JPS61107781A - Single axial-mode semiconductor laser device - Google Patents

Single axial-mode semiconductor laser device

Info

Publication number
JPS61107781A
JPS61107781A JP22862684A JP22862684A JPS61107781A JP S61107781 A JPS61107781 A JP S61107781A JP 22862684 A JP22862684 A JP 22862684A JP 22862684 A JP22862684 A JP 22862684A JP S61107781 A JPS61107781 A JP S61107781A
Authority
JP
Japan
Prior art keywords
modulation
region
semiconductor laser
laser
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22862684A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Koichi Minemura
峰村 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22862684A priority Critical patent/JPS61107781A/en
Publication of JPS61107781A publication Critical patent/JPS61107781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To inhibit the extension of an oscillation spectrum by adding modulation signal currents to a modulation region in a semiconductor laser element and adding control currents to a laser region in a semiconductor laser. CONSTITUTION:Modulation signals 121 generated in a modulation signal generator 101 are branched into first modulation signals 122 and second modulation signals 123 by a branch circuit 102. The signals 122 are converted into control currents 124 by a first driving circuit 105. Laser driving currents 126 are added to a laser region 211 in a semiconductor laser element 111. The signals 123 are phase-delayed by a phase circuit 103, and the signals 127 are inverted by a polarity inversion circuit 104, and changed into modulation currents 129 by a second driving circuit 106. Modulator driving currents 131 are added to a modulation region 210 in the element 111. Accordingly, the variation of carrier density in an active layer 204 in the region 211 and the alteration of oscillation wavelengths by returning beams, etc. to the region 211 are inhibited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザ素子、特に発振ス(クトルの拡
がシを抑制した単一軸モート0半導体レーザ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device, and particularly to a single-axis moat 0 semiconductor laser device that suppresses oscillation distortion.

(従来の技術) 半導体レーザ素子の内部に回折格子が埋め込まれ、その
回折格子のブラッグ反射を利用して発振する分布帰還型
あるいは分布反射型の半導体レーザは一本の軸モードで
発振するため、光ファイバの分散の影響を受けにくく、
長距離大容量の光通信用光源として有望視されている。
(Prior Art) A distributed feedback or distributed reflection type semiconductor laser, in which a diffraction grating is embedded inside a semiconductor laser element and oscillates using the Bragg reflection of the diffraction grating, oscillates in a single axial mode. Less affected by optical fiber dispersion,
It is seen as a promising light source for long-distance, high-capacity optical communications.

ところで半導体レーザな用いた変調方式は大別して2種
類に分けられる。第1の変調方式は半導体レーザな駆動
電流によシ直接振幅変調する直接変調方式であシ、第2
の変調方式は半導体レーザを一定の直流電流で駆動し、
外部に設けた光変調器によシ振幅変調、周波数変調ある
いは位相変調を行う外部変調方式である。
By the way, the modulation methods used in semiconductor lasers can be roughly divided into two types. The first modulation method is a direct modulation method in which the amplitude is directly modulated by the drive current of a semiconductor laser.
The modulation method is to drive a semiconductor laser with a constant DC current,
This is an external modulation method in which amplitude modulation, frequency modulation, or phase modulation is performed using an external optical modulator.

(発明が解決しようとする問題点) 前者の直接変調方式は、単一素子で光・源変調器の役割
をするため、小型で扱い易い等の利点を有してbる。し
かしながら昭和58年度電子通信学合手導体、材料部門
全国大会予稿集第328番板屋氏らによる「分布帰還型
レーザの直接変調時におけるスペクトル特性」で報告さ
れているように、分布帰還型半導体レーザな高速で直接
変調した場合には、キャリア密度の揺らぎによる発振軸
モードのスペクトル幅拡がシが生じるため、光ファイバ
の分散の影響を受けるようになり、長距離の伝送が困難
となる欠点がある。
(Problems to be Solved by the Invention) The former direct modulation method has advantages such as being small and easy to handle because a single element functions as a light/source modulator. However, as reported in ``Spectral characteristics during direct modulation of distributed feedback lasers'' by Mr. Itaya et al., No. 328, Proceedings of the 1981 National Conference on Conductors and Materials in Electronics and Communication Engineering, distributed feedback semiconductor lasers When directly modulated at high speeds, the spectral width of the oscillation axis mode is broadened due to fluctuations in the carrier density, making it susceptible to the dispersion of the optical fiber, making long-distance transmission difficult. be.

