JPS611081A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS611081A
JPS611081A JP12139384A JP12139384A JPS611081A JP S611081 A JPS611081 A JP S611081A JP 12139384 A JP12139384 A JP 12139384A JP 12139384 A JP12139384 A JP 12139384A JP S611081 A JPS611081 A JP S611081A
Authority
JP
Japan
Prior art keywords
layer
active layer
cladding
type
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12139384A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12139384A priority Critical patent/JPS611081A/en
Publication of JPS611081A publication Critical patent/JPS611081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a laser device having large light output by disposing a moire nip structure having an active layer of the thickness lower than the several times of a tube wavelength in a guide layer near both reflecting surfaces in the longitudinal direction of a resonator. CONSTITUTION:An accurate film thickness is controlled by a MOCVD method to laminate an n type GaAs film 10, an n type Al0.4Ga0.6As clad layer 10, an Al0.4 Ga0.5As active layer 12 of 0.04mum thick, and a p type Al0.4Ga0.6As clad layer 13 to selectively each to form a moire structure having 3mum width X 300mum length at the center in the longitudinal direction of a resonator. Then, an insulating Al0.4Ga0.5As guide 16, a p type Al0.4Ga0.6As clad film 17, a p type GaAs cap 18 are superposed, a Zn diffused layer 19 which arrives at the layer 13 is formed, and ohmic electrodes 20, 21 are attached. The laser of this construction is oscillated with low threshold value in high efficiency without implanting reactive current due to leakage, the vicinity of the reflecting surface is on nonexciting region, and the oscillating light is oscillated through the layer 16 having a band gap difference of 146meV or larger. Thus, no heating damage occurs near the reflecting surface to obtain a large output.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザ、特に大光出力半導体レーザに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to semiconductor lasers, and particularly to high optical output semiconductor lasers.

(従来技術とその問題点) A/ Ga A S /Ga A s等の結晶材料を用
いた可視光半導体レーザは小型、低消費電力で高効率の
室温連続発振を行う事ができるので、光方式のディジタ
ル・オーディオ・ディスク(DAD)用光源として最適
であり実用化されつつある。この可視光半導体レーザは
光ディスク等の光書きこみ用光源としての需要も高まり
、この要求をみたすため大光出力発振に耐えつる可視光
半導体レーザの研究開発が進められている。最近ではこ
れらの可視光半導体レーザの需要の急速な高まりに対応
するため大量生産が行われるようになってきた。
(Prior art and its problems) A/Visible light semiconductor lasers using crystal materials such as GaAs/GaAs are small and can perform continuous oscillation at room temperature with low power consumption and high efficiency. It is suitable as a light source for digital audio disks (DAD) and is being put into practical use. The demand for this visible light semiconductor laser as a light source for optical writing of optical discs and the like is increasing, and in order to meet this demand, research and development of visible light semiconductor lasers that can withstand large optical output oscillations is underway. Recently, in order to meet the rapidly increasing demand for these visible light semiconductor lasers, mass production has begun.

このAlGaAs/GaAs 可視光半導体レーザの製
法は、従来から液相成長法が用いられてきた。
A liquid phase growth method has conventionally been used to manufacture this AlGaAs/GaAs visible light semiconductor laser.

これに対して有機金属を用いた気相成長法(Me−1a
lorganic Chemical Vapour 
Deposition  。
On the other hand, a vapor phase growth method using an organic metal (Me-1a
organic chemical vapor
Deposition.

以下MOCVD法という)は量産性と精密膜厚制御性と
を兼ね備えていることから、光デバイス作製のためのき
わめて重要な技術の一つとなっている0特にデイピュス
(R、D 、 Dupuis )とダピカス(P 、 
D 、 Dapkus )とが雑誌” Applied
 Phy−sics Letter″、1977年31
巻1’h7466頁から468頁にMOCVD法で成長
した半導体レーザが室温発振した事を発表して以来その
実用性が着目され、MOCVD法を用いたAJGaAs
/GaAs可視光半導体レーザの研究が進められるよう
になった。このうち横モード制御した波長入=078μ
mのAlGaAs /GaAsGaAs可視光半導体レ
ーレ素子、例えば中堀、小野、梶村、中村により第44
回応用物理学会学術講演会講演予稿集1983年109
頁26p−p−16に発表された論文1M0CVJ)法
による横モード制御半導体レーザ」に見られるように、
活性層に隣近してストライブ状領域の両側に吸収層を設
は活性層からの光のしみ出しをこの吸収層で吸収し損失
領域となし、吸収層のないストライプ状領域との間に利
得−損失のステップを設けて、横モード制御を行おうと
するものが試作されている。
The MOCVD method (hereinafter referred to as MOCVD method) is one of the extremely important technologies for manufacturing optical devices because it combines mass production and precision film thickness control. (P,
D, Dapkus) and magazine” Applied
Phy-sics Letter'', 1977, 31
Volume 1'h, pages 7466 to 468, it was announced that a semiconductor laser grown using the MOCVD method oscillated at room temperature, and its practicality has attracted attention, and AJGaAs grown using the MOCVD method has been
/GaAs visible light semiconductor laser research has begun. Of these, the wavelength input with transverse mode control = 078μ
m AlGaAs/GaAsGaAs visible light semiconductor Lehre device, for example, No. 44 by Nakahori, Ono, Kajimura, Nakamura.
Proceedings of the Academic Conference of Japan Society for Applied Physics, 1983, 109
As seen in the paper 1M0CVJ) Transverse Mode Controlled Semiconductor Laser Based on the Method published on page 26p-p-16,
Absorbing layers are provided on both sides of the striped region adjacent to the active layer, so that the absorption layer absorbs light seeping out from the active layer and becomes a loss region, and between it and the striped region where there is no absorption layer. A prototype device has been manufactured that attempts to perform transverse mode control by providing a gain-loss step.

