JPS61114528A - Transfer and exposure by electron beam - Google Patents

Transfer and exposure by electron beam

Info

Publication number
JPS61114528A
JPS61114528A JP23606384A JP23606384A JPS61114528A JP S61114528 A JPS61114528 A JP S61114528A JP 23606384 A JP23606384 A JP 23606384A JP 23606384 A JP23606384 A JP 23606384A JP S61114528 A JPS61114528 A JP S61114528A
Authority
JP
Japan
Prior art keywords
electron beam
substrate
transfer
mask
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23606384A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23606384A priority Critical patent/JPS61114528A/en
Publication of JPS61114528A publication Critical patent/JPS61114528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable to accurately perform a positioning by a method wherein the positioning marks are detected by irradiating the second electron beam on the substrate to be exposed from the back surface of the transfer mask having the penetrating holes in the prescribed configuration and a positioning for transfer and exposure is performed by the first electron beam. CONSTITUTION:A uniform accelerating electric field is formed between a transfer mask 101 and a substrate 6 to be exposed through an X-Y stage 9 and mask supporting bodies 5. In this state, the substrate 6 is made to step-shift to its prescribed position. Firstly, a second electron beam is irradiated on a penetrating hole 14a for positioning by an electron beam generating means 18 from the back surface of the transfer mask 101 and the position of a positioning mark 7a is detected. The position of a positioning mask 7b is detected in the same manner and the rotation error of the substrate 6 is detected. Then, a visible light is irradiated on the face of the chip region 12 of the mask 101 through a mirror 10, a first electron beam to be radiated is projected on the resist film 8 of the substrate 6 and a transfer pattern is transferred on the resist film 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子ビーム転写露光方法に係り、特に電子ビー
ム転写露光に際しての露光領域の位置合わせ方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam transfer exposure method, and more particularly to an improvement in a method for positioning an exposure area during electron beam transfer exposure.

半導体集積回路がLSIから超LSIへと大規模化され
るに伴って、所要パターン幅も1μm或いはそれ以下に
縮小されて来ている。
As the scale of semiconductor integrated circuits has increased from LSI to VLSI, the required pattern width has also been reduced to 1 μm or less.

このような微細パターンの形成に際し、0.5μm程度
の波長の光を用いていた従来の紫外線露光技術は光の回
折により精度維持が不可能になり、これに代わって光に
比べ一桁程度波長が短い電子ビームによる露光技術が用
いられ始めている。
When forming such fine patterns, conventional ultraviolet exposure technology that uses light with a wavelength of about 0.5 μm has become impossible to maintain accuracy due to light diffraction, and instead it has become impossible to maintain accuracy using light with a wavelength of about one order of magnitude compared to light. Exposure technology using an electron beam with a short beam length is beginning to be used.

しかし従来多く用いられている電子ビーム露光技術は走
査方式のものであるため、極度に大規模化され極めて多
数の素子数を有する超LSI等の量産工程においては、
スルーブツトの面から極めて不利になるという問題があ
る。
However, the electron beam exposure technology that has been widely used in the past is a scanning method, so in the mass production process of extremely large scale and extremely large number of elements such as VLSI,
There is a problem in that it is extremely disadvantageous in terms of throughput.

そこで注目されて来たのが電子ビームによる転写露光技
術である。
Therefore, transfer exposure technology using electron beams has been attracting attention.

この電子ビーム転写露光技術において当初は、半導体基
板全面へのパターンの一括転写がなされる方式が試みら
れたダが、この方式はウェーハの反り、マスクの反り等
により転写精度が充分に得られず実用的でなかった。
Initially, attempts were made to use this electron beam transfer exposure technology to transfer patterns all at once to the entire surface of a semiconductor substrate, but this method did not provide sufficient transfer accuracy due to wafer warping, mask warping, etc. It wasn't practical.

そこで転写精度を更に向上する方式として従来発明者等
によって提供されたのが、単数若しくは複数のチップ領
域を含んだ10〜20tm口程度の領域毎に分割転写を
行うステップアンドリピート方式の電子ビーム転写露光
技術である。
Therefore, as a method to further improve the transfer accuracy, the inventors have proposed a step-and-repeat electron beam transfer method in which division transfer is performed for each area of about 10 to 20 tm including a single or multiple chip areas. It is an exposure technology.

