JPS61108920A - Differential pressure type flow meter - Google Patents

Differential pressure type flow meter

Info

Publication number
JPS61108920A
JPS61108920A JP59229621A JP22962184A JPS61108920A JP S61108920 A JPS61108920 A JP S61108920A JP 59229621 A JP59229621 A JP 59229621A JP 22962184 A JP22962184 A JP 22962184A JP S61108920 A JPS61108920 A JP S61108920A
Authority
JP
Japan
Prior art keywords
differential pressure
conduit
case body
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59229621A
Other languages
Japanese (ja)
Inventor
Kazuo Nakamura
一夫 中村
Naoki Wada
直樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59229621A priority Critical patent/JPS61108920A/en
Publication of JPS61108920A publication Critical patent/JPS61108920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To unify and simplify a structure and to measure a flow rate accurately by dividing a case body into two rooms to lead fluid into one room and discharge the fluid from the other room and forming a stopping mechanism and a differential pressure conversion part on a bulkhead in the case. CONSTITUTION:An upper side conduit 1 and a lower side conduit 3 are formed in the case body 2. In addition, the bulkhead 4 is formed in the case body 2 to divide the case body into two rooms I, II and the stopping mechanism 5 and the differential pressure conversion part (e.g. a diaphragm) 6 are formed on the bulkhead 4. Gas or the like flowing from a lead-in pipe 1 is led into the room I, sent to the room II through the stopping pipe 5 and then exhausted from the conduit 3. At that time, the diaphragm 6 is deplaced on the basis of the differential pressure between the rooms I, II and the flow rate is electrically detected from the displacement. The case body 2 is stored in a temperature shielding body 7 and the differential pressure is detected at a fixed temperature to measure the flow rate highly accurately. Since the differential detector is unified with the case body, the structure can be simplified and the flow rate can be detected highly accurately.

Description

【発明の詳細な説明】 (イ)、産業上の利用分野 この出願の発明は、差圧式流量計に関するものである。[Detailed description of the invention] (b) Industrial application fields The invention of this application relates to a differential pressure flowmeter.

(ロ)、従来技術 流路中に配置された抵抗管、ノズル等の絞り機構によシ
流路面積を絞り、その前後に比較的大きな圧力差を発生
させ、その圧力差から7fil童を検出べ する差圧式流量計について、第3図により説明する。
(b) Conventional technology The area of the flow path is narrowed down by a throttle mechanism such as a resistance tube or nozzle placed in the flow path, and a relatively large pressure difference is generated before and after the narrowing mechanism, and 7filtration is detected from the pressure difference. The differential pressure type flow meter to be used will be explained with reference to FIG.

同図において、上流側導管31と下流側導管33との間
に絞り磯構としての抵抗管32が接続され、上流側導管
31から下流側導管33に向け、矢印方向に流体を流し
、上流側4管31と下流側導管33との間に圧力差を発
生させる。この圧力差を、導圧管34と35を介し、7
ランジ部36に設けられたダイヤフラム37に伝達し、
これを変位させる。これによシ、ダイヤフラム37に設
けられ前記した差圧式流量計は、抵抗管32と、導圧管
34および35とに対する弁禽嘴導管31および33の
接続箇所、フランジ部36に対する導圧管34および3
5の接続箇所を有するため、構造自体が複雑となシ、ま
た接続箇所の接続不良の場合には液洩れ箇所が多くなる
という惧れがある。
In the same figure, a resistance pipe 32 as a throttle structure is connected between an upstream conduit 31 and a downstream conduit 33, and fluid is caused to flow in the direction of the arrow from the upstream conduit 31 to the downstream conduit 33. A pressure difference is generated between the four pipes 31 and the downstream conduit 33. This pressure difference is passed through the impulse pipes 34 and 35 to
is transmitted to a diaphragm 37 provided on the flange portion 36,
Displace this. Accordingly, the above-described differential pressure type flow meter provided on the diaphragm 37 is connected to the resistance tube 32 and the connection points of the valve beak conduits 31 and 33 to the pressure impulse tubes 34 and 35, and the connection points of the pressure impulse tubes 34 and 3 to the flange portion 36.
Since there are 5 connection points, the structure itself is complicated, and there is a risk that there will be many liquid leakage points in the case of poor connection at the connection points.