しかし、この構造では光出力5〜7mWまでしか基本横
モード発振しない事、利得−損失のステップを設けるよ
う内蔵された吸収領域では光が損失となって閾値電流が
高くなる事、発光ビームが非対称である事等の欠点を有
し、DAD用光源として実用的ではなく、大光出力発振
が不可能であった。
However, with this structure, the fundamental transverse mode oscillation occurs only up to an optical output of 5 to 7 mW, the light becomes a loss in the built-in absorption region that provides a gain-loss step, and the threshold current becomes high, and the emitted beam is asymmetric. However, it is not practical as a light source for DAD, and large optical output oscillation is not possible.

また、最近MOCVD法を用いて製作した高性能な波長
λ=0.88μmのAlGaAs /GaAs半導体レ
ーザが、ウォング(C、S 、Hong ) 、カセム
セット(D 、 Kasemset ) 、キA (M
 、 E 、 Kim)。
In addition, a high-performance AlGaAs/GaAs semiconductor laser with a wavelength λ = 0.88 μm recently fabricated using the MOCVD method was developed by Hong (C, S, Hong), Kasemset (D, Kasemset), and Ki A (M
, E., Kim).

ミラ/ (R、A 、 Milano )によって雑誌
″Ele −ctron Letters”、1983
年−19巻i19,759頁から760頁に発表されて
いる。これは、活性層をクラッド層ではさんだ結晶を形
成し、これをメサ状にエッチノブした後全体を絶縁性ク
ラッド層で埋込んだB H(Buried Heter
o )構造をしており、低閾値で高効率のレーザ発振を
行っている。
Magazine "Ele-ctron Letters" by Mira/ (R, A, Milano), 1983
Published in Vol. 19, i19, pp. 759 to 760. This is a BH (Buried Heter) method in which an active layer is sandwiched between cladding layers to form a crystal, which is then etched into a mesa shape and the entire surface is buried with an insulating cladding layer.
o) structure, and performs highly efficient laser oscillation with a low threshold value.

しかし、最大基本横モード発振光出力がgmWで大光出
力発振は不可能であり、また活性層水平横方向の広がり
角が比較的大きいが、それ以上に活性層の垂直方向の広
がり角が太きいと推定され発光ビームが非対称になる等
の欠点をもっていた。
However, the maximum fundamental transverse mode oscillation optical output is gmW, which makes large optical output oscillation impossible, and although the horizontal spread angle of the active layer is relatively large, the vertical spread angle of the active layer is even larger. It was estimated that the light intensity was very high, and the emission beam became asymmetrical.

また、通常の液相成長を用いたBH槽構造レーザによっ
て大光出力発振をさせる方法が、提案されている。例え
ば、渡辺、岡島、浅井、茂木により第29回応用物理学
関係連合講演会予稿集161頁(1982年春季)に報
告されたレーザは、BH槽構造両反射面近傍を活性層よ
りもバンドギャップの大きいクラッド層で埋込み大光出
力発振をはせようとするものである。この方法によれば
、通常のA、/GaAs / Ga As 半導体レー
ザにおいて大光出力発振をさせる時に生じる反射面が破
壊される現象(光学損傷)の光出力レベルを上昇させる
事ができる。しかし、この提案の構造は、レーザ光が反
射面近傍のクラッド層を伝播する際に垂直方向、水平横
方向ともに大きく広がるため、反射面で反射され活性領
域内に入り再励起される光の量(カッブリフグ効率)が
低くなるので、閾値電流の上昇および外部微分量子効率
の低下をきたす欠点を有している。その報告によれば、
閾値電流が通常のBH半導体レーザの2倍以上になり、
外部微分量子効率がわずか1i、8% しか得られてい
ない。
Furthermore, a method has been proposed in which a BH tank structure laser using normal liquid phase growth generates high optical output oscillation. For example, the laser reported by Watanabe, Okajima, Asai, and Mogi in the Proceedings of the 29th Applied Physics Association Conference, p. 161 (Spring 1982) has a band gap larger than the active layer near both reflective surfaces of the BH tank structure. The aim is to achieve high optical power oscillation in a buried cladding layer with a large cladding layer. According to this method, it is possible to increase the optical output level of a phenomenon in which a reflection surface is destroyed (optical damage) that occurs when a normal A, /GaAs / GaAs semiconductor laser is oscillated with a large optical output. However, in this proposed structure, when the laser light propagates through the cladding layer near the reflective surface, it spreads significantly both vertically and horizontally, so the amount of light that is reflected from the reflective surface and enters the active region and is reexcited. (Cubbluff efficiency) decreases, which has the disadvantage of increasing threshold current and decreasing external differential quantum efficiency. According to the report,
The threshold current is more than twice that of a normal BH semiconductor laser,
The external differential quantum efficiency was only 1i, 8%.