この方式はガリウム砒素(GaAs)等の半導体基板上
に所定形状の開孔(転写パターンに対応)を有する白金
(Pt)等の金属膜を形成し、且つ表面を薄い酸化セシ
ウム等の光陰極膜で覆った構造のマスクが用いられ、該
マスク上に光を照射して該半導体基板内に電子を発生さ
せ、この電子を光陰極膜を介し強い正電界によってマス
ク面からビームとして引出し、該電子ビームを磁場によ
って収束し、マスク面に対向して配置された被露光基板
のレジスト膜上に投影する技術である。
In this method, a metal film such as platinum (Pt) having openings of a predetermined shape (corresponding to the transfer pattern) is formed on a semiconductor substrate such as gallium arsenide (GaAs), and the surface is coated with a thin photocathode film such as cesium oxide. A mask with a structure covered with This is a technique in which a beam is focused by a magnetic field and projected onto a resist film of a substrate to be exposed, which is placed opposite a mask surface.

即ち上記マスクにおいて、GaAs面の仕事関数は酸化
セシウム光陰極膜が被着されることにより光照射によっ
て電子を放出し得るに充分な低い値1.4eV程度に低
下せしめられるのに対し、白金面の仕事関数は5eV程
度の大きな値を有する。
That is, in the above-mentioned mask, the work function of the GaAs surface is reduced to about 1.4 eV, which is low enough to emit electrons by light irradiation, by coating the cesium oxide photocathode film, whereas The work function of has a large value of about 5 eV.

このよ゛うなマスク面に2〜3eV程度のエネルギーを
有する波長4000〜6000人の可視光を照射した時
、黒色のGaAs面はこの光を良く吸収するのでフォト
ンがGaAs内に注入され、該GaAs内の電子が上記
GaAs面の仕事関数より大きい光のエネルギーによっ
て叩き出され、正電界によって引かれ且つ磁場によって
収束されて被露光基板面に到達する。これに反し白金面
は光の吸収が少なく、且つ前記のように5eV程度の大
きな仕事関数を存するので電子を放出しないので、上記
GaAs面から放出された電子ビームによって被露光基
板上に所定形状を有する白金膜の開孔パターンの転写が
なされる。
When such a mask surface is irradiated with visible light having a wavelength of 4,000 to 6,000 wavelengths having an energy of about 2 to 3 eV, the black GaAs surface absorbs this light well, so photons are injected into the GaAs, and the GaAs The electrons inside are ejected by the energy of light greater than the work function of the GaAs surface, and are attracted by the positive electric field and converged by the magnetic field to reach the surface of the substrate to be exposed. On the other hand, the platinum surface absorbs less light and has a large work function of about 5 eV as described above, so it does not emit electrons, so the electron beam emitted from the GaAs surface forms a predetermined shape on the substrate to be exposed. The aperture pattern of the platinum film is transferred.

かかるステップアンドリピート方式の転写露光技術にお
いては、スループットの増大及び重ね合わせ精度の向上
のために、時間の短縮及び精度の向上が図れる位置合わ
せ手段の開発が要望されている。
In such step-and-repeat transfer exposure technology, in order to increase throughput and improve overlay accuracy, there is a demand for the development of an alignment means that can shorten time and improve accuracy.

〔従来の技術〕[Conventional technology]

第4図はステップアンドリピート方式の等倍電子ビーム
転写露光装置の従来構造を示す模式側断面図である。な
お理解を容易にするために、−個のチップ・パターンを
具備するマスクが搭載されている。
FIG. 4 is a schematic side sectional view showing the conventional structure of a step-and-repeat type equal-magnification electron beam transfer exposure apparatus. Note that for ease of understanding, a mask with - chip patterns is mounted.