さらに、差圧検出部Aにおける変位変換器の温度係数と
制御回路部39の温度係数とはそれぞれ相違している。
Further, the temperature coefficient of the displacement converter in the differential pressure detection section A and the temperature coefficient of the control circuit section 39 are different from each other.

しかも、測定流体の温度が変動すると、これに伴なって
その粘性も変動する。差圧式流量計の流量Qは、通常、
Q=πR(η−Pり/8J?−mρQ/8πlηで示さ
れる。ここでRは抵抗管の直径、jはその長さ、P、、
P、は抵抗管の両端に発生する圧力、ηは流体の粘度、
隅はレイノルズ数とA’/Rとによシ定まる定数、ρは
流体密度を示す。
Furthermore, when the temperature of the fluid to be measured changes, its viscosity also changes accordingly. The flow rate Q of a differential pressure flowmeter is usually
Q=πR(η-Pri/8J?-mρQ/8πlη, where R is the diameter of the resistance tube, j is its length, P,
P is the pressure generated at both ends of the resistance tube, η is the viscosity of the fluid,
The corner indicates a constant determined by the Reynolds number and A'/R, and ρ indicates the fluid density.

いま、抵抗管の両端に発生する差圧(PI−P、)が一
定であるとし1.温度が上昇したとすると粘性が下)、
前記した関係式から明らかなようによシ多くの流量が流
れたという誤まった結果が得られてしまう。そこで、測
定流体の温度が変動する毎に1正しい流量を検出できる
ように、温度係数がそれぞれ相違する変位変換器の出力
特性と制御回路部の出力特性とを個別調整し、その校正
をはからなければならず、その校正作業は慎重さを要求
され、また煩られしいものである。
Now, suppose that the differential pressure (PI-P,) generated at both ends of the resistance tube is constant.1. If the temperature increases, the viscosity decreases),
As is clear from the above relational expression, an erroneous result that a large amount of flow has flowed is obtained. Therefore, in order to be able to detect the correct flow rate every time the temperature of the measured fluid fluctuates, we individually adjusted the output characteristics of the displacement converter and the output characteristics of the control circuit, which have different temperature coefficients, and started calibrating them. The calibration work requires careful attention and is troublesome.

(ハ)、目的 この出願の発明は、前記した従来技術の有する欠点を解
消するもので、その第1の発明は差圧検出部および絞り
機構を一体化構造とし、簡単な構人 造の差圧型流量計を提供することを目的とし、そして第
2の発明は第1の発明の目的に加えて、制御回路部、差
圧変換部および上流側導管と下流側を目的とする。
(c), Purpose The invention of this application is to eliminate the drawbacks of the prior art mentioned above. The object of the second invention is to provide a flow meter, and in addition to the object of the first invention, the object is a control circuit section, a differential pressure converting section, an upstream conduit, and a downstream side.

に)、構成 この出願の第1の発明は、測定流体が流れる上流111
専管および下流側導管を筐体に接続すると共に、に体中
央部に隔壁を設け、これに絞ba構と差圧検出部を設け
、差圧式流量計の構造を一体化したものでアシ、さらに
第2の発明は第1の発明の構成に加え、差圧検出部に接
続された制御回路部と、上流側導管および下流側導管の
一部と、筐体とを所定温度に維持する温度シールド体を
付加し、温度調整の容易化をはかった差圧式流量計であ
る。
), the first invention of this application has an upstream 111 through which the measurement fluid flows.
In addition to connecting the dedicated pipe and downstream conduit to the casing, a partition wall is provided in the center of the body, and a throttle valve structure and differential pressure detection part are installed on this, integrating the structure of a differential pressure type flow meter. In addition to the configuration of the first invention, the second invention provides a temperature shield that maintains a control circuit unit connected to the differential pressure detection unit, a portion of the upstream conduit and the downstream conduit, and the casing at a predetermined temperature. This is a differential pressure type flowmeter with an additional body for easier temperature control.