寸た後者の外部変調方式では半導体レーザを一定電流で
動作させるため、前述の様なスペクトル線幅の拡がシ等
の問題が無く高速変調に適しており、かつ振幅あるいは
位相等の変調が可能である利点を有している。しかし変
調器を用いる場合には、半導体レーザと変調器との間の
光結合損失が問題となる。例えばオー、ノー、ラマ−(
0,G。
In the latter external modulation method, the semiconductor laser is operated with a constant current, so it is suitable for high-speed modulation without problems such as the aforementioned broadening of the spectral line width, and it is also possible to modulate amplitude or phase. It has the advantage of being However, when using a modulator, optical coupling loss between the semiconductor laser and the modulator becomes a problem. For example, oh, no, lama (
0,G.

RAMER)氏らによる米国の雑誌アイ、イー、イー。The American magazine I, E, E by Mr. RAMER) et al.

y   イー、ノヤーナルオプ、カオンタムエレクトロ
ニクス(IEEE Journal of Quatu
m ′Electronicm )第QE−17巻、第
6号、(1981年6月発行)第970頁所載の論文[
エクスベリメンタルインテグレーティドオプティクサー
キットローゼスアンドファイバピグティリングオプチッ
ブス」(Experimental Int@grat
ed 0ptic ClrcuitLoaaeg an
d Fiber plgtaillng of Chi
ps)で報告しているように、光ラアイパを用いた半導
体レーザと変調器との間の光結合損失は約4 dBあり
、変調器を用いた場合には光の結合損失が大きいと云う
欠点があった。
y Yi, Noyanalop, Quantum Electronics (IEEE Journal of Quatu
m 'Electronicm) Volume QE-17, No. 6, (published June 1981), page 970 [
Experimental Int@grat
ed 0ptic ClrcuitLoaaeg an
d Fiber plugtailing of Chi
ps), the optical coupling loss between a semiconductor laser using an optical laser and a modulator is approximately 4 dB, and the disadvantage of using a modulator is that the optical coupling loss is large. was there.

本発明の目的は高速変調時においても発振スペクトルが
拡がらず、半導体レーザと変調器との間の光結合損失が
極めて少く、かつ振幅弯調及び位相変調が可能な単一軸
モード半導体レーザ装置を提供することにある。
The purpose of the present invention is to provide a single-axis mode semiconductor laser device that does not spread the oscillation spectrum even during high-speed modulation, has extremely low optical coupling loss between the semiconductor laser and the modulator, and is capable of amplitude curvature and phase modulation. It is about providing.

(問題点を解決するための手段) 本発明による単一軸モード半導体レーザ装置は、活性層
の近くに回折格子を有するレーザ領域及びレーザ領域に
光学的に結合させて光導波路層を埋め込んだ変調領域並
びに前記変調領域の端面に光の反射抑制構造を備えた半
導体レーザ素子と、前記半導体レーザ素子の変調領域に
変調信号電流を加えて半導体レーザ素子からの出射光を
変調する手段と、 前記変調信号電流とは一定の振幅比関係及び一定の位相
差関係を有する制御電流を前記半導体レーザのレーザ領
域に加えて変調された出射光のスペクトルの拡がシを抑
える手段とからなっている。
(Means for Solving the Problems) A single-axis mode semiconductor laser device according to the present invention includes a laser region having a diffraction grating near an active layer and a modulation region optically coupled to the laser region and embedded with an optical waveguide layer. and a semiconductor laser device including a light reflection suppressing structure on an end face of the modulation region, means for applying a modulation signal current to the modulation region of the semiconductor laser device to modulate the light emitted from the semiconductor laser device, and the modulation signal. The current includes means for applying a control current having a constant amplitude ratio relationship and a constant phase difference relationship to the laser region of the semiconductor laser to suppress the spread of the spectrum of the modulated emitted light.