図において、1はガリウム砒素(GaAs)等の半導体
よりなるマスク、2は白金(P t)等の金属よりなる
マスク膜、3aはチップパターン、3bは位置合わせ用
パターン、4は酸化セシウム等よりなる光陰極膜、5は
マスク支持体、6は被露光基板、7は位置合わせマーク
、8は電子ビーム用レジスト膜、9はX−Yステージ、
10a、 10bはミラー、11a、 llbは偏向コ
イル、EBl、EB。
In the figure, 1 is a mask made of a semiconductor such as gallium arsenide (GaAs), 2 is a mask film made of a metal such as platinum (Pt), 3a is a chip pattern, 3b is an alignment pattern, and 4 is made of cesium oxide, etc. 5 is a mask support, 6 is a substrate to be exposed, 7 is an alignment mark, 8 is a resist film for electron beam, 9 is an X-Y stage,
10a and 10b are mirrors, 11a and llb are deflection coils, EBl and EB.

は電子ビーム、hν1.hν2は゛可視光、Hは磁場の
方向を表す矢印、El は電子ビーム加速用の直流電源
、E2は中間電位を付与する直流電源、Gは接地を示す
is an electron beam, hν1. hν2 is visible light, H is an arrow representing the direction of the magnetic field, El is a DC power source for electron beam acceleration, E2 is a DC power source that provides an intermediate potential, and G is ground.

露光に際しては、被露光基板6を所定の位置にステップ
移動し、ミラー10bを介し可視光hν2によりマスク
lの位置合わせ用パターン3b上を80KeV程度の電
界及び磁場Hによって被露光基板に予め整列配設されて
いる所定の位置合わせマーク7上に収束し、且つ偏向コ
イル11によって該位置合わせマーク7上を走査するこ
とによって該位置合わせマーク7の位置を検出し露光領
域の位置決めを行った後、 可視光hν2を遮断し、ミラー10aを介し可視光hν
1によりチップパターン3a上を照射し、該チップパタ
ーン3aから放射される電子ビームE B +を前記電
界及び磁場Hによって収束して被露光基板6面のレジス
ト膜8上に投影する。
At the time of exposure, the substrate 6 to be exposed is moved stepwise to a predetermined position, and the alignment pattern 3b of the mask 1 is preliminarily aligned on the substrate to be exposed using an electric field and a magnetic field H of about 80 KeV using visible light hv2 via the mirror 10b. After converging on a predetermined alignment mark 7 provided and scanning the alignment mark 7 by the deflection coil 11 to detect the position of the alignment mark 7 and positioning the exposure area, The visible light hν2 is blocked and the visible light hν2 is transmitted through the mirror 10a.
The electron beam E B + emitted from the chip pattern 3a is converged by the electric field and magnetic field H and projected onto the resist film 8 on the surface of the substrate 6 to be exposed.

次いで被露光基板を順次所定の方向に所定の距離ステッ
プ移動し、前記操作を繰り返し被露光基板全面にチップ
・パターンの転写がなされる。
Next, the substrate to be exposed is sequentially moved step by step in a predetermined direction by a predetermined distance, and the above operation is repeated to transfer the chip pattern onto the entire surface of the substrate to be exposed.

第5図は上記従来の方法に用いるマスク1の、チップパ
ターン3aとそれに対応する位置合わせパターン3b+
、3b2を模式的に示した平面図である。
FIG. 5 shows a chip pattern 3a and a corresponding alignment pattern 3b+ of the mask 1 used in the above conventional method.
, 3b2 is a plan view schematically showing.

同図のように従来のマスクにおいては、例えばGaAs
マスク基板1上に白金膜2によって画定されたチップ領
域12(上記チップパターン3aに対応)内の転写パタ
ーン例えば13a、 13b、 13cと、該チップ領
域12に近接し且つ同様に白金膜2によって画定された
1μm×5μm程度の長方形の位置合わせ用パターン3
b+ と3bzが形成され、該マスク基板I上が図示さ
れない酸化セシウム等の光陰極膜によって覆われてなっ
ている。
As shown in the figure, in the conventional mask, for example, GaAs
Transfer patterns, for example, 13a, 13b, and 13c in a chip region 12 (corresponding to the above chip pattern 3a) defined by a platinum film 2 on a mask substrate 1, and transfer patterns close to the chip region 12 and similarly defined by a platinum film 2. Rectangular alignment pattern 3 of about 1 μm x 5 μm
b+ and 3bz are formed, and the mask substrate I is covered with a photocathode film of cesium oxide or the like (not shown).