(ホ)、実施例 以下にこの出願の第1の発明および第2の発明の差圧式
流量計の実施例を説明する。
(e) Examples Examples of the differential pressure type flowmeters of the first invention and the second invention of this application will be described below.

第1図において、1は上流側導管、2は筐体、3は下流
側導管で、上流側導管1および下流側導管3は筐体2に
接続されている。4は隔壁で、筐体2を室Iと■とに区
分する。5は絞り機構である抵抗管、6は変位変換器を
有するダイヤフラムである。
In FIG. 1, 1 is an upstream conduit, 2 is a housing, and 3 is a downstream conduit, and the upstream conduit 1 and the downstream conduit 3 are connected to the housing 2. A partition wall 4 divides the housing 2 into chambers I and II. 5 is a resistance tube which is a throttle mechanism, and 6 is a diaphragm having a displacement transducer.

かかる構成を持つ実施例装置の作用を説明すると、上流
側導管1から流入する例えばキャリアガスの如き不活性
ガスが室Iに導入され、抵抗管5により絞られて室UK
導入され、下流側導管3から矢印方向に排出される。抵
抗管5の絞9作用によシ、室lと■との間に圧力差が発
生し、これによりダイヤフラム6が変位され、変位変換
器によ#)流量を示す電気信号が出力される。
To explain the operation of the embodiment device having such a configuration, an inert gas such as a carrier gas flowing from the upstream conduit 1 is introduced into the chamber I, is throttled by the resistance tube 5, and then flows into the chamber UK.
It is introduced and discharged from the downstream conduit 3 in the direction of the arrow. Due to the action of the restrictor 9 of the resistance tube 5, a pressure difference is generated between the chambers 1 and 2, which causes the diaphragm 6 to be displaced, and the displacement transducer outputs an electric signal indicating the flow rate.

なお、前記実施例において上流側導管1と下流側導管3
とを共に筐体2の同一9すσnK設けた構成・について
述べであるが、これに限らず上流(il、!14管1お
よび下流側導管3を筺体2の図示の上、下側面にそれぞ
れ接続しても同様に構造を簡単化した差圧式流量計を提
供することができる。
In addition, in the above embodiment, the upstream conduit 1 and the downstream conduit 3
This is a description of a configuration in which the same 9 channels σnK are provided in the housing 2, but the present invention is not limited to this. Even when connected, it is possible to provide a differential pressure flowmeter with a similarly simplified structure.

次に、第2の発明の差圧式流量計の実施例を説明する。Next, an embodiment of the differential pressure type flowmeter of the second invention will be described.

第2図は、第2の発明の実施例装置の構成図であるO 同図において、第1図に示す参照記号と同一の参照記号
を付したものは、第1図に示すものと同一構造、同一機
能を有するから、その作用を含めて再述は省略する。
FIG. 2 is a configuration diagram of an embodiment of the device of the second invention. In the same figure, the same reference symbols as those shown in FIG. 1 indicate the same structures as those shown in FIG. 1. , have the same functions, so a re-explanation including their effects will be omitted.

第2図において、7は周囲温度の影響を除くための温度
シールド体であり、8はダイヤプラム6の変位変換器か
ら出力された流量を示す電気信号を信号処理し、不図示
の流量制御弁を制御するための制御信号や流量指示計へ
の測定信号を送出する制御回路部である。9は温度制御
部で、リードlを介して温度制御信号を温度シールド体
7内に設けられた不図示の発熱体に加え、温度シールド
体7を所定温度に維持する。熱導伝性の悪い例え2、ダ
イヤフラム6と電気制御部8を囲繞しているため、同一
の所定温度に維持することができる。
In FIG. 2, 7 is a temperature shield body for removing the influence of ambient temperature, and 8 is a flow rate control valve (not shown) that processes the electric signal indicating the flow rate output from the displacement converter of the diaphragm 6. This is a control circuit section that sends control signals to control the flow rate indicator and measurement signals to the flow rate indicator. Reference numeral 9 denotes a temperature control section which applies a temperature control signal to a heating element (not shown) provided in the temperature shield body 7 via a lead 1 to maintain the temperature shield body 7 at a predetermined temperature. Since it surrounds the diaphragm 6 and the electric control section 8, which have poor thermal conductivity, it is possible to maintain the same predetermined temperature.