(発明の目的) 本発明の目的は1これらの欠点を除去しMOCVD法の
特長を充分に生かして、低閾値、高効率のレーザ発振を
すると共に、等心円的な光源の安定な基本横モードによ
る大光出力発振が可能であり、比較的容易にかつ多量に
製作でき、再現性および信頼性のすぐれた半導体レーザ
を提供する事にある。
(Objective of the Invention) The object of the present invention is 1 to eliminate these drawbacks and make full use of the features of the MOCVD method, to achieve low threshold and high efficiency laser oscillation, and to develop a stable basic horizontal plane of a concentric light source. The object of the present invention is to provide a semiconductor laser which is capable of oscillating large optical output depending on the mode, can be produced relatively easily and in large quantities, and has excellent reproducibility and reliability.

(発明の構成) 本発明の半導体レーザの構成は;管内波長の数倍以下の
層厚の活性層とこの活性層の両層面に接しこの活性層よ
りも屈折率が小さい第1および第2のクラッド層とを、
両反射面近傍を除いて共振器の長で方向中央部分にスト
ライプ状に設けたストライプ状領域と;このストライプ
状領域と前記両反射面近傍とを覆うように設は前記第1
および第2のクラッド層と同程度の組成で前記活性層と
同程度の層厚で電気的に絶縁性の第3のクラッド層と、
この第3のクラッド層より屈折率が大きく前記活性層よ
りも屈折率が小さくかつバンドギャップが広いガイド層
と、前記第3のクラッド層と同程度の組成の第4のクラ
ッド層とを一様な層厚で隣接して設けた層構造と;前記
ストライプ状領域にのみ設けた電流注入領域とを備え;
前記共振器の長て方向では前記活性層が両反射面近傍の
ガイド層の内部に位置することを特徴とする。
(Structure of the Invention) The structure of the semiconductor laser of the present invention is; an active layer having a thickness of several times the wavelength of the tube or less; and first and second layers that are in contact with both surfaces of this active layer and have a refractive index smaller than that of this active layer. cladding layer,
a striped region provided in a stripe-like manner in the direction central portion along the length of the resonator excluding the vicinity of both reflective surfaces;
and an electrically insulating third cladding layer having the same composition as the second cladding layer and the same layer thickness as the active layer;
A guide layer having a larger refractive index than the third cladding layer, a smaller refractive index than the active layer, and a wider band gap, and a fourth cladding layer having a composition similar to that of the third cladding layer are uniformly formed. a current injection region provided only in the striped region;
The active layer is located inside the guide layer near both reflective surfaces in the longitudinal direction of the resonator.

(実施例) 以下図面を用いて本発明の詳細な説明する。(Example) The present invention will be described in detail below using the drawings.

第1図は本発明の実施例の斜視図、第2図、第3図、第
4図は第1図のA−A’  、B−B’  、C−C′
断面図、第5図、第6図はこの実施例の製造途中の断面
図および斜視図である。この実施例の製造方法は、第5
図に示すように、(100)面を平面とするn形GaA
s基板10上にn * kl O,4Ga o、e A
s第1クラッド層11を1.5 μm 、アンドープh
i) 0.□5Ga o85As活性層12t”0.0
4μm、p形kl g、4 Ga (1,6As第2ク
ラッド層13をL5μmMOCVD法を用いて連続成長
する。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIGS. 2, 3, and 4 are AA', BB', and CC' of FIG. 1.
The sectional view, FIG. 5, and FIG. 6 are a sectional view and a perspective view of this embodiment during manufacture. The manufacturing method of this example is as follows:
As shown in the figure, n-type GaA with (100) plane as the plane
n*kl O,4Ga o,e A on the s substrate 10
s The first cladding layer 11 is undoped to a thickness of 1.5 μm h
i) 0. □5Ga o85As active layer 12t”0.0
A 4 μm p-type Kl g, 4 Ga (1,6 As) second cladding layer 13 is continuously grown using the L5 μm MOCVD method.