(作用) 半導体レーザ素子内部に回折格子を有する分布帰還型、
分布反射型半導体レーザは、回折格子によるブラッグ反
射を利用してレーザ発振するため、従来のファプリ・ペ
ロー型半導体レーザに必要なへき開面は不要である。従
って、光導波路等によシ直接、他素子との光学的結合が
可能で69、光結合損失が極めて少なくてすむ。また半
導体基板内に形成した光導波路層の光損失、屈折率は光
導波路層に注入する電流によシ制御でき、光導波路側端
面から出射する光の強度や位相を制御することが可能で
ある。よって分布帰還型または分布反射型の半導体レー
ザの発光部に連続して光導波路を設け、光導波路の出射
端面からの反射光を抑制する光の反射抑制構造を有する
光の変調領域を構成して、前記変調領域の光導波路に注
入する電流を制御すれば、光の強度や位相を制御するこ
とが可能である。
(Function) Distributed feedback type with a diffraction grating inside the semiconductor laser element.
Distributed reflection semiconductor lasers use Bragg reflection from a diffraction grating to oscillate, so they do not require a cleavage plane, which is required for conventional Fapry-Perot semiconductor lasers. Therefore, it is possible to directly optically couple it to other elements through an optical waveguide or the like,69 and the optical coupling loss can be extremely small. Furthermore, the optical loss and refractive index of the optical waveguide layer formed within the semiconductor substrate can be controlled by the current injected into the optical waveguide layer, and the intensity and phase of the light emitted from the side end face of the optical waveguide can be controlled. . Therefore, an optical waveguide is provided continuously to the light emitting part of a distributed feedback or distributed reflection type semiconductor laser, and a light modulation region having a light reflection suppressing structure that suppresses reflected light from the output end face of the optical waveguide is configured. By controlling the current injected into the optical waveguide of the modulation region, it is possible to control the intensity and phase of the light.

しかしこの構造では、レーザ領域と変調領域とが近接し
ているため変調領域に注入した変調電流が、レーザ領域
にもれ込み、レーザ領域のキャリア密度を変化させるた
め、発振周波数の変動が生じる。
However, in this structure, since the laser region and the modulation region are close to each other, the modulation current injected into the modulation region leaks into the laser region and changes the carrier density in the laser region, resulting in fluctuations in the oscillation frequency.

また変調領域側の端面あるいは外部素子との結合用のレ
ンズ及びファイバ端面等で反射された戻り光が、レーザ
領域に影響して、発振周波数や発振強度の変化をもたら
す。
In addition, the return light reflected by the end face on the modulation region side, the lens for coupling with an external element, the fiber end face, etc. affects the laser region, causing changes in the oscillation frequency and oscillation intensity.

一方、半導体レーザの発振周波数はレーザ領域に注入す
る電流を変化させる事によシ制御できる。
On the other hand, the oscillation frequency of a semiconductor laser can be controlled by changing the current injected into the laser region.

そこで、変調電流の信号に対して一定の振幅比関係及び
一定の位相差関係となるようにレーザ領域に注入する電
流を制御して発振周波数の変動を抑制することによシ、
高速変調時にもスペクトル拡がシの少ない変調光が得ら
れる。
Therefore, by controlling the current injected into the laser region so that it has a constant amplitude ratio relationship and a constant phase difference relationship with respect to the modulated current signal, it is possible to suppress fluctuations in the oscillation frequency.
Modulated light with less spectrum broadening can be obtained even during high-speed modulation.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は本発明による第1の実施例の構成図でおシ、第
2図は本発明による第1の実施例に用い死生導体レーザ
素子の断面図である。
FIG. 1 is a block diagram of a first embodiment of the present invention, and FIG. 2 is a sectional view of a dead conductor laser element used in the first embodiment of the present invention.