なお回転補正に際しては2個の位置合わせ用パターン3
b+ と3btが共に用いられ、単なる位置合わせに際
しては何れか一方の位置合わせ用パターンが用いられる
In addition, when performing rotation correction, two alignment patterns 3 are used.
Both b+ and 3bt are used, and either one of the alignment patterns is used for simple alignment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来装置による転写露光方法においては、前述した
ように第3図に示す1μrrlx5μm程度の微少位置
合わせ用パターン上に光を照射し、該微少パターンから
放射される電子ビームにより被露光基板の位置合わせマ
ーク上を走査して露光領域の位置合わせがなされ、然も
該位置合わせに際しては通常チップパターンの転写の場
合と同様の強度の光が用いられるので、該位置合わせパ
ターンから放出される電子ビーム強度が非常に弱く、ノ
イズの影響等により位置合わせマークの検出精度が低下
し、且つ検出時間が長引くという問題がある。
In the transfer exposure method using the above-mentioned conventional apparatus, as described above, light is irradiated onto a minute alignment pattern of approximately 1 μrrl x 5 μm shown in FIG. 3, and the substrate to be exposed is aligned using an electron beam emitted from the minute pattern. The exposure area is aligned by scanning the mark, and since light of the same intensity as that used for normal chip pattern transfer is used for this alignment, the intensity of the electron beam emitted from the alignment pattern is There is a problem that the detection accuracy of the alignment mark is decreased due to the influence of noise, and the detection time is prolonged.

そこでこの検出精度を上げるために位置合わせに際して
の照射光を充分に強め位置合わせパターンから放射され
る電子ビーム強度を高めようとすると、該照射光のエネ
ルギーによって位置合わせパターン上の光陰極膜が焼け
その機能が失われるという問題を生ずる。
Therefore, when attempting to increase the intensity of the electron beam emitted from the alignment pattern by sufficiently intensifying the irradiation light during alignment to increase the detection accuracy, the energy of the irradiation light burns out the photocathode film on the alignment pattern. A problem arises in that the function is lost.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基板面に所定の形状の開孔
を有する金属膜を設け、表面を光陰極膜で覆ってなる転
写マスク面に光を照射し、この際該金属膜の開孔内に表
出する半導体基板面から選択的に放出される第1の電子
ビームにより被露光基板上に該開孔像の転写露光を行う
電子ビームによる転写露光方法において、該転写マスク
に貫通孔を設け、該マスクの背面から該貫通孔を介し該
被露光基板上に第2の電子ビームを照射し、該第2の電
子ビームによって該被露光基板の位置合わせマークを検
出して該第1の電子ビームによる転写露光に際しての位
置決めを行う本発明による電子ビーム転写露光方法によ
り達成される。
The solution to the above problem is to provide a metal film with openings of a predetermined shape on the surface of the semiconductor substrate, and irradiate the transfer mask surface, which is made by covering the surface with a photocathode film. In a transfer exposure method using an electron beam, in which a first electron beam selectively emitted from a surface of a semiconductor substrate exposed in the semiconductor substrate is used to transfer and expose the aperture image onto a substrate to be exposed, a through hole is formed in the transfer mask. irradiating the exposed substrate with a second electron beam from the back of the mask through the through hole, detecting the alignment mark on the exposed substrate with the second electron beam, and detecting the positioning mark on the exposed substrate. This is achieved by the electron beam transfer exposure method according to the present invention, which performs positioning during transfer exposure using an electron beam.

〔作用〕 即ち本発明の方法においては転写マスクの所定位置に貫
通孔を設け、転写マスクの背面から該貫通孔を介し、別
の電子ビーム発生装置で形成した充分に高出力を有する
電子ビームを被露光基板上に照射し、該電子ビームで該
位置合わせマーク上を走査することによって該位置合わ
せマークの位置を検出し、該マークの検出位置と上記マ
スクの貫通孔位置との関係から露光領域の位置決めを行
うものである。
[Operation] That is, in the method of the present invention, a through hole is provided at a predetermined position of the transfer mask, and an electron beam having a sufficiently high output generated by another electron beam generator is passed from the back side of the transfer mask through the through hole. The position of the alignment mark is detected by irradiating the substrate to be exposed and scanning the alignment mark with the electron beam, and the exposure area is determined from the relationship between the detected position of the mark and the position of the through hole of the mask. It is used for positioning.

