In other words, the optical signal emitted by the light emitting part 36 is not absorbed by the light receiving part 37 but is propagated to the fiber 38 and reaches the fiber end 39. The light signal is not absorbed by the light emitting part 40 and is lost, but is converted into an electrical signal by the light receiving part 41. converted. Therefore, at this time, the light emitted from the light emitting section 36 is hardly converted into an electrical signal by the light receiving section 37.

また、発光部40で発光した光信号は受光部4
1に到達する前にこの間の層にて吸収され受光部
41の電気出力に与えない。発光部40のフアイ
バ39に伝搬された光フアイバ38に到達し受光
部37で吸収されて電気出力に変換される。従つ
て単線フアイバ伝送路にて同時双方向通信が可能
となる。ここで各、発光、受光部のエネルギギヤ
ツプおよび中心感度波長をそれぞれ発光部36が
〓〓〓〓
Eg1,λ、受光部37がEg2,λ、発光部4
0がEg3,λ、受光部41がEg4,λとする
と、Eg3>Eg2>Eg1>Eg4とすることが望まれ
る。即ち波長では逆のλ<λ<λ<λ
関係で示される。
Further, the optical signal emitted by the light emitting unit 40 is transmitted to the light receiving unit 4.
Before it reaches 1, it is absorbed in the layer between these layers and does not affect the electrical output of the light receiving section 41. The light is propagated to the fiber 39 of the light emitting section 40, reaches the optical fiber 38, is absorbed by the light receiving section 37, and is converted into electrical output. Therefore, simultaneous bidirectional communication is possible using a single fiber transmission line. Here, the energy gap and center sensitivity wavelength of each of the light emitting and light receiving parts are determined by the light emitting part 36.
Eg 1 , λ 1 , light receiving section 37 is Eg 2 , λ 2 , light emitting section 4
0 is Eg 3 and λ 3 and the light receiving section 41 is Eg 4 and λ 4 , it is desired that Eg 3 >Eg 2 >Eg 1 >Eg 4 . That is, the wavelength is expressed by the opposite relationship λ 3214 .

以上説明したように本発明の単線双方向光伝送
装置においては次のような効果を有する。
As explained above, the single-line bidirectional optical transmission device of the present invention has the following effects.

1 複数伝送路双方向通信と比較して、伝送路を
単線に減少させることができる。
1. Compared to multi-transmission line bidirectional communication, the number of transmission lines can be reduced to a single line.

2 分岐、結合器を使用することなく単線双方向
通信が可能となる。
2. Single-wire bidirectional communication is possible without using branches or couplers.

3 分岐、結合器の数を減少させることあるいは
使用せずにすますことが可能なため、接続個所
が減少することによつて接続損失および分岐結
合器での損失をなくすことができる。
3. Since the number of branches and couplers can be reduced or eliminated, connection losses and losses in branch couplers can be eliminated by reducing the number of connection points.

