JPS61110915A - Force-cooled type superconducting wire - Google Patents

Force-cooled type superconducting wire

Info

Publication number
JPS61110915A
JPS61110915A JP59232988A JP23298884A JPS61110915A JP S61110915 A JPS61110915 A JP S61110915A JP 59232988 A JP59232988 A JP 59232988A JP 23298884 A JP23298884 A JP 23298884A JP S61110915 A JPS61110915 A JP S61110915A
Authority
JP
Japan
Prior art keywords
base material
stabilizing base
superconducting wire
superconducting
channel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59232988A
Other languages
Japanese (ja)
Inventor
洸 我妻
海保 勝之
伸行 定方
河野 宰
池野 義光
優 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59232988A priority Critical patent/JPS61110915A/en
Publication of JPS61110915A publication Critical patent/JPS61110915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は各融合炉等の超電導マグネットの超電導コイ
ルに使用される超電導線に関し、特に冷却媒体により強
制循環冷却させる型式の超電導線に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to superconducting wires used in superconducting coils of superconducting magnets in various fusion reactors, etc., and particularly relates to a type of superconducting wire that is forcedly circulated and cooled by a cooling medium. be.

「従来技術」 最近に至り、断面中央に冷却媒体通路を形成したいわゆ
る中空超電導線を用い、冷却媒体通路に超臨界圧ヘリウ
ム等の冷却媒体を強制循環させて超電導線を強制冷却す
るようにした超電導コイルが種々提案されている。
``Prior art'' Recently, a so-called hollow superconducting wire with a cooling medium passage formed in the center of the cross section has been used, and a cooling medium such as supercritical helium is forced to circulate in the cooling medium passage to forcibly cool the superconducting wire. Various superconducting coils have been proposed.

このような背景の中で、本発明者等は、全体的な冷却効
率が高ζしかも局部的な安定性も良好で、かつ大きな電
磁力に耐え得る構造とした超電導線を特願昭57−45
795号において提案している。この提案の超電導線の
一例を第4図に示す。
Against this background, the present inventors have proposed a superconducting wire with a structure that has high overall cooling efficiency, good local stability, and can withstand large electromagnetic forces in a patent application filed in 1983. 45
No. 795 proposes this. An example of this proposed superconducting wire is shown in FIG.

第4図において、銅、銅合金、高純度アルミニラム、ア
ルミニウム合金等の良導電性材料からなる断面矩形状の
中空な安定化母材1の内側には、Mll−TL金合金N
b−Tt−Ta合金等の合金系超電導材料アルイハNb
 3 Sn 、 V3 Ga 、 Nb3Ge等の化合
物系超電導材料からなる複数本の超電導素線2が収容さ
れている。そして安定化母材1の外側は安定化母材と同
様な材料あるいはステンレス鋼等からなる適当数のセパ
レータ3を介して銅、ステンレス鋼、チタン、チタン合
金等からなる断面矩形状の外被4によって取囲まれ、前
記セパレータ3により安定化母材1の外面と外被4の内
面との間に冷却媒体流路5が確保されている。
In FIG. 4, inside the stabilizing base material 1, which is hollow and has a rectangular cross section and is made of a highly conductive material such as copper, copper alloy, high-purity aluminum laminate, or aluminum alloy, is an Mll-TL gold alloy N.
Alloy-based superconducting materials such as b-Tt-Ta alloys Aluha Nb
A plurality of superconducting strands 2 made of compound-based superconducting materials such as 3Sn, V3Ga, Nb3Ge, etc. are accommodated. The outside of the stabilizing base material 1 is covered with an outer sheath 4 having a rectangular cross section made of copper, stainless steel, titanium, titanium alloy, etc., with an appropriate number of separators 3 made of the same material as the stabilizing base material or stainless steel, etc. The separator 3 secures a coolant flow path 5 between the outer surface of the stabilizing base material 1 and the inner surface of the jacket 4 .