この方法によれば、位置合わせ用に高出力の電子ビーム
が用いられるので位置合わせ時間は短縮され、且つ位置
合わせに際してのノイズ等の影響が無視されるので位置
合わせ精度も向上する。
According to this method, since a high-power electron beam is used for alignment, the alignment time is shortened, and since the effects of noise and the like during alignment are ignored, alignment accuracy is also improved.

〔実施例〕〔Example〕

以下本発明の方法を、図示実施例により具体的に説明す
る。
The method of the present invention will be specifically explained below using illustrated examples.

第1図は本発明の方法の一実施例を示す装置の模式側断
面図、第2図は上記実施例に用いる転写マスクの模式平
面図(a)及びそのA−A矢視断面図(b)、第3図は
上記実施例に用いる被露光基板の模式平面図である。
FIG. 1 is a schematic side sectional view of an apparatus showing an embodiment of the method of the present invention, and FIG. ), FIG. 3 is a schematic plan view of the substrate to be exposed used in the above embodiment.

全図を通じ同一対象物は同一符号で示す。Identical objects are indicated by the same reference numerals throughout the figures.

本発明の方法に用いる転写露光装置は例えば第1図に示
すように、 被露光基板6が搭載され、該被露光基板6を所定方向に
所定の距離ステップ移動するx−yステージ9、 その上方に被露光基板6に対向して転写マスク101を
固持するマスク支持体5、 転写マスク101のチップ領域12即ちチップ・パター
ン3aに可視光hνを照射するミラー1o、電子ビーム
・ガン15及び複数の電子レンズ16a。
For example, as shown in FIG. 1, the transfer exposure apparatus used in the method of the present invention includes an x-y stage 9 on which a substrate 6 to be exposed is mounted and moves the substrate 6 to be exposed a predetermined distance in steps in a predetermined direction; A mask support 5 that holds the transfer mask 101 facing the substrate 6 to be exposed, a mirror 1o that irradiates visible light hv onto the chip area 12 of the transfer mask 101, that is, the chip pattern 3a, an electron beam gun 15, and a plurality of Electronic lens 16a.

16b等により構成され、且つ周囲に電界遮蔽手段17
を有し、更にX−Y方向に移動可能な位置合わせ用の第
2の電子ビームEB!発生手段、18、電子ビーム照射
位置を偏向する偏向コイルlla及びllb、 を真空系内に配置し、該真空系の外部に転写マスク10
1から被露光基板6に向かう垂直磁場Hを形成する図示
しない磁場形成手段を有してなっている。
16b, etc., and surrounding electric field shielding means 17.
and a second electron beam EB for positioning which is further movable in the X-Y direction. A generating means 18, deflection coils lla and llb for deflecting the electron beam irradiation position are arranged in a vacuum system, and a transfer mask 10 is placed outside the vacuum system.
It has a magnetic field forming means (not shown) that forms a perpendicular magnetic field H directed from 1 to the substrate 6 to be exposed.

又上記転写マスク101は詳細を第2図(a)及び伽)
に示すように、例えばGaAsよりなるマスク基板1上
に、従来同様チップ領域12に開孔よりなる転写パター
ン13a、 13b、 13c等を有する白金マスク膜
2が形成され、表面が例えば酸化セシウムよりなる20
〜30人程度の薄い光陰極膜4で覆われ、且つチップ領
域12即ちチップ・パターン3aの近傍の所定の例えば
対角位置に各1個の1μmx5μm程度の長方形の位置
合わせ用貫通孔14a、 14bが設けられてなってい
る。
The details of the transfer mask 101 are shown in FIG.
As shown in FIG. 2, a platinum mask film 2 having transfer patterns 13a, 13b, 13c, etc. made of openings in the chip region 12 is formed on a mask substrate 1 made of, for example, GaAs, as in the conventional case, and the surface is made of, for example, cesium oxide. 20
~30 rectangular positioning through holes 14a, 14b each of which are covered with a thin photocathode film 4 of approximately 1 μm x 5 μm at predetermined, for example, diagonal positions near the chip area 12, that is, the chip pattern 3a. is provided.