第1図において、変調信号発生器101で発生させた変
調信号121を分岐回路102において分岐比が1:2
0となるように第1の変調信号122、第2の変調信号
123に分岐させる。このうち、第1の変調信号122
は第1の駆動回路105によシ制御電流124に変換す
る。この制御電流124と第1の直流電源107からの
第1の直流電流125とを第1の混合回路108で混合
し、レーザ駆動電流126を得てこのレーザ駆動電流1
26を半導体レーザ素子111のレーザ領域211にお
ける第1の電極207に加える。
In FIG. 1, a modulated signal 121 generated by a modulated signal generator 101 is sent to a branch circuit 102 at a branching ratio of 1:2.
The signal is branched into a first modulated signal 122 and a second modulated signal 123 so that the signal becomes 0. Among these, the first modulation signal 122
is converted into a control current 124 by the first drive circuit 105. This control current 124 and the first DC current 125 from the first DC power supply 107 are mixed in the first mixing circuit 108 to obtain the laser drive current 126.
26 is applied to the first electrode 207 in the laser region 211 of the semiconductor laser device 111.

一方、分岐回路102にて分岐した第2の変調信シ 号123を移相回路103にて適当表位相遅れを与え、
その信号127を極性反転回路104で極性を反転し丸
後、反転信号128を第2の駆動回路106により変調
電流129を得る。この変調電流129と第2の直流電
源110からの直流電流130どを第2の混合回路10
9で混合し、得られた変調器駆動電流131を半導体レ
ーザ素子111の変調領域210における第2の電極2
08に加える。
On the other hand, the second modulated signal 123 branched by the branch circuit 102 is given an appropriate phase delay by the phase shift circuit 103,
After the polarity of the signal 127 is inverted by the polarity inverting circuit 104, a modulation current 129 is obtained from the inverted signal 128 by the second drive circuit 106. This modulated current 129 and the DC current 130 from the second DC power supply 110 are connected to the second mixing circuit 10.
9, and the resulting modulator drive current 131 is applied to the second electrode 2 in the modulation region 210 of the semiconductor laser device 111.
Add to 08.

次に第2図を用いて、本実施例に用いた半導体レーザ素
子111について説明する。半導体レーザ素子111は
n型1nP基板201上のレーザ領域211に相当する
部分にのみ周期2400Xの回折格子202を形成した
後、変調領域210に相当する平坦部及び回折格子20
2の全面に厚さ02μm1組成のバンドギャップが波長
で1:3μmのh型1nGaA+sP光閉じ込め層20
3と、厚さ01μm1組成のバンドギャップが波長で1
y5pmのInGaAsP活性層204と、厚さ3 p
mのpfiInPクラ、ド層205と、厚さ0:S l
tmのp 型InGaAsPキャップ層206とを順次
エピタキシャル成長させた構成となっているものでおる
。レーザ領域211と変調領域210上の第1の電極2
07と、第2の電極208とはキャップ層206よシも
深い溝213によシ分離されている。また変調領域側端
面には窒化シリコンを用いた厚さ約2200X、反射率
2%以下の反射防止膜209を形成している。
Next, the semiconductor laser device 111 used in this example will be explained using FIG. 2. In the semiconductor laser device 111, a diffraction grating 202 with a period of 2400X is formed only on a portion corresponding to the laser region 211 on an n-type 1nP substrate 201, and then a flat portion corresponding to the modulation region 210 and the diffraction grating 202 are formed on a flat portion corresponding to the modulation region 210.
An h-type 1nGaA+sP optical confinement layer 20 with a thickness of 02 μm and a band gap of 1:3 μm in terms of wavelength is formed on the entire surface of 2.
3, and the band gap of 1 composition with a thickness of 01 μm is 1 in wavelength.
y5pm InGaAsP active layer 204 and thickness 3p
m pfiInP layer 205 and thickness 0:S l
tm p-type InGaAsP cap layer 206 is sequentially epitaxially grown. First electrode 2 on the laser region 211 and modulation region 210
07 and the second electrode 208 are separated by a groove 213 that is deeper than the cap layer 206. Further, an antireflection film 209 made of silicon nitride and having a thickness of approximately 2200× and a reflectance of 2% or less is formed on the end face of the modulation region.