さらに前記安定化母材1には、その外側の冷却媒体流路
5と内側の空間とを連通させる丸孔状、長孔状、あるい
はスリット状等の複数の連通路6が形成されている。し
たがって冷却媒体流路5を流れる超臨界性ヘリウム等の
冷却媒体は連通路6を流通して安定化母材1の内側の超
電導素線2の線間の空隙7に流入し、超電導素線2に直
接冷却媒体が接することになる。そしてこの安定化母材
1の内側の超電導素線2の線間空隙7においても冷却媒
体の流れが生じることになる。
Further, the stabilizing base material 1 is formed with a plurality of communicating passages 6 in the shape of round holes, long holes, or slits, which communicate the cooling medium flow path 5 on the outside with the space on the inside. Therefore, the cooling medium such as supercritical helium flowing through the cooling medium flow path 5 flows through the communication path 6 and flows into the gap 7 between the superconducting strands 2 inside the stabilizing base material 1, and the superconducting strands 2 The cooling medium comes into direct contact with the A flow of the cooling medium also occurs in the inter-wire gaps 7 of the superconducting wires 2 inside the stabilizing base material 1.

上記提案の超電導線においては、全体的な冷却は安定化
母材1の外側の冷却媒体流路5を流れる冷却媒体の定常
流によってなされ、しかも安定化母材1内の超電導素線
2自体にも直接冷却媒体が接して直接冷却がなされるた
め冷FiI効果が高く、なおかつ安定化母材1の外側の
冷部媒体と内側の冷却媒体とが連通路6を介して流入、
流出して交換されるため、内側の冷却媒体が局部的に温
度上昇してヒートスポットが生じたりその回復が遅れた
りすることが極めて少なく、したがってトータルとして
の冷却効果が優れると同時に定常安定性および過渡安定
性も穫めて優れている。また上記提案の超電導線におい
ては、じよう乱が生じて超電導状態が破れ、磁束流状態
となった時に電流は安定化母材1に分流することになる
ため安定化母材1の部分でも発熱することになるが、こ
の安定化母材1の発熱も外側の冷却媒体により冷却され
るから、超電導状態をすみやかに回復することができ、
さらに上述のように安定化母材1の内外の冷却媒体が連
通路6を介して流入、流出するため、安定化母材1内の
超電導素線2の集合構造が、その長手方向に冷1111
1体がスムーズに流れにくい構造、例えば編組構造や成
形撚線構造となっていても特に支障はない等の優れた特
性を有する。
In the above proposed superconducting wire, the overall cooling is achieved by a steady flow of the cooling medium flowing through the cooling medium channel 5 outside the stabilizing base material 1, and moreover, the superconducting wire 2 itself inside the stabilizing base material 1 is cooled. The cold FiI effect is high because the cooling medium is directly in contact with the cooling medium, and the cooling medium on the outside of the stabilizing base material 1 and the cooling medium on the inside flow in through the communication path 6.
Since the cooling medium flows out and is replaced, it is extremely unlikely that the temperature of the internal cooling medium will rise locally, causing heat spots or delays in recovery.Therefore, the overall cooling effect is excellent, and at the same time stable stability and It also has excellent transient stability. In addition, in the superconducting wire proposed above, when a disturbance occurs and the superconducting state is broken and a magnetic flux flow state occurs, the current is shunted to the stabilizing base material 1, so heat is generated in the stabilizing base material 1 as well. However, since the heat generated by the stabilizing base material 1 is also cooled by the cooling medium on the outside, the superconducting state can be quickly restored.
Furthermore, as described above, since the cooling medium inside and outside the stabilizing base material 1 flows in and out through the communication path 6, the aggregate structure of the superconducting wires 2 in the stabilizing base material 1 is cooled in the longitudinal direction.
It has excellent properties such that there is no particular problem even if one body has a structure that does not flow smoothly, such as a braided structure or a formed stranded wire structure.

しかしながら本発明者がさらに実用化のための研究をす
すめたところ、上記提案の超電導線においては未だ次の
ような問題があることが判明した。
However, when the present inventor further conducted research for practical application, it became clear that the above-mentioned proposed superconducting wire still had the following problems.