なお該貫通孔14a、 14bの背面側が大きな溝に形
成されているのは、該貫通孔の高精度形成を容易ならし
めるためである。
The reason why the back sides of the through holes 14a and 14b are formed into large grooves is to facilitate the high precision formation of the through holes.

又上記マスク101からパターンの転写がなされる被露
光基板6は第3図に示すように、チップ・パターン3a
が複数個整列転写される領域である被転写領域112の
間隙部の所定位置に溝よりなる位置合わせマスク7が整
列配設され、上面に通常の厚さの電子ビーム用レジスト
膜8が被着されてなっている。
Further, as shown in FIG. 3, the exposed substrate 6 to which the pattern is transferred from the mask 101 has a chip pattern 3a.
An alignment mask 7 made of grooves is aligned and arranged at a predetermined position in the gap of the transfer target area 112, which is an area where a plurality of images are aligned and transferred, and an electron beam resist film 8 of a normal thickness is coated on the upper surface. It has been done.

露光に際しては第1図に示すように、X−Yステージ9
及びマスク支持体5を介し直流電源E。
During exposure, as shown in FIG.
and a DC power source E via the mask support 5.

によって転写マスク101と被露光基板6の間に80K
V程度の均一な加速電界を形成する。なおミラーlOに
対しては、上記均一な加速電界が乱されないような所定
の中間電位例えば40KVが直流電IIAE2により印
加される。
80K between the transfer mask 101 and the exposed substrate 6
A uniform accelerating electric field of approximately V is formed. Note that a predetermined intermediate potential, for example, 40 KV, which does not disturb the uniform accelerating electric field, is applied to the mirror IO by the DC current IIAE2.

この状態において被露光基板6を所定の位置にステップ
移動し、先ず電子ビーム発生手段18によ。
In this state, the substrate 6 to be exposed is moved step by step to a predetermined position, and is first exposed to the electron beam generating means 18.

り転写マスク101の背面から位置合わせ用貫通孔14
a上に該貫通孔を充分に覆う大きさの例えば10μmφ
程度のビーム・スポット径を有し、50A/32程度の
出力を有する第2の電子ビームEBKを照射し、該貫通
孔14aの投影ビームによって被露光基板6面の所定の
位置合わせマーク7a上を走査して、該位置合わせマー
ク7aの位置を検出する。
alignment through holes 14 from the back of the transfer mask 101.
For example, 10 μmφ of a size that sufficiently covers the through hole is placed on a.
A second electron beam EBK having a beam spot diameter of approximately 50A/32 is irradiated, and a predetermined positioning mark 7a on the surface of the substrate 6 to be exposed is irradiated with the projection beam of the through hole 14a. The position of the alignment mark 7a is detected by scanning.

なお上記第2の電子ビームEB、のエネルギーは転写マ
スク101の表面においてOvに成るように調節され、
該投影ビームの走査は偏向コイル11a、 llbによ
ってなされる。
Note that the energy of the second electron beam EB is adjusted to Ov on the surface of the transfer mask 101,
Scanning of the projection beam is performed by deflection coils 11a, llb.

この位置合わせマークの検出には上記のように大きな出
力を有する第2の電子ビームEBtが用いられるので、
位置合わせマークの検出精度は従来に比べ大幅に向上し
、且つ検出時間も大幅に短縮される。
Since the second electron beam EBt, which has a large output as described above, is used to detect this alignment mark,
The accuracy of detecting alignment marks is significantly improved compared to the conventional method, and the detection time is also significantly shortened.

次いで電子ビーム発生手段18を同図に点線で示すよう
に位置合わせ用貫通孔14b上に移動し、上記同様に位
置合わせマーク7bの検出を行い、両方即ち7aと7b
の検出データにより被露光基板6の回転誤差を検出する
Next, the electron beam generating means 18 is moved onto the positioning through hole 14b as shown by the dotted line in the figure, and the positioning mark 7b is detected in the same manner as described above, and both 7a and 7b are detected.
The rotational error of the exposed substrate 6 is detected based on the detected data.