この層成長において、MOCVD法は、従来の液相成長
法とは異なり、有機金属を用いた気相成長であるので、
混合ガスの組成を変化させる事で、任意の組成の層を任
意の多層に容易に成長させる事ができる。このMOCV
D法は、薄膜成長が可能であり、かつ精密な膜厚制御性
があるので、本実施例のような層厚の薄い活性層12も
層厚の制御性よく成長させる事ができる。
In this layer growth, unlike the conventional liquid phase growth method, the MOCVD method uses a vapor phase growth method using an organic metal.
By changing the composition of the mixed gas, layers of any composition can be easily grown into any multilayer structure. This MOCV
Since the D method allows thin film growth and has precise film thickness controllability, even the thin active layer 12 as in this embodiment can be grown with good controllability of layer thickness.

次に、8i02膜14で全体を被膜した後、)tトレジ
スト法およびエツチング法により、共振器の長て方向中
央部分に幅3μm長さ300μmのストライプ状に8i
0.膜を残して、その外部に窓をあけて深さ2.0μm
エツチングし第1クラッド層11の平坦なエツチング表
面領域と8 i 02膜14で被膜されたストライプ状
領域とを形成する(第6図)。次に、8 + 02膜1
4を除去した後、絶縁性” 0.4 Ga O,6As
第3クラッド層15を0.05μm 、 p形” o、
25Ga (1,76AS  ガイド層16t1.0μ
m 、 p形A)0,4Ga o、s As第4クラッ
ド層17を0.5 am、、p形GaAsキャップ層1
8’tO,SpmMOCVD法で連続成長させる。
Next, after coating the entire surface with an 8i02 film 14, a stripe of 3 μm in width and 300 μm in length is formed on the central part of the resonator in the longitudinal direction using a resist method and an etching method.
0. Leave the membrane and open a window on the outside to a depth of 2.0 μm.
Etching is performed to form a flat etched surface region of the first cladding layer 11 and a striped region coated with the 8 i 02 film 14 (FIG. 6). Next, 8 + 02 membrane 1
After removing 4, the insulating property "0.4 Ga O, 6 As
The third cladding layer 15 has a thickness of 0.05 μm and is p-type.
25Ga (1,76AS guide layer 16t1.0μ
m, p-type A) 0.4 Ga o, s As fourth cladding layer 17 with a thickness of 0.5 am, p-type GaAs cap layer 1
Continuous growth is performed using the 8'tO, Spm MOCVD method.

この層成長において、MOCVD法では各組成の粒子が
結合しながら成長していくので、1組成モル比の比較的
高い第1クラッド層11および第2クラッド層13上に
も成長する。更に、成長の面方位依存性はなくどの方向
にも一様な厚さで成長するので、本実施例の凸状の形状
をしたストライプ状領域は、凸状の形状に沿って一様な
層厚に、第3クラツド層15.ガイド層16.第4クラ
ッド層17.キャップ層18が順次隣接して成長する。
In this layer growth, in the MOCVD method, particles of each composition grow while being combined, so that the particles also grow on the first cladding layer 11 and the second cladding layer 13, which have a relatively high monocomposition molar ratio. Furthermore, since the growth does not depend on the surface orientation and grows with a uniform thickness in any direction, the convex-shaped striped region of this example has a uniform layer along the convex shape. Thickly, the third cladding layer 15. Guide layer 16. Fourth cladding layer 17. A cap layer 18 is grown successively adjacent.

このMOCVD法は、気相成長法の一つで弗るので、第
3クラッド層15を成長する際に微量の酸素ガスを混合
させる事により容易に絶縁性第3クラッド層15を形成
する事ができる。なお、第3クラッド層15を成長する
直前に、HO2等のガスでストライプ状領域および第1
クラッド層が露出した平面領域の表面を微量にガス!ツ
テすると成長素子の再現性、信頼性を一段と向上させる
事ができる。
Since this MOCVD method is one of the vapor phase growth methods, the insulating third cladding layer 15 can be easily formed by mixing a small amount of oxygen gas when growing the third cladding layer 15. can. Note that immediately before growing the third cladding layer 15, striped regions and the first
Apply a small amount of gas to the surface of the flat area where the cladding layer is exposed! By doing so, the reproducibility and reliability of the grown device can be further improved.

また、この層成長において、本実施例のように平面領域
に成長したガイド層の層厚内にストライプ状の活性層が
位置するように制御する。
Further, in this layer growth, control is performed so that the striped active layer is located within the layer thickness of the guide layer grown in a planar region as in this embodiment.

次に、成長表面をSiO□膜で被膜した後、フォトレジ
スト法およびエツチング法により、ストライプ状領域の
上のSho□膜に幅2.5μm長さ280μmの窓をあ
け、亜鉛を第2り2ラド層13内部に達するまで拡散す
る(亜鉛拡散領域19)。その後S iO2膜を除去し
成長表面側にp形オーミックコンタクト20.基板側に
n形オーミソクコ/タク)21t’それぞれつけると、
本実施例の半導体レーザを得る事ができる(第1図〜第
4図)。
Next, after coating the growth surface with a SiO□ film, a window with a width of 2.5 μm and a length of 280 μm is opened in the Sho□ film above the striped region using a photoresist method and an etching method, and a second layer of zinc is deposited. The zinc is diffused until it reaches the inside of the Rad layer 13 (zinc diffusion region 19). After that, the SiO2 film is removed and a p-type ohmic contact 20. If you attach n-type Ohmi Sokuko/Taku) 21t' to the board side,
The semiconductor laser of this example can be obtained (FIGS. 1 to 4).