ずなわら、この種のm電導線は第5図に示すように幅広
な面A、Bが巻き半径に対する内周面、外周面に位置し
かつ幅狭の面C,Dが巻き中心軸に対し直角な面となる
ようにコイル状に巻込んで超電導マグネットとして使用
するのが通常であるが、安定化母材1はその肉厚が相当
に厚いため、全体としての剛性が高く、コイル巻加工に
相当な困難を伴う問題があり、また無理に曲げようとす
れば安定化母材1に変形あるいは割れ等が生じて内部の
超電導線が損傷してしまうことがあるのである。そこで
本発明者等は、コイル巻加工を容易にできるようにした
超電導線を特願昭57−200546号において提案し
た。
However, as shown in Fig. 5, this type of conductive wire has wide surfaces A and B located at the inner and outer peripheral surfaces relative to the winding radius, and narrow surfaces C and D at the central winding axis. Normally, it is used as a superconducting magnet by winding it into a coil so that the surface is perpendicular to the surface of the stabilizing base material 1, but since the stabilizing base material 1 has a considerably thick wall thickness, the overall rigidity is high, and the coil winding There is a problem in that processing is considerably difficult, and if the stabilizing base material 1 is tried to be forcibly bent, the stabilizing base material 1 may be deformed or cracked, and the superconducting wires inside may be damaged. Therefore, the present inventors proposed in Japanese Patent Application No. 57-200546 a superconducting wire that can be easily coiled.

この提案の超電導線の一例は、第6図に示すように、安
定化母材10を横断面シ・字状のチャンネル材10A、
10Bから構成し、安定化母材10の外面にセパレータ
の代わりに突条10dを形成し各チャンネル材IQA、
IOBの各側壁10a。
An example of this proposed superconducting wire, as shown in FIG.
10B, a protrusion 10d is formed on the outer surface of the stabilizing base material 10 instead of a separator, and each channel material IQA,
Each side wall 10a of the IOB.

10bの各々に、各チャンネル材10A、 10Bの変
形を容易にするスリット10cを多数形成したものであ
った。
A large number of slits 10c were formed in each of the channel members 10b to facilitate deformation of each channel material 10A, 10B.

[発明が解決しようとする問題点] しかしながら、本発明者がさらに実用化のための研究を
すすめたところ、上記第6図に示す安定化母材10を有
する超電導線を巻胴に巻回した場合、以下に述べるよう
な問題があることが判明した。超電導線は種々の半径の
巻胴に巻かれるが、巻胴の径の大小によって、安定化母
材10の湾曲する割合が異なるため、湾曲割合が小さい
場合には、第7図に示すようにスリット10Cの開口部
が開いてしまい、大きな電磁力の作用する超電導コイル
用の構造材料としての強度が不足する虞れを生じ、また
、上記湾曲の部分が大きい場合には、第8図に示すよう
にスリット10cの開口部を形成するチャンネル材10
A、10Bの側壁の各部10dどうしがぶつかつて変形
し、場合によっては超電導素線の損傷を引き起こす虞れ
があった。
[Problems to be Solved by the Invention] However, when the present inventor further conducted research for practical application, it was found that a superconducting wire having the stabilizing base material 10 shown in FIG. 6 above was wound around a winding drum. In this case, the following problems were found. Superconducting wires are wound around winding drums of various radii, but the bending ratio of the stabilizing base material 10 differs depending on the diameter of the winding drum, so if the bending ratio is small, as shown in FIG. If the opening of the slit 10C opens, there is a risk that the strength as a structural material for the superconducting coil on which a large electromagnetic force acts will be insufficient. The channel material 10 forming the opening of the slit 10c as shown in FIG.
The respective parts 10d of the side walls of A and 10B collided with each other and were deformed, which could possibly cause damage to the superconducting strands.

[発明の目的] この発明は、上述した事情に鑑みてなされたもので、コ
イル巻き加工が容易な上に、超電導コイルの発生させる
電磁力に対する強度が高く、さらに、冷却効果を良好に
した強制冷却型超電導線の提供を目的とする。
[Purpose of the Invention] This invention was made in view of the above-mentioned circumstances, and it is easy to wind the coil, has high strength against the electromagnetic force generated by the superconducting coil, and has a forced coil with good cooling effect. The purpose is to provide cooled superconducting wire.