以上の構成において、半導体レーザ素子111のレーザ
領域211は分布帰還型半導体レーザとなっておシ、第
1の電極207から電流を注入することによシ、回折格
子202のブラッグ波長近傍(約155μm)で単一軸
モードで発振する。
In the above configuration, the laser region 211 of the semiconductor laser element 111 becomes a distributed feedback semiconductor laser, and by injecting a current from the first electrode 207, it is possible to ) oscillates in single-axis mode.

変調領域210に形成された光閉じ込め層203及び活
性層204は光導波路として働き、この光導波路をレー
ザ領域からのレーザ光が伝搬する。変調領域210の光
導波路を構成する活性層204は組成のパン、ドギャッ
プが波長で155μmであるため、レーザ領域211か
らのレーザ光は変調領域210の光導波路で損失を受け
ながら伝播する。
The optical confinement layer 203 and active layer 204 formed in the modulation region 210 function as an optical waveguide, and the laser light from the laser region propagates through this optical waveguide. Since the active layer 204 constituting the optical waveguide of the modulation region 210 has a composition breadth and gap of 155 μm in wavelength, the laser light from the laser region 211 propagates through the optical waveguide of the modulation region 210 while undergoing loss.

一方、レーザ光が変調領域2100光導波路で受ける損
失は変調領域210に注入する電流により制御でき、注
入する電流を増加する程、変調領域210の光導波路で
の損失は小さくなる。従って、変調領域210に注入す
る電流によシ反射防止膜209からの出射光が強度変調
される。
On the other hand, the loss that the laser light undergoes in the optical waveguide of the modulation region 2100 can be controlled by the current injected into the modulation region 210, and as the injected current increases, the loss in the optical waveguide of the modulation region 210 becomes smaller. Therefore, the intensity of the light emitted from the antireflection film 209 is modulated by the current injected into the modulation region 210.

しかし、変調領域210 K変調器駆動電流131を注
入し、レーザ領域210からのレーザ光を強度変調する
際、変調領域210に注入した変調器駆動電流131が
、レーザ領域211の活性層204中にまでまわシ、込
むため、レーザ領域211の活性層204内のキャリア
密度が変化し、発振周波数の変動を生じる。また、変調
されたレーザ光が反射防止膜209あるいは外部素子と
の結合に用いるレンズ及びファイバ端面等で反射され、
再びレーザ領域211に戻って来るため、発振周波数及
び発振強度が変動する。これらの発振周波数及び発振強
度の変動を抑制するため、レーザ領域211に変調電流
129とは振幅、極性の異なる制御を流124を加え、
位相゛を適当に設定する。本実施例では制御電流124
を変調電流129に比べ振幅が10%で逆極性の電流と
することKより、レーザ領域211の活性層204での
キャリア密度の変動やレーザ領域211への戻シ光等に
よる発振波長の変動を抑制した。
However, when the modulator drive current 131 is injected into the modulation region 210 to modulate the intensity of the laser light from the laser region 210, the modulator drive current 131 injected into the modulation region 210 flows into the active layer 204 of the laser region 211. As a result, the carrier density in the active layer 204 of the laser region 211 changes, causing a fluctuation in the oscillation frequency. In addition, the modulated laser beam is reflected by the anti-reflection film 209 or the lens used for coupling with an external element, the fiber end face, etc.
Since the light returns to the laser region 211 again, the oscillation frequency and oscillation intensity fluctuate. In order to suppress these fluctuations in oscillation frequency and oscillation intensity, a controlled current 124 with a different amplitude and polarity from the modulation current 129 is added to the laser region 211.
Set the phase appropriately. In this embodiment, the control current 124
By setting K to be a current with an amplitude of 10% and opposite polarity compared to the modulation current 129, fluctuations in the oscillation wavelength due to carrier density fluctuations in the active layer 204 of the laser region 211, light returning to the laser region 211, etc. suppressed.