本実施例の構造において、全面電極(2o)がら注入さ
れる電流はキャップ層18.第4クラツド層17.ガイ
ド層16内は広がって流れるが絶縁性第3クラツド#1
5で阻止される。この絶縁性第3クラッド層15の亜鉛
拡散してp形に変換されたストライプ状の電流注入領域
から電流は第2クラッド層13に流込む。本構造は、活
性層を含むストライプ状の励起領域が幅方向長さ方向共
にその両端では絶縁性第3クラッド層15に覆われてい
るので、注入電流が漏れることなくすべて活性層内に注
入される。従って低励起電流レベルで利得分布が形成さ
れると共に、漏れによる無効電流がないので、低閾値高
効率のレーザ発振を開始する。
In the structure of this embodiment, the current injected through the entire surface electrode (2o) is transferred to the cap layer 18. Fourth cladding layer 17. Although the inside of the guide layer 16 spreads and flows, the insulating third cladding #1
Blocked by 5. Current flows into the second cladding layer 13 from the striped current injection region in which zinc is diffused into the insulating third cladding layer 15 and converted to p-type. In this structure, the striped excitation region including the active layer is covered with the insulating third cladding layer 15 at both ends in both the width and length directions, so that all of the injected current is injected into the active layer without leaking. Ru. Therefore, since a gain distribution is formed at a low excitation current level and there is no reactive current due to leakage, laser oscillation with a low threshold and high efficiency is started.

本構造は、活性層12が共振器の長て方向側反射面端面
で層厚のきわめて薄い絶縁性クラッド層15を介してガ
イド層16に隣近しているので、活性層で発光した光が
この絶縁性クラッド層15を通りガイド層16内を共振
器の長て方向に進行する。本実施例では、このガイド層
16のバンドギャップがレーザ発振光に対して146m
eV以上広がっており、クラッド層15のバンドギャッ
プが更に広いので光が進行中に吸収損失を受ける事はな
い。また、ガイド層16は活性層垂直方向において屈折
率の小さい第1クラッド層11およびこの層に隣接する
第3クラッド層15と第4クラッド層17とによって挾
まれているので、光がガイド層16内に閉込められて進
行する。こうして反射面近傍のガイド層16内を進行し
た光の一部が反射面で反射され、再びガイド層16内を
損失を受ける事なく戻り、活性層内に入り再励起される
ので低閾値高効率でレーザ発振する事ができる。
In this structure, the active layer 12 is adjacent to the guide layer 16 via the extremely thin insulating cladding layer 15 at the end face of the reflective surface on the longitudinal side of the resonator, so that the light emitted from the active layer is The light passes through the insulating cladding layer 15 and travels within the guide layer 16 in the longitudinal direction of the resonator. In this embodiment, the band gap of this guide layer 16 is 146 m for laser oscillation light.
Since the band gap of the cladding layer 15 is wider than eV, the light does not suffer any absorption loss while traveling. Further, since the guide layer 16 is sandwiched between the first cladding layer 11 having a small refractive index and the third cladding layer 15 and fourth cladding layer 17 adjacent to this layer in the direction perpendicular to the active layer, light is transmitted to the guide layer 16. It progresses while being trapped inside. In this way, a part of the light that has traveled within the guide layer 16 near the reflective surface is reflected by the reflective surface, returns within the guide layer 16 again without loss, and enters the active layer to be re-excited, resulting in low threshold and high efficiency. can generate laser oscillation.

このガイド層16内を光が進行する際、活性層水平横方
向に光の広がる傾向があるので反射面近傍のガイド層の
長さは短い方が、活性層内で再励起される光の量が増加
するのでより望ましい。本構造は、護送らの報告による
端面埋込み型BHレーザとは全く異なり、カップリング
効率が飛躍的に高くなっており、低閾値で高効率という
BH構造レーザのもつ基本的特性を有している。
When light travels through this guide layer 16, it tends to spread in the horizontal and lateral directions of the active layer, so the shorter the length of the guide layer near the reflective surface, the more the amount of light that will be re-excited within the active layer. is more desirable because it increases This structure is completely different from the edge-embedded BH laser reported by Escort, and has dramatically higher coupling efficiency, and has the basic characteristics of a BH structure laser, such as low threshold and high efficiency. .