[問題点を解決するための手段」 この発明は、安定化母材を構成するチャンネル材のうち
の一方の両側壁の各々に、安定化母材の長手方向に対し
てほぼ直交する複数のスリットを形成し、超電導線の巻
回に対する巻回によるチャンネル材の湾曲によりスリッ
トの開口部が閉じるようにスリットの幅を設定したもの
である。
[Means for Solving the Problems] This invention provides a plurality of slits that are substantially orthogonal to the longitudinal direction of the stabilizing base material in each of both side walls of one of the channel materials constituting the stabilizing base material. The width of the slit is set so that the opening of the slit is closed by the curvature of the channel material due to the winding of the superconducting wire.

「作用」 コイル巻加工によりチャンネル材が湾曲すると、スリッ
トの開口部が閉じてスリットは三角形状になり、チャン
ネル材がトラス構造になって強度が向上するとともに、
スリットの存在によりチャンネル材の湾曲が容易になる
一方、スリットによって生じたチャンネル材の三角形状
の開口部分は安定化母材の外側の冷却媒体流路を流れる
冷却媒体と安定化母材内を流れる冷却媒体との間の連絡
路になって冷却効率を向上させる。
``Operation'' When the channel material is curved by coil winding, the opening of the slit closes and the slit becomes triangular, forming a truss structure and improving its strength.
The presence of the slit facilitates the bending of the channel material, while the triangular opening of the channel material created by the slit allows the cooling medium to flow through the cooling medium channel outside the stabilizing matrix and inside the stabilizing matrix. It becomes a communication path between the cooling medium and improves cooling efficiency.

「実施例」 第1図ないし第5図はこの発明の一実施例を示すもので
、図中20AG、tl述する超電導線Tの内部に設けら
れる安定化母材20を形成するための第1チャンネル材
を示し、この第1チャンネル材2OAは長尺の基板20
aと側板20b、20bとからなる横断面口字状をなし
、各側板20bには、チャンネル材2OAの長手方向に
対し、はぼ直角に複数のスリット20cが形成されてい
る。
"Embodiment" FIGS. 1 to 5 show an embodiment of the present invention, in which a first base material 20 for forming a stabilizing base material 20 provided inside a superconducting wire T shown as 20AG and tl in the figure is shown. This first channel material 2OA is a long substrate 20.
A and side plates 20b, 20b have a cross-sectional shape, and a plurality of slits 20c are formed in each side plate 20b at approximately right angles to the longitudinal direction of the channel material 2OA.

また、図中208は上記第1チャンネル材2OAの内側
に嵌合可能な横断面口字状の第2チャンネル材を示し、
この第2チャンネル材20Bを上記第1チャンネル材2
OAに嵌合して横断面略矩形状の安定化母材20が構成
されるようになっていて、この第2チャンネル材20B
の両側壁の各々には、結合材20Bの長手方向に対し、
はぼ直角にitのスリット20dが形成されている。そ
して、安定化母材20は、その外面に安定化母材20の
長さ方向に沿って形成された突条22を介して横断面矩
形状の外被23によって取囲まれ、安定化母材20の内
には、超電゛導素線G・・・が収納され、上記突条22
により安定化母材20の外面と外皮23との間に冷却媒
体通路24が形成されて超電導線丁が構成されている。
Further, 208 in the figure indicates a second channel material having a cross-sectional shape that can be fitted inside the first channel material 2OA,
This second channel material 20B is
A stabilizing base material 20 having a substantially rectangular cross section is constructed by fitting into the OA, and this second channel material 20B
In each of the both side walls of, with respect to the longitudinal direction of the binding material 20B,
A slit 20d is formed at a right angle. The stabilizing base material 20 is surrounded by an outer sheath 23 having a rectangular cross section via a protrusion 22 formed along the length direction of the stabilizing base material 20 on its outer surface. A superconducting strand G... is housed in the ridge 20, and the protrusion 22
Thus, a cooling medium passage 24 is formed between the outer surface of the stabilizing base material 20 and the outer skin 23, and a superconducting wire strip is constructed.