従って、差圧式流量計に導入される測定ガス体が所定温
度に維持され得る流速条件の下において、変位変換器の
出力特性と制御回路部8の出力特性との校正作業が容易
となシ、一度校正しておけば、周囲温度が変動する毎に
校正作業を行なう必要がなくなる。
Therefore, under flow velocity conditions where the measurement gas introduced into the differential pressure flowmeter can be maintained at a predetermined temperature, the output characteristics of the displacement converter and the output characteristics of the control circuit section 8 can be easily calibrated. Once calibrated, there is no need to perform calibration every time the ambient temperature changes.

なお、本実施例における差圧変換部に用いられるトラン
スデユーサとしては、シリコン基板中央の一部をダイヤ
フラムとし、その周辺に増幅・温度補償回路用のMO8
ICを集積化してなるピエゾ抵抗効果を利用したMO8
集積シリコン圧カセンサや、シリコンダイヤプラムにシ
リコン半導体のピエゾ抵抗効果素子を設けた半導体圧力
センサの類のものを用いることができる。
The transducer used in the differential pressure converter in this example has a diaphragm in a part of the center of the silicon substrate, and MO8 for the amplification/temperature compensation circuit around the diaphragm.
MO8 that utilizes the piezoresistive effect created by integrating ICs
An integrated silicon pressure sensor or a semiconductor pressure sensor in which a silicon diaphragm is provided with a silicon semiconductor piezoresistive effect element can be used.

(へ)、効果 以上説明したようにこの出願の第1の発明によると、上
流側導管お゛よび下流側導管、絞り機ねとイヒ4 差圧検出部を一体構造とする構成であるから、そへ の構成を簡単化することができ、まだ第2の発明による
と第1の発明の効果に加え、上流側導管および下流側導
管の一部、絞り機構、差圧検出部と制御回路部とを温度
シールド体により囲繞し、所定温度に維持する構成であ
るから、この所定温度の下で差圧検出部、制御回路部の
出力特性の校正を行なう作業を簡単、容易とすることが
できる。
(f) Effects As explained above, according to the first invention of this application, since the upstream conduit, the downstream conduit, the wringer 4, and the differential pressure detection section are integrated, According to the second invention, in addition to the effects of the first invention, parts of the upstream conduit and downstream conduit, the throttle mechanism, the differential pressure detection section and the control circuit section can be simplified. is surrounded by a temperature shield and maintained at a predetermined temperature, making it easy and simple to calibrate the output characteristics of the differential pressure detection section and control circuit section under this predetermined temperature. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの出願の第1の発明の差圧式流量計の実施例
の構成図、第2図は第2の発明の差圧式流量計の実施例
の構成図、第3図は従来装置の構成図である。 1は上流側導管、2は筐体、3は下流側導管、4は隔壁
、5は抵抗管、6はダイヤフラム、7は温度シールド体
、8は制御回路部、9は温度制御部を示す。 第1図 第2図 第3図
Fig. 1 is a block diagram of an embodiment of a differential pressure type flowmeter according to the first invention of this application, Fig. 2 is a block diagram of an embodiment of a differential pressure type flowmeter of the second invention, and Fig. 3 is a block diagram of a conventional device. FIG. 1 is an upstream conduit, 2 is a housing, 3 is a downstream conduit, 4 is a partition wall, 5 is a resistance tube, 6 is a diaphragm, 7 is a temperature shield body, 8 is a control circuit section, and 9 is a temperature control section. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)、測定流体が流れる上流側導管および下流側導管
と、前記上流側導管および下流側導管が接続された筐体
と、前記筐体中央部に設けられた隔壁と、前記隔壁に設
けられた絞り機構および差圧変換部とを備える差圧式流
量計。
(1) An upstream conduit and a downstream conduit through which the measurement fluid flows, a housing to which the upstream conduit and the downstream conduit are connected, a partition wall provided in the center of the housing, and a partition wall provided in the partition wall. A differential pressure flowmeter comprising a throttle mechanism and a differential pressure converter.
(2)、測定流体が流れる上流側導管および下流側導管
と、前記上流側導管および下流側導管が接続された筐体
と、前記筐体中央部に設けられた隔壁と、前記隔壁に設
けられた絞り機構および差圧変換部と、前記差圧変換部
に接続された制御回路部と、前記上流側導管および下流
側導管の一部と、筐体と、制御回路部とを囲繞し、所定
温度に維持される温度シールド体とを備える差圧式流量
計。
(2) an upstream conduit and a downstream conduit through which the measurement fluid flows; a housing to which the upstream conduit and the downstream conduit are connected; a partition wall provided at the center of the housing; a throttle mechanism and a differential pressure conversion section, a control circuit section connected to the differential pressure conversion section, a portion of the upstream conduit and downstream conduit, a housing, and a control circuit section; A differential pressure flowmeter comprising a temperature shield body that maintains the temperature.
JP59229621A 1984-10-31 1984-10-31 Differential pressure type flow meter Pending JPS61108920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229621A JPS61108920A (en) 1984-10-31 1984-10-31 Differential pressure type flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229621A JPS61108920A (en) 1984-10-31 1984-10-31 Differential pressure type flow meter