本実施例ではNRZ符号による2Gb/sの振幅変調を
行った。その結果、出射光のスペクトルの半値幅が約0
3X(周波数にして約4 GHz )と狭く、消光比が
約8:1と消光比劣化が少ない状態で高速の振幅変調が
実現できた。上記出射光のスペクトル半値全幅的03X
は、通常の分布帰還型半導体レーザを直接変調した場合
のスペクトル半値全幅的3Xの約1/10であ夛、また
前記実施例でレーザ領域211に制御電流を加えない場
合のス(クトル半値全幅約IXの約1/3と狭い。
In this example, 2 Gb/s amplitude modulation was performed using the NRZ code. As a result, the half width of the spectrum of the emitted light is approximately 0.
High-speed amplitude modulation was achieved with a narrow width of 3X (approximately 4 GHz in terms of frequency) and an extinction ratio of approximately 8:1, with little deterioration of the extinction ratio. Spectral full width at half maximum of the above output light 03X
is about 1/10 of the full width at half maximum of 3X when a normal distributed feedback semiconductor laser is directly modulated. It is narrow, about 1/3 of IX.

次に大発明の第2の実施例について説明する。Next, a second embodiment of the great invention will be described.

本実施例では位相変調を行う単一軸モード半導体レーザ
装置を示す。装置の構成は第1の実施例について示した
第1図のものと同様であるが、位相変調を行う際には用
いる半導体レーザ素子111のみが異なる。第3図に本
実施−に用いた半導体レーザ素子111の構成を示す。
This embodiment shows a single-axis mode semiconductor laser device that performs phase modulation. The configuration of the device is similar to that shown in FIG. 1 for the first embodiment, except for the semiconductor laser element 111 used when performing phase modulation. FIG. 3 shows the configuration of the semiconductor laser device 111 used in this embodiment.

この半導体レーザ素子も原則的に第1の実施例で用いた
ものと同じであるが、異なる点は、p型InPり2ラド
層205及びp+型InGaAsPキヤ、プ層206を
エピタキシャル成長する前に、変調領域210に相当す
る部分のInGaAsP活性層204を除去した点であ
る。従って変調領域210の光導波路層は光閉じ込め層
203からのみ成っている。この構造の単一軸モード半
導体レーザにおいても、レーザ領域211に電流を注入
すれば回折格子202のブラッグ波長近傍で波長的15
5μmで単一軸モード発振する。レーザ領域211でレ
ーザ発振したレーザ光は変調領域210の光閉じ込め層
203を光導波路として伝搬し、反射防止膜209を通
って出射する。ここで光閉じ込め層203の組成のバン
ドギャップは波長で約13μm。
This semiconductor laser device is basically the same as that used in the first embodiment, but the difference is that before epitaxially growing the p-type InP layer 205 and the p + type InGaAsP layer 206, This is because the portion of the InGaAsP active layer 204 corresponding to the modulation region 210 has been removed. Therefore, the optical waveguide layer of the modulation region 210 consists only of the optical confinement layer 203. Even in a single-axis mode semiconductor laser with this structure, if a current is injected into the laser region 211, the wavelength will be 15% near the Bragg wavelength of the diffraction grating 202.
It oscillates in a single axis mode at 5 μm. The laser light oscillated in the laser region 211 propagates through the optical confinement layer 203 of the modulation region 210 as an optical waveguide, and is emitted through the antireflection film 209. Here, the band gap of the composition of the optical confinement layer 203 is approximately 13 μm in terms of wavelength.

活性層の組成のパンrギヤ、7aは波長で約155μm
であるため、変調領域210の光閉じ込め層203では
レーザ光はほとんど損失を受けない。ところで光閉じ込
め層203の屈折率は変調領域210に注入する電流に
よって変化する。つまシ注入電流を増加させると光閉じ
込め層203内のキャリア密度が増加し、プラズマ効果
によシ光閉じ込め層203の屈折率が下る。     
            1..7このように変調領域
210への注入電流を変化させる事によシ、変調領域2
10の光導波路である光閉じ込め層203の屈折率が変
わるため、反射防止膜209からの出射光の位相を制御
できる。
The active layer composition of the pan r gear 7a is approximately 155 μm in wavelength.
Therefore, the laser light suffers almost no loss in the optical confinement layer 203 of the modulation region 210. Incidentally, the refractive index of the optical confinement layer 203 changes depending on the current injected into the modulation region 210. When the injection current is increased, the carrier density in the optical confinement layer 203 increases, and the refractive index of the optical confinement layer 203 decreases due to the plasma effect.
1. .. 7 By changing the current injected into the modulation region 210 in this way, the modulation region 2
Since the refractive index of the optical confinement layer 203, which is the optical waveguide No. 10, changes, the phase of the light emitted from the antireflection film 209 can be controlled.