ずなわら、この超電導線丁は、第4図に示す従来例の超
電導線の安定化母材10とセパレータ3を上記安定化母
材20に買換したものであり、安定化m月20の構成材
料および外被23の構成材料は、各々、第4図に承り従
来例の各構成材料と同じである。
This superconducting wire is obtained by replacing the stabilizing base material 10 and separator 3 of the conventional superconducting wire shown in FIG. 4 with the above-mentioned stabilizing base material 20. The constituent materials and the constituent materials of the outer cover 23 are the same as those of the conventional example as shown in FIG.

この実施例におい(は、土;、(271チャンネル材2
0Δのスリット20cの幅J3よび、隣接するスリット
20c 、2Oc間の間隔が規定されている。
In this example, the smell (is soil;, (271 channel material 2
The width J3 of the slit 20c of 0Δ and the distance between adjacent slits 20c and 2Oc are defined.

ここでスリット20cの幅をW、隣接するスリット20
c、2Oc間の間隔をD、第1チャンネル材2OAの高
さをhとし、超電導1i1Tが巻かれる巻胴等の巻回の
半径をRとすると、巻部に超電導線Tを巻回して安定化
母材20を第2図に示すように湾曲させ、スリット20
Gの開口部を閉じさせてスリット20cを三角形に変形
させた場合には、これらの間に幾何学的に次式が成立す
る。
Here, the width of the slit 20c is W, and the adjacent slit 20
If the distance between c and 2Oc is D, the height of the first channel material 2OA is h, and the radius of the winding of the winding drum etc. around which the superconducting 1i1T is wound is R, then the superconducting wire T is wound around the winding part and stabilized. The base material 20 is curved as shown in FIG. 2, and the slit 20 is
When the opening of G is closed and the slit 20c is deformed into a triangle, the following equation holds between them geometrically.

R+h   D+W この式から、次式が導き出される。R+h D+W From this equation, the following equation is derived.

W =X l) この式の中でDは大きずぎると、巻回への超電導線Tの
巻回が円滑にならず、超電導I!Gの10傷を生じる虞
れがある。したがって、巻部に対して容易に超電導線T
を巻回できるDを実験により求めてみると、上記式より
Wを決定することができる。
W = X l) If D in this equation is too large, the superconducting wire T will not be wound smoothly onto the winding, and the superconducting I! There is a risk of causing a G10 injury. Therefore, the superconducting wire T can be easily attached to the winding part.
By experimenting to determine D that allows winding, W can be determined from the above formula.

すなわち上記第1チャンネル材2OAのWlllIは上
記式を満足するように設定され、このため第1チャンネ
ル材2OAのスリット20cは、超電導線Tを巻回に巻
き加工した際に、三角形状になり、チャンネル材2OA
はトラス構造になって強度が向上する。
That is, WllllI of the first channel material 2OA is set to satisfy the above formula, and therefore, the slit 20c of the first channel material 2OA becomes triangular when the superconducting wire T is wound. Channel material 2OA
has a truss structure, improving strength.

ところで、h=6.5+nの超電導線Tを巻線内半径1
50mm(巻胴の半径)、巻線外半径(巻胴に超電導線
Tを必要厚さ巻いた際の最外周の超電導線Tが形成する
外周円の半径)300+nynのダブパンケーキ型コイ
ルを製造する際に、第1チャンネル材2OAの変形が容
易にでき、かつ、超電導素線Gになんら損傷を与えない
Dを実験的に10mmであることを確認し、これにより
、内層部のD−10wnn、 W=0.44m外層部の
D=10+w。
By the way, the superconducting wire T with h=6.5+n has a winding inner radius of 1
Manufactured a dove pancake type coil with a radius of 50 mm (radius of the winding drum) and an outer winding radius (radius of the outer circle formed by the outermost superconducting wire T when the superconducting wire T is wound around the winding drum to the required thickness) of 300 + nyn. When doing so, it was experimentally confirmed that D is 10 mm, which allows the first channel material 2OA to be easily deformed and does not cause any damage to the superconducting wire G. , W=0.44m D=10+w of the outer layer.