4 システム全体が簡素化されるため、信頼性が
向上する。
4. Reliability is improved because the entire system is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、a,bは光フアイバを用いた従来の双
方向通信装置を示す構成図、第2図は既に提案し
た発光、受光一体化素子の構成図、第3図、第4
図は本発明の各実施例を示す構成図、第5図a,
bは本発明にかかる要部拡大図である。 28,33,35……発光受光一体化素子、2
9,34……伝送フアイバー、30……分岐、結
合器、31……発光素子、32……受光素子、3
6,40……発光部、37,41……受光部。 〓〓〓〓
Figures 1, a and b are block diagrams showing a conventional two-way communication device using optical fibers, Figure 2 is a block diagram of an already proposed integrated light emitting and light receiving element, and Figures 3 and 4.
The diagrams are configuration diagrams showing each embodiment of the present invention, Figure 5a,
b is an enlarged view of main parts according to the present invention. 28, 33, 35... Integrated light emitting and receiving element, 2
9, 34... Transmission fiber, 30... Branch, coupler, 31... Light emitting element, 32... Light receiving element, 3
6, 40... Light emitting section, 37, 41... Light receiving section. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 Pn接合面に垂直方向に光を取出す発光ダイ
オードおよび受光素子を積層することによつて構
成された発光受光一体化素子が端部に設置されて
なる光通信信用フアイバを備え、該フアイバ他端
に分岐結合器,分波結合器及び上記発光受光一体
化素子のいずれか1つを配置し、発光動作と受光
動作を同時に行なう単線双方向光伝送装置。 2 光通信用フアイバの両端に第1および第2の
発光受光一体化素子が設置せられ、前記第1の発
光受光一体化素子は受光部が前記光通信イフアイ
バ側に形成せられ、前記第2の発光受光一体化素
子は発光部が前記光通信用フアイバ側に形成せら
れてなるとともに、前記第1の発光受光一体化素
子の発光部のエネルギギヤツプをEg1、同受光部
のエネルギギヤツプをEg2、前記第2の発光受光
一体化素子の発光部のエネルギギヤツプをEg3
同受光部のエネルギギヤツプをEg4とするとき、
Eg3<Eg2<Eg1<Eg4なる関係を満足することを
特徴とする特許請求の範囲第1項記載の単線双方
向光伝送装置。
[Claims] 1. An optical communication fiber in which an integrated light-emitting and light-receiving element is installed at the end, which is constructed by stacking a light-emitting diode and a light-receiving element that emit light in a direction perpendicular to the Pn junction surface. A single-wire bidirectional optical transmission device comprising: a branching coupler, a demultiplexing coupler, and the light emitting/receiving integrated element arranged at the other end of the fiber, and performing light emitting operation and light receiving operation simultaneously. 2. First and second integrated light emitting and receiving elements are installed at both ends of the optical communication fiber, the first integrated light emitting and receiving element has a light receiving section formed on the side of the optical communication fiber, and the second integrated light emitting and receiving element has a light receiving section formed on the optical communication fiber side. The integrated light emitting/receiving element has a light emitting part formed on the fiber side for optical communication, and the energy gap of the light emitting part of the first integrated light emitting/receiving element is Eg1 , and the energy gap of the light receiving part is Eg2. , the energy gap of the light emitting part of the second integrated light emitting/receiving element is Eg 3 ,
When the energy gap of the light receiving section is Eg 4 ,
The single-wire bidirectional optical transmission device according to claim 1, characterized in that the following relationship is satisfied: Eg 3 <Eg 2 <Eg 1 <Eg 4 .
JP8907578A 1978-07-20 1978-07-20 Single-wire two-way photo transmitter Granted JPS5516547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8907578A JPS5516547A (en) 1978-07-20 1978-07-20 Single-wire two-way photo transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8907578A JPS5516547A (en) 1978-07-20 1978-07-20 Single-wire two-way photo transmitter

Publications (2)

Publication Number Publication Date
JPS5516547A JPS5516547A (en) 1980-02-05
JPS6111496B2 true JPS6111496B2 (en) 1986-04-03

Family

ID=13960728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8907578A Granted JPS5516547A (en) 1978-07-20 1978-07-20 Single-wire two-way photo transmitter

Country Status (1)

Country Link
JP (1) JPS5516547A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097514A (en) * 1983-10-31 1985-05-31 株式会社東芝 Method of producing composite superconductive conductor
JPS60187549U (en) * 1984-05-24 1985-12-12 オムロン株式会社 Receiver and emitter

Also Published As

Publication number Publication date
JPS5516547A (en) 1980-02-05

Similar Documents

Publication Publication Date Title
KR950009326B1 (en) Low-noise optical amplification unit with reflection of the pumping power
US5109444A (en) Integrated type optical node and optical information system using the same
US20020164115A1 (en) Optical fiber communication system, communications apparatus and optical transceiver
JPS6016112B2 (en) Light emitting/light receiving element
KR100259268B1 (en) Monolithically integrated optic circulator and wavelength division multiplexer for both direction communication
US5496390A (en) Method of manufacturing an optical module for wavelength division multiplex optical transmission with regulation of the coupling ratio and coupling length
JPS6151768B2 (en)
KR19980033300A (en) Method and apparatus for suppressing cue switching in an optical amplifier
JPS6111496B2 (en)
US6172802B1 (en) Bidirectional optical amplification system
JP3000900B2 (en) Optical coupler
FR2473188A1 (en) Bidirectional T=connector for optical fibres - has two couplers allowing each transmitting-receiving station to be interconnected on common optical bus
JPS5884550A (en) Optical fiber bidirectional transmission system
JP2694014B2 (en) Bidirectional optical amplifier transmission circuit
JPH0769549B2 (en) Optical drive type switch
US5287422A (en) Integrated type optical node and optical information system using the same
JPS5816215A (en) Bidirectional light wave branch and manufacture and method thereof
JP2635188B2 (en) Optical active module
JPS58149025A (en) Optical heterodyne-homodyne detector
JPH0474689B2 (en)
JPS6177019A (en) Method and device for switching optical fiber cable without momentary disconnection
JPS595205A (en) Demultiplexer for single mode bidirectional wavelength multiplex transmission
JPS62187304A (en) Directional optical coupling component
KR19980075310A (en) Bidirectional Fiber Optic Amplifier Using Single Active Fiber
US6259839B1 (en) Optical communication connector