そして上記位置検出における検出位置の誤差及び回転誤
差を補正した電流を偏向コイルlla、llb及び図示
しないllc、 lldに流し、この状態において従来
通りミラー10を介して転写マスク101のチップ領域
12面に可視光hνを照射し、該チップ領域12面から
放射される第1の電子ビームEB、を上記偏向コイルで
補正偏向して被露光基板6のレジスト膜8上に投影し、
チップ領域12内の転写パターン例えば第2図に示す1
3a、 13b、 13c等をレジスト膜8上に転写す
る。
Then, a current that has corrected the detected position error and rotational error in the position detection is passed through the deflection coils lla, llb and llc, lld (not shown), and in this state, it is applied to the chip area 12 surface of the transfer mask 101 via the mirror 10 as before. irradiating with visible light hν, and correcting and deflecting the first electron beam EB emitted from the surface of the chip region 12 by the deflection coil and projecting it onto the resist film 8 of the substrate to be exposed 6;
The transfer pattern in the chip area 12, for example 1 shown in FIG.
3a, 13b, 13c, etc. are transferred onto the resist film 8.

なお上記被露光基板の回転補正は各ステップ毎に行う必
要はなく、回転補正を行わないステップにおいては位置
合わせマーク7a若しくは7bの何れか1個の位置を検
出するだけで良い。
Note that it is not necessary to perform rotational correction of the exposed substrate at each step, and in steps where rotational correction is not performed, it is sufficient to detect the position of either one of the alignment marks 7a or 7b.

また上記実施例においてはチップ毎に転写を行ったが、
チップが小さい場合には複数のチップをまとめて一括転
写するのが効率的である。
In addition, in the above embodiment, transfer was performed for each chip, but
When the chips are small, it is efficient to transfer multiple chips at once.

また本発明の方法に用いる半導体マスク基板は上記Ga
ksに限られるものでなく、光陰極膜も酸化セシウムに
限られるものではない。
Further, the semiconductor mask substrate used in the method of the present invention is made of the above-mentioned Ga
The photocathode film is not limited to cesium oxide.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明の方法によれば、電子ビームに
よるステップアンドリピート方式の転写露光において被
露光基板に配設された位置合わせマークの検出精度が大
幅に向上し、且つ検出時間も大幅に短縮される。
As explained above, according to the method of the present invention, the detection accuracy of alignment marks provided on the exposed substrate in step-and-repeat transfer exposure using an electron beam is greatly improved, and the detection time is also significantly reduced. be shortened.