本構造では、両反射面近傍がレーザ発振光に対してバン
ドギャップの広いガイド層になっているので、光学損傷
(COD)の生じる光出力レベルを著しく上昇させる事
ができる。すなわち、通常の半導体レーザではキャリア
注入による励起領域となる活性層端面が反射面として露
出しており、そこでは表面再結合を生じ空乏層化してバ
ンドギャップが縮少しているので、大光出力発振をさせ
ると、この縮少したバンドギャップにより光の吸収を生
じ、そこで発熱して融点近くまで温度が上昇し、ついK
は光学損傷を生じる。これに対し本実施例の構造では両
反射面近傍が非励起領域になっているばかりでなく、レ
ーザ発振光はバンドギャップ差が146meV以上も広
い層を透過して発振するので、反射面近傍での光の吸収
がなく光学損傷の生じる光出力レベルを1桁以上上昇さ
せる事ができ、大光出力発振が可能となる。
In this structure, since the vicinity of both reflective surfaces serves as a guide layer with a wide bandgap for laser oscillation light, the optical output level at which optical damage (COD) occurs can be significantly increased. In other words, in a normal semiconductor laser, the end face of the active layer, which becomes the excitation region due to carrier injection, is exposed as a reflective surface, where surface recombination occurs and becomes a depletion layer, reducing the band gap, resulting in large optical output oscillation. When exposed to heat, this narrowed bandgap causes absorption of light, which generates heat and raises the temperature to near the melting point.
causes optical damage. On the other hand, in the structure of this example, not only are the areas near both reflecting surfaces a non-excitation region, but also the laser oscillation light transmits through a layer with a wide band gap difference of 146 meV or more and oscillates. There is no absorption of light, and the optical output level at which optical damage occurs can be increased by more than one order of magnitude, making it possible to oscillate a large optical output.

本実施例の構造は、ストライプ状領域の活性層12が層
厚のきわめて薄い第3クラッド層15に隣接し、この第
3クラッド層15が比較的屈折率の高いガイド層16に
隣接している。活性層12の水平横方向には、第3クラ
ッド層15およびガイド層16と屈折率の高い活性層1
2との間に、正の屈折率ガイディフグ機構が作りつけら
れている。通常のBHレーザでは活性層両端が活性層よ
りはるかに屈折率が小さいクラッド層で挾みこまれてお
り、このため活性層水平横方向に作りつけられる屈折率
差はきわめて大きく、この状態で基本横モード発振をさ
せるためには活性層の幅を1〜2μm程度に限定する必
要があったが、本構造では活性層両端に隣接した第3ク
ラッド層は層厚が薄いので光はガイド層の影響を強く受
ける。ガイド層の屈折率はクラッド層より太きく活性層
との屈折率差は比較的小さいので活性層水平横方向に作
りつけられる正の屈折率分布の高さは比較的小さくなる
。従って活性領域幅を3〜4μm程度と比較的広くして
も安定な基本横モード発振を広範囲にわたる電流注入領
域で維持する事ができる。
In the structure of this embodiment, the active layer 12 in the striped region is adjacent to a very thin third cladding layer 15, and this third cladding layer 15 is adjacent to a guide layer 16 having a relatively high refractive index. . In the horizontal direction of the active layer 12, a third cladding layer 15, a guide layer 16, and an active layer 1 having a high refractive index are arranged.
2, a positive refractive index guiding mechanism is built in. In a normal BH laser, both ends of the active layer are sandwiched between cladding layers that have a much lower refractive index than the active layer, and therefore the difference in refractive index created in the horizontal direction of the active layer is extremely large. In order to cause mode oscillation, it was necessary to limit the width of the active layer to about 1 to 2 μm, but in this structure, the third cladding layer adjacent to both ends of the active layer is thin, so light is affected by the guide layer. strongly affected by Since the refractive index of the guide layer is thicker than that of the cladding layer and the difference in refractive index with the active layer is relatively small, the height of the positive refractive index distribution created in the horizontal direction of the active layer is relatively small. Therefore, even if the active region width is relatively wide, about 3 to 4 μm, stable fundamental transverse mode oscillation can be maintained over a wide range of current injection regions.

本実施例の構造は、活性層が管内波長の2〜3倍以下と
きわめて薄いために、レーザ発振時には光は活性層12
から垂直方向に広く広がるが、この様に活性層からの光
のしみ出しを大きくして活性層の閉込め係数(fill
ing factor ; r )を小さくする事は大
光出力レーザ発振の上で著しい効果を持つ。半導体レー
ザの光出力Pはスポットサイズに比例するので活性層の
層厚をd横モードのスポットサイズf W//  とす
ると次式が成立する。
In the structure of this embodiment, the active layer is extremely thin, less than 2 to 3 times the tube wavelength, so that light is transmitted to the active layer 12 during laser oscillation.
However, by increasing the seepage of light from the active layer in this way, the confinement coefficient (fill) of the active layer increases.
Reducing the ing factor; r ) has a significant effect on high optical output laser oscillation. Since the optical output P of a semiconductor laser is proportional to the spot size, if the layer thickness of the active layer is the spot size f W// of the d-transverse mode, the following equation holds true.

p oC−X Wtt I′ すなわち、光出力Pはfill ing factor
  I’に反比例して上昇する。またfilling 
factor rを小さくする事は同時に半導体レーザ
の活性層内の光の量が少なくなるので、活性層が光出力
によって破壊されるレベルも同時に上昇する。従って、
前述のウィンドウ効果による光学損傷レベルの上昇に相
乗して、光出力を大幅に上昇させる事ができる。
p oC-X Wtt I' That is, the optical output P is the filling factor
It increases in inverse proportion to I'. Also filling
Reducing factor r simultaneously reduces the amount of light within the active layer of the semiconductor laser, and therefore increases the level at which the active layer is destroyed by optical output. Therefore,
Combined with the increase in the optical damage level due to the window effect described above, the optical output can be significantly increased.