W=0.22wmとし、Wを上記式に合わせて連続的に
変化させて決め、ダブルパンケーキ型コイルをIJ 8
した。このコイルに通電し良好な成果を得た。
W = 0.22wm, W is determined by continuously changing according to the above formula, and the double pancake type coil is IJ 8.
did. Good results were obtained by energizing this coil.

「発明の効果」 以上説明したようにこの発明によれば、安定化母材を構
成する第1チャンネル材に形成したスリットが巻回への
コイル巻加工時にその開口部を塞ぐように変形して三角
形になり、第1チャンネル材がトラス構造になるため、
第1チャンネル材のコイル巻加工後の強度が向上する。
"Effects of the Invention" As explained above, according to the present invention, the slit formed in the first channel material constituting the stabilizing base material deforms so as to close the opening during the coil winding process. Because it is triangular and the first channel material has a truss structure,
The strength of the first channel material after coil winding is improved.

これは、超電導コイルが発生させ仝電磁力に対しても十
分な強度を有することを意味する。また、スリットの存
在によりチャンネル材は変形が容易になるのでコイル巻
加工が簡単になる。また、三角形状に変形したスリット
は、安定化母材の外側の冷却媒体流路を流れる冷却媒体
と安定化母材内を流れる冷却媒体との間の連絡路になっ
て超電導素線の冷部効率を向上させる効果を奏する。
This means that the superconducting coil has sufficient strength against the electromagnetic force generated. Furthermore, the presence of the slits makes it easier to deform the channel material, making coil winding easier. In addition, the triangularly deformed slit becomes a communication path between the cooling medium flowing in the cooling medium flow path outside the stabilizing base material and the cooling medium flowing inside the stabilizing base material, and serves as a communication path between the cooling medium and the cooling medium flowing inside the stabilizing base material. It has the effect of improving efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の一実施例を示すもので
、第1図は安定化母材の分解斜視図、第2図は湾曲させ
た安定化母材の側面図、第3図は超電導線の断面斜視図
、第4図はこの発明に先行して提案されている超電導線
の一例を示す断面斜視図、第5図は第4図に示す超電導
線をコイル巻した状態を示す略解的な斜視図、第6図は
この発明に先行して提案された超電導線の他の例に使用
されている安定化母材の斜視図、第7図は第6図に示す
安定化母材を大きな半径の巻回に巻回した状態を尽す側
面図、第8図は第6図に示す安定化母材を小さな半径の
巻回に巻回した状態を示す側面図である。 T・・・・・・超電導線、20・・・・・・安定化母材
、2OA・・・・・・第1チャンネル材、20B・・・
・・・第2チャンネル材、20b・・・・・・側板、2
0c 、20d・・・・・・スリット、22・・・・・
・突条、23・・・・・・外被、S・・・・・・巻回、
G・・・・・・超電導素線、24・・・・・・冷却媒体
流路。 第1図 第2図 第3図 第4図 第5図
Figures 1 to 3 show an embodiment of the present invention, in which Figure 1 is an exploded perspective view of a stabilizing base material, Figure 2 is a side view of a curved stabilizing base material, and Figure 3 is a side view of a curved stabilizing base material. is a cross-sectional perspective view of a superconducting wire, FIG. 4 is a cross-sectional perspective view showing an example of a superconducting wire proposed prior to this invention, and FIG. 5 is a state in which the superconducting wire shown in FIG. 4 is wound into a coil. A schematic perspective view, FIG. 6 is a perspective view of a stabilizing base material used in another example of a superconducting wire proposed prior to this invention, and FIG. 7 is a perspective view of a stabilizing base material shown in FIG. 6. FIG. 8 is a side view showing the stabilizing base material shown in FIG. 6 wound into turns with a small radius. T...Superconducting wire, 20...Stabilizing base material, 2OA...First channel material, 20B...
...Second channel material, 20b...Side plate, 2
0c, 20d...Slit, 22...
・Protrusion, 23...outer cover, S...winding,
G...Superconducting wire, 24...Cooling medium flow path. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 巻胴等の巻面に巻回され、超電導コイルを形成する強制
冷却型超電導線であって、上記巻面に開口面を向ける横
断面コ字状の第1チャンネル材およびこの第1チャンネ
ル材の開口面に嵌合する第2チャンネル材からなる横断
面略矩形状の安定化母材と、この安定化母材の内部に収
納された複数本の超電導素線と、上記安定化母材の外面
に形成された突条を介して安定化母材を取囲み安定化母
材との間に冷却媒体流路を形成する外被とからなる強制
冷却型超電導線において、上記各チャンネル材の両側壁
の各々に安定化母材の長手方向に対してほぼ直交する複
数のスリットが、多数形成され、上記第1チャンネル材
のスリットの幅は、上記超電導線の巻面への巻回による
チャンネル材の湾曲によってスリットの開口部両側を相
互に接触させてスリットを三角形状にする値に設定され
てなることを特徴とする強制冷却型超電導線。
A forced cooling superconducting wire that is wound around a winding surface of a winding drum or the like to form a superconducting coil, the first channel material having a U-shaped cross section with its opening facing the winding surface, and the first channel material of the first channel material. A stabilizing base material with a substantially rectangular cross section made of a second channel material that fits into the opening surface, a plurality of superconducting strands housed inside the stabilizing base material, and an outer surface of the stabilizing base material. In a forced cooling type superconducting wire consisting of an outer sheath that surrounds the stabilizing base material through protrusions formed on the base material and forming a cooling medium flow path between the stabilizing base material and the stabilizing base material, the side walls of each channel material are A plurality of slits substantially perpendicular to the longitudinal direction of the stabilizing base material are formed in each of the first channel material, and the width of the slit of the first channel material is determined by the width of the channel material formed by winding the superconducting wire around the winding surface. A forced cooling type superconducting wire characterized in that the slit is curved to such a value that both sides of the opening of the slit are brought into contact with each other so that the slit has a triangular shape.
JP59232988A 1984-11-05 1984-11-05 Force-cooled type superconducting wire Pending JPS61110915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232988A JPS61110915A (en) 1984-11-05 1984-11-05 Force-cooled type superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232988A JPS61110915A (en) 1984-11-05 1984-11-05 Force-cooled type superconducting wire