従って本発明は超LSI等極度に高集積化される半導体
集積回路装置を量産する際における、製造歩留りの向上
及びスループットの向上に極めてを効である。
Therefore, the present invention is extremely effective in improving manufacturing yield and throughput when mass producing extremely highly integrated semiconductor integrated circuit devices such as VLSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子ビーム転写露光方法の一実施例を
示す装置の側断面図、 第2図は上記実施例に用いる転写マスクの模式平面図(
al及びそのA−A矢視断面図(b)、第3図は上記実
施例に用いる被露光基板の模式第4図は従来方法を示す
装置の模式側断面図、第5図は従来方法に用いる転写マ
スクの模式平面図である。 図において、 lはGaAsマスク基板、 2は白金マスク膜、 4は光陰極膜、 5はマスク支持体、 6は被露光基板、 7.7a、7bは位置合わせマーク、 8は電子ビーム用レジスト膜、 9はX−Yステージ、 10はミラー、 11a、11bは偏向コイル、 12はチップ領域、 13a+ L3b、 13cは転写パターン、14a、
 14bは位置合わせ用貫通孔、18は第2の電子ビー
ム発生手段、 hνは可視光、 EB、、EB!は第1.第2の電子ビーム、Hは磁場 を示す。
FIG. 1 is a side sectional view of an apparatus showing an embodiment of the electron beam transfer exposure method of the present invention, and FIG. 2 is a schematic plan view of a transfer mask used in the above embodiment (
al and its A-A cross-sectional view (b), FIG. 3 is a schematic diagram of the substrate to be exposed used in the above embodiment, FIG. 4 is a schematic side sectional view of the apparatus showing the conventional method, and FIG. It is a schematic plan view of the transfer mask used. In the figure, l is a GaAs mask substrate, 2 is a platinum mask film, 4 is a photocathode film, 5 is a mask support, 6 is a substrate to be exposed, 7.7a and 7b are alignment marks, 8 is a resist film for electron beam , 9 is an X-Y stage, 10 is a mirror, 11a, 11b are deflection coils, 12 is a chip area, 13a + L3b, 13c is a transfer pattern, 14a,
14b is a through hole for positioning, 18 is a second electron beam generating means, hν is visible light, EB,,EB! is the first. Second electron beam, H indicates magnetic field.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板面に所定の形状の開孔を有する金属膜を設
け、表面を光陰極膜で覆ってなる転写マスク面に光を照
射し、この際該金属膜の開孔内に表出する半導体基板面
から選択的に放出される第1の電子ビームにより被露光
基板上に該開孔像の転写露光を行う電子ビームによる転
写露光方法において、該転写マスクに貫通孔を設け、該
マスクの背面から該貫通孔を介し該被露光基板上に第2
の電子ビームを照射し、該第2の電子ビームによって該
被露光基板の位置合わせマークを検出して該第1の電子
ビームによる転写露光に際しての位置決めを行うことを
特徴とする電子ビーム転写露光方法。
A metal film having openings of a predetermined shape is provided on the semiconductor substrate surface, and the surface is covered with a photocathode film. Light is irradiated onto the transfer mask surface, and at this time, the semiconductor substrate is exposed within the openings of the metal film. In an electron beam transfer exposure method in which a first electron beam selectively emitted from a surface transfers and exposes the aperture image onto a substrate to be exposed, a through hole is provided in the transfer mask, and a through hole is provided in the transfer mask, and A second layer is placed on the exposed substrate through the through hole.
An electron beam transfer exposure method comprising: irradiating the substrate with an electron beam, detecting an alignment mark on the substrate to be exposed using the second electron beam, and performing positioning during transfer exposure using the first electron beam. .
JP23606384A 1984-11-09 1984-11-09 Transfer and exposure by electron beam Pending JPS61114528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23606384A JPS61114528A (en) 1984-11-09 1984-11-09 Transfer and exposure by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23606384A JPS61114528A (en) 1984-11-09 1984-11-09 Transfer and exposure by electron beam

Publications (1)

Publication Number Publication Date
JPS61114528A true JPS61114528A (en) 1986-06-02

Family

ID=16995175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23606384A Pending JPS61114528A (en) 1984-11-09 1984-11-09 Transfer and exposure by electron beam

Country Status (1)

Country Link
JP (1) JPS61114528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236820A (en) * 1985-08-12 1987-02-17 Canon Inc Alignment device and its mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236820A (en) * 1985-08-12 1987-02-17 Canon Inc Alignment device and its mask

Similar Documents

Publication Publication Date Title
US4528452A (en) Alignment and detection system for electron image projectors
US5831272A (en) Low energy electron beam lithography
JP2006261342A (en) Charged particle exposure apparatus and device manufacturing method
JP2957669B2 (en) Reflection mask and charged beam exposure apparatus using the same
JP2001527701A (en) Method and apparatus for direct drawing of semiconductor die using microcolumn array
JPS60224220A (en) Electron image projecting device
US3519873A (en) Multiple beam electron source for pattern generation
JPH0515057B2 (en)
US4789786A (en) Method of projecting photoelectron image
JPS61114528A (en) Transfer and exposure by electron beam
JPH02224322A (en) Electron image projection forming device
JPS622535A (en) Electron beam exposing device
JPH07254539A (en) Electron beam exposure device
US5851725A (en) Exposure of lithographic resists by metastable rare gas atoms
JPH06236840A (en) Method and device for electron beam exposure
US6271531B1 (en) Charged beam drawing apparatus and method thereof
JPH06291025A (en) Electron-beam aligner
EP0069728A1 (en) Parallel charged particle beam exposure system
JPS63216341A (en) Transcription by using photoelectron
JPS60246631A (en) Method for photoelectronic image reduced projection and apparatus therefor
JP2001085302A (en) Mask for charged particle beam exposure, charged particle beam exposure system and charged particle beam exposure method
JPS6070726A (en) Electron beam exposure device
JPH01220442A (en) Method and apparatus for photoelectric transfer and exposure
JPH01289246A (en) Photoelectronic replication apparatus
JP2002289126A (en) Electron ray source, electron ray exposure device and manufacturing method of semiconductor device