本構造の様に、活性層からの光のしみ出しを大きくする
事は、活性層垂直方向の広がり角θ土を急激に減少させ
る事ができ、特に本実施例のように活性層垂直方向にお
いて活性層をはさみこんだ第1および第2クラッド層の
組成および層厚を等しくすれば、光は活性層を中心とし
て垂直方向に対称に広がりその広がり効果が助長される
。この結果、本実施例によれば、広がり角θ土を15度
以下にする事ができる。これに対して活性層の水平横方
向も正の屈折率ガイディング機構が作りっけであるので
、横モードのスポットサイズを調整して、活性層水平横
力向の広がり角θ//l”1z〜15度にする事ができ
る。従って縦横の広がり角θ上、θ〃・を等しくでき、
等心円的な光源が得られ、実用時に外部の光学系とのカ
ップリング効率を著しく上昇させる事ができる。
Increasing the seepage of light from the active layer as in this structure can rapidly reduce the spread angle θ in the vertical direction of the active layer, especially in the vertical direction of the active layer as in this example. If the composition and layer thickness of the first and second cladding layers sandwiching the active layer are made equal, light spreads symmetrically in the vertical direction centering on the active layer, and the spreading effect is promoted. As a result, according to this embodiment, the spread angle θ can be made 15 degrees or less. On the other hand, since a positive refractive index guiding mechanism is also created in the horizontal and lateral directions of the active layer, the spot size of the lateral mode is adjusted, and the spread angle of the active layer's horizontal lateral force direction θ//l'' It can be set to 1z to 15 degrees.Therefore, on the vertical and horizontal spread angle θ, θ〃・ can be made equal,
A concentric light source can be obtained, and the coupling efficiency with an external optical system can be significantly increased in practical use.

(本発明の効果) 以上説明した様に、本発明の構造は、ウォ/グらの発表
したレーザとは全く異なり、基本横モードレーザ発振を
維持した状態で大光出力レーザ発振が可能であり、発光
ビームも等心円形に近い等のすぐれたレーザ発掘特性を
有している。更に、全面電極を用いることにより、製造
方法も比較的    。
(Effects of the present invention) As explained above, the structure of the present invention is completely different from the laser announced by Wo/G et al., and is capable of high optical output laser oscillation while maintaining fundamental transverse mode laser oscillation. It also has excellent laser excavation characteristics, such as a nearly concentric circular emitted beam. Furthermore, by using a full-surface electrode, the manufacturing method is also relatively simple.

容易で、MOCVD法特有の層厚の制御性の良い利点を
いかして再現性よく作る事ができる。
It is easy and can be manufactured with good reproducibility by taking advantage of the good controllability of layer thickness that is unique to the MOCVD method.

更に、本発明による半導体レーザは、励起領域が直接反
射面に露出している通常の半導体レーザに比べて、外部
との化学反応が起りに〈<、反射面の光学反応による劣
化を阻止する事ができる。
Furthermore, the semiconductor laser according to the present invention has a structure in which chemical reactions with the outside occur, and deterioration due to optical reactions on the reflective surface can be prevented, compared to ordinary semiconductor lasers in which the excitation region is directly exposed to the reflective surface. I can do it.

なお、本実施例はA/GaAs/GaAs ダブルへテ
ロ接合結晶材料について説明したが、他の結晶材料例え
ばInGaAsp / Inp 、 InGap /A
/InI) rInQaAsp/InGap、AJGa
AsSb/GaAsSb等数多くの結晶材料に適用する
事もできる。
Although this example describes an A/GaAs/GaAs double heterojunction crystal material, other crystal materials such as InGaAsp/Inp, InGap/A
/InI) rInQaAsp/InGap, AJGa
It can also be applied to many crystalline materials such as AsSb/GaAsSb.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の斜視図、第2図、第3図、第
4図は第1図のA−A’  、B−B’  、CC/断
面図、第5図、第6図はこの実施例の作製の過程におけ
るダブルへテロ接合構造を基板上に形成した時の側面図
およびストライプ状領域を形成した時の斜視図である。 図において10 ・=・n形Ga A s基板、11 
・=−n形A/ 0.4Gao6AS第1クラッド層、
12−・・・・・アンドープA1g、150a (1g
5As活性層、13 =−・−1)形Ai 6,4 G
 a o、6As第2クラッド層、14・・・・・・5
102膜、15・・・・・・絶縁性All o、4 G
a O,6A S第3クラッド層、16・・・・”p形
A/ o25 Ga O,7S A Sガイド層、17
−−−−−− p 形i o4Ga o、s A S第
4クラッド層、18−=−p形GaAsキャップ層、1
9・・・・・・亜鉛拡散領域、20・・・・・・p形オ
ーミックコンタクト、21・・・・・・n形オーミック
コンタクト である。 代理人 弁理士  内 原   會 茅 2I2I 率 3  図
Figure 1 is a perspective view of an embodiment of the present invention, Figures 2, 3, and 4 are AA', BB', and CC/sectional views of Figure 1, and Figures 5 and 6. The figures are a side view when a double heterojunction structure is formed on a substrate and a perspective view when striped regions are formed in the manufacturing process of this example. In the figure, 10 = n-type GaAs substrate, 11
・=-n type A/0.4Gao6AS first cladding layer,
12-...Undoped A1g, 150a (1g
5As active layer, 13 =-・-1) type Ai 6,4 G
ao, 6As second cladding layer, 14...5
102 film, 15... Insulating All o, 4 G
a O,6A S third cladding layer, 16...” p-type A/ o25 Ga O,7S A S guide layer, 17
------- p-type io4Gao, s AS fourth cladding layer, 18-=-p-type GaAs cap layer, 1
9...Zinc diffusion region, 20...P type ohmic contact, 21...N type ohmic contact. Agent Patent Attorney Aika Uchihara 2I2I Rate 3 Figure