しかし、この実施例においても、変調領域210に注入
した変調器駆動電流131がレーザ領域211の活性層
204中にまでまわり込んで生じるレーザ領域211の
活性層204内のキャリア密度の変化、あるいは反射防
止膜209及び外部素子からの反射光の影響等により、
レーザ領域211での発振周波数等が変動する。
However, also in this embodiment, the modulator drive current 131 injected into the modulation region 210 wraps around into the active layer 204 of the laser region 211, resulting in a change in carrier density in the active layer 204 of the laser region 211, or a change in carrier density in the active layer 204 of the laser region 211. Due to the influence of reflected light from the prevention film 209 and external elements, etc.
The oscillation frequency and the like in the laser region 211 fluctuate.

そこで、第1図において、レーザ領域211に変調電流
129とは一定の振幅比関係及び一定の位相関係を有す
る制御電流124を加え、高速変調時の発振周波数の変
動を抑制する。この構造の単一軸モード半導体レーザ装
置において、2Gb/IIの変調信号を第2の直流電流
130と共に変調領域210に加え、変調電流129と
は一定の振幅比関係及び一定の位相関係を有する制御電
流124を第1の直流電流125と共に加えた。その結
果、発振スペクトルの周波数半値全幅を約10MHzと
狭い状態に維持したまま、2Gb/aの位相変調が実現
できた。
Therefore, in FIG. 1, a control current 124 having a constant amplitude ratio relationship and a constant phase relationship with the modulation current 129 is added to the laser region 211 to suppress fluctuations in the oscillation frequency during high-speed modulation. In the single-axis mode semiconductor laser device having this structure, a 2Gb/II modulation signal is applied to the modulation region 210 together with the second DC current 130, and a control current having a constant amplitude ratio relationship and a constant phase relationship with the modulation current 129. 124 was applied together with the first DC current 125. As a result, phase modulation of 2 Gb/a was achieved while keeping the full width at half maximum of the frequency of the oscillation spectrum as narrow as about 10 MHz.

本発明1cおいては以上の実施例の他にもさまざ壕な変
形が可能である。
In addition to the above-described embodiments, the present invention 1c can be modified in various ways.

前記実施例の単一軸モード半導体レーザ装置の構成にお
いては、変調信号の位相と極性を変えるために、まず移
相回路103で位相を変え、極性反転回路104で変調
信号の極性を変えたが、この順序は逆でもよく、極性反
転回路104の後に移相回路103を用いてもよら。ま
た半導体レーザ素子111のレーザ領域211に電流を
注入する系に、移相回路103、極性反転回路104を
用いてもよい。
In the configuration of the single-axis mode semiconductor laser device of the above embodiment, in order to change the phase and polarity of the modulation signal, the phase is first changed by the phase shift circuit 103, and the polarity of the modulation signal is changed by the polarity inversion circuit 104. This order may be reversed, and the phase shift circuit 103 may be used after the polarity inversion circuit 104. Further, the phase shift circuit 103 and the polarity inversion circuit 104 may be used in a system for injecting current into the laser region 211 of the semiconductor laser element 111.

さらに、半導体レーザ素子に電流を注入する駆動回路を
1つにすることもできる。この場合には  。
Furthermore, the number of drive circuits for injecting current into the semiconductor laser element can be reduced to one. In this case.