Publications (1)

Publication Number Publication Date
JPS61110915A true JPS61110915A (en) 1986-05-29

Family

ID=16948037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232988A Pending JPS61110915A (en) 1984-11-05 1984-11-05 Force-cooled type superconducting wire

Country Status (1)

Country Link
JP (1) JPS61110915A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990306A (en) * 1982-11-16 1984-05-24 株式会社フジクラ Forcibly cooled superconductive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990306A (en) * 1982-11-16 1984-05-24 株式会社フジクラ Forcibly cooled superconductive wire

Similar Documents

Publication Publication Date Title
JPS6356648B2 (en)
US4255684A (en) Laminated motor stator structure with molded composite pole pieces
JP5402518B2 (en) Oxide superconducting coil, oxide superconducting coil body and rotating machine
EP0220738A1 (en) Intermetallic compound-based, composite superconductor
JPS61110915A (en) Force-cooled type superconducting wire
JPH0232762B2 (en)
EP0408230A2 (en) Semi-compacted litz-wire cable strands spaced for coolant flow about individual insulated strands
JPS6137764B2 (en)
JPH0119721B2 (en)
JPS59130012A (en) Forcibly cooling superconductive wire
JPS59132513A (en) Method of forming separator in forcibly cooling superconductive conductor
JPH0119722B2 (en)
JPH0250565B2 (en)
JPS59130013A (en) Method of forming separator in forcibly cooling superconductive conductor
JPH063692B2 (en) Forced cooling superconducting wire
JPS59130011A (en) Forcibly cooling superconductive wire
JPH06260335A (en) High temperature superconducting magnet
JPS6214408A (en) Amorphous magnetic alloy wound core
JPS6191805A (en) Force-cooled type superconducting wire
JPS607447Y2 (en) Boiling cooling electromagnet coil
JPH0638368B2 (en) Superconducting coil
JPS60765B2 (en) Compound superconducting coil
JP2803685B2 (en) Superconducting coil and manufacturing method thereof
JPS59158014A (en) Compound superconductive conductor
JP3457060B2 (en) Oxide superconducting conductor