Publications (1)

Publication Number Publication Date
JPS61108920A true JPS61108920A (en) 1986-05-27

Family

ID=16895056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229621A Pending JPS61108920A (en) 1984-10-31 1984-10-31 Differential pressure type flow meter

Country Status (1)

Country Link
JP (1) JPS61108920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311229A (en) * 1988-03-08 1989-12-15 Ppg Hellige Bv Differential pressure measuring apparatus for bidirectional gas flow
WO2002012835A3 (en) * 2000-08-09 2002-07-18 Honeywell Int Inc Fluid-tight differential pressure flow sensor
JP2009128253A (en) * 2007-11-26 2009-06-11 Sakata Denki Position measuring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311229A (en) * 1988-03-08 1989-12-15 Ppg Hellige Bv Differential pressure measuring apparatus for bidirectional gas flow
WO2002012835A3 (en) * 2000-08-09 2002-07-18 Honeywell Int Inc Fluid-tight differential pressure flow sensor
AU2001284789B2 (en) * 2000-08-09 2005-11-10 Honeywell International Inc. Fluid-tight differential pressure flow sensor
JP2009128253A (en) * 2007-11-26 2009-06-11 Sakata Denki Position measuring system

Similar Documents

Publication Publication Date Title
EP0666468B1 (en) Multimeasurement replaceable vortex sensor
US7461562B2 (en) Process device with density measurement
US8290721B2 (en) Flow measurement diagnostics
CN100510653C (en) Flow sensor
US3424000A (en) Semiconductor flowmeter
US3340733A (en) Design for a strain gauge target flow meter
US3114261A (en) Strain wire flowmeter
WO2007122978A1 (en) Explosion-proof high temperature compatible, multi-vortex flow meter
JPS61108920A (en) Differential pressure type flow meter
KR920005749Y1 (en) Water meter
JPH0727582A (en) Mass flow sensor
JPH11211525A (en) Flowmeter utilizing flow sensor
US4043197A (en) Flow rate transducer
KR0171633B1 (en) Flow meter having a contoured plug and resilient means
JPH041526A (en) Temperature detecting mechanism of orifice flowmeter
JP3209303B2 (en) Vortex flow meter
JP2002148084A (en) Composite sensor
CN112857503B (en) Small-flow gas volume flow measuring device
JP3252187B2 (en) Flowmeter
JPH06229793A (en) Flowmeter
JP3024364B2 (en) Karman vortex flowmeter
JP3237366B2 (en) Vibration type flow meter
Rivetti et al. LHe venturi flowmeters: practical design criteria and calibration method
JPH01207634A (en) Differential pressure type flowmeter
JPS59180435A (en) Karman vortex flowmeter