Claims (1)

【特許請求の範囲】[Claims] 管内波長の数倍以下の層厚の活性層とこの活性層の両層
面に接しこの活性層よりも屈折率が小さい第1および第
2のクラッド層とを、両反射面近傍を除いた共振器の長
て方向中央部分にストライプ状に設けたストライプ状領
域と;このストライプ状領域と前記両反射面近傍とを覆
うように設けた、前記第1および第2のクラッド層と同
程度の組成で前記活性層と同程度の層厚の電気的に絶縁
性の第3クラッド層と、この第3のクラッド層より屈折
率が大きく前記活性層よりも屈折率が小さくかつバンド
ギャップが広いガイド層と、前記第3のクラッド層と同
程度の組成の第4のクラッド層とを一様な層厚で隣接し
て設けた層構造と;前記ストライプ状の領域にのみ設け
た電流注入領域とを備え;前記共振器の長て方向では前
記活性層が両反射面近傍のガイド層の内部に位置するこ
とを特徴とする半導体レーザ。
A resonator consisting of an active layer with a layer thickness of several times the wavelength in the tube or less, and first and second cladding layers that are in contact with both surfaces of this active layer and have a refractive index smaller than that of this active layer, excluding the vicinity of both reflective surfaces. a striped region provided in a striped manner in the central portion in the longitudinal direction; and a striped region having a composition comparable to that of the first and second cladding layers provided so as to cover this striped region and the vicinity of both reflective surfaces. an electrically insulating third cladding layer having a thickness similar to that of the active layer; and a guide layer having a larger refractive index than the third cladding layer, a smaller refractive index than the active layer, and a wider bandgap. , a layer structure in which a fourth cladding layer having a composition similar to that of the third cladding layer is provided adjacently with a uniform layer thickness; and a current injection region provided only in the striped region. ; a semiconductor laser characterized in that, in the longitudinal direction of the resonator, the active layer is located inside a guide layer near both reflective surfaces.
JP12139384A 1984-06-13 1984-06-13 Semiconductor laser Pending JPS611081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12139384A JPS611081A (en) 1984-06-13 1984-06-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12139384A JPS611081A (en) 1984-06-13 1984-06-13 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS611081A true JPS611081A (en) 1986-01-07

Family

ID=14810082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12139384A Pending JPS611081A (en) 1984-06-13 1984-06-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS611081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525779A2 (en) * 1991-07-31 1993-02-03 Nec Corporation Method of manufacturing optical semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525779A2 (en) * 1991-07-31 1993-02-03 Nec Corporation Method of manufacturing optical semiconductor element

Similar Documents

Publication Publication Date Title
JPS611081A (en) Semiconductor laser
JPS5832794B2 (en) semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS61134094A (en) Semiconductor laser
JPS6120388A (en) Semiconductor laser
JPS6120386A (en) Semiconductor laser
JPS62283690A (en) Semiconductor laser
JPS6191991A (en) Semiconductor laser
JPS6390882A (en) Semiconductor laser
JPS6196790A (en) Semiconductor laser
JPS60239080A (en) Semiconductor laser
JPS5916432B2 (en) Composite semiconductor laser device
JPS60239081A (en) Semiconductor laser
JPS6355994A (en) Semiconductor laser
JPS6120385A (en) Semiconductor laser
JPS6120387A (en) Semiconductor laser
JPS59197181A (en) Semiconductor laser
JPS6331189A (en) Semiconductor laser
JPS6360583A (en) Semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH02213183A (en) Semiconductor laser and manufacture thereof
JPS60189986A (en) Semiconductor laser
JPH0395986A (en) Semiconductor laser
JPS60223187A (en) Semiconductor laser
JPS612379A (en) Semiconductor laser