駆動回路を変調信号発生器の後に接続し、変調電流を適
当な分岐比を有する分岐回路102で2分し、いずれか
一方の変調電流の極性及び位相を変化させて、2つの変
調電流を直流バイアス電流とともニ半導体レーザ素子に
加えればよい。
A drive circuit is connected after the modulation signal generator, the modulation current is divided into two by a branch circuit 102 having an appropriate branching ratio, and the polarity and phase of one of the modulation currents is changed to convert the two modulation currents into DC. It may be applied to two semiconductor laser elements together with a bias current.

以上実施例においては、発振波長155μm帯の単一軸
モード半導体レーザ装置を示したが、発振波長はこれに
限らず、例えば、組成のエネルギーギヤ、プが波長で1
3μmの活性層、組成のエネルギーギャップが波長で1
1μmの光閉じ込め層を用いて、回折格子202の周期
を約2000X Kすれば発振波長13μmの単一軸モ
ード半導体レーザ装置が得られる。
In the above embodiments, a single-axis mode semiconductor laser device with an oscillation wavelength of 155 μm was shown, but the oscillation wavelength is not limited to this.
3μm active layer, energy gap of composition is 1 in wavelength
By using a 1 μm optical confinement layer and setting the period of the diffraction grating 202 to approximately 2000×K, a single-axis mode semiconductor laser device with an oscillation wavelength of 13 μm can be obtained.

また、用いる半導体材料もI nP/I nGaAsP
系に限らず、例えばAtGaAs/GaAs等でもよい
In addition, the semiconductor materials used are InP/InGaAsP.
The material is not limited to the type, and may be, for example, AtGaAs/GaAs.

また、上記実施例では回折格子202が活性層204の
下の光閉じ込め層203とInP基板201の境界に形
成した単一軸モード半導体レーザ装置を示したが、回折
格子202を形成する位置はこの場所に限らず、例えば
活性層204の上に光閉じ込め層203を形成し、光閉
じ込め層203とp型1nPクラッド層205との境界
に形成してもよい。また、光閉じ込め層203と活性層
204との間に例えばInPからなる中間層を入れても
よい。更に、実施例ではレーザ領域211に所謂分布帰
還型の半導体レーザを形成した単一軸モード半導体レー
ザ装置を示ジ  したが、レーザ領域211は分布反射
型の半導体レーザからなっていてもよい。その場合、レ
ーザ領域211は分布反射型半導体レーザの活性領域と
分布反射領域の2つの領域からなり、変調領域210は
この分布反射領域と接続することになる。。
Further, in the above embodiment, a single-axis mode semiconductor laser device is shown in which the diffraction grating 202 is formed at the boundary between the optical confinement layer 203 under the active layer 204 and the InP substrate 201, but the position where the diffraction grating 202 is formed is at this location. For example, the optical confinement layer 203 may be formed on the active layer 204 and formed at the boundary between the optical confinement layer 203 and the p-type 1nP cladding layer 205. Further, an intermediate layer made of, for example, InP may be inserted between the optical confinement layer 203 and the active layer 204. Further, in the embodiment, a single-axis mode semiconductor laser device is shown in which a so-called distributed feedback type semiconductor laser is formed in the laser region 211, but the laser region 211 may be formed of a distributed reflection type semiconductor laser. In that case, the laser region 211 consists of two regions, an active region and a distributed reflection region of a distributed reflection type semiconductor laser, and the modulation region 210 is connected to this distributed reflection region. .

本発明の実施例!ICおいて、第1の電極207と第2
の電極208とはキャップ層206よシ深い溝213に
よって分離されているが、電極の分離方法はとの方法に
限らず、例えば電極間をイオンミリング法等を用いて電
気的に絶縁してもよい。
Example of the present invention! In the IC, the first electrode 207 and the second
The electrode 208 is separated from the cap layer 206 by a groove 213 deeper than the cap layer 206, but the electrode separation method is not limited to the above method. good.

さらに、変調領域210側端面の反射防止膜209とし
て窒化シリコン膜によって反射を抑制した構造としたが
、このコーティングする膜として酸化シリコン膜等でも
よく、また、それらの多層膜からなりてもよい。更に、
反射抑制構造として、変調領域210側の端面付近で光
導波路が途中で途切れた所謂ウィンドウ構造であっても
よい。
Further, although the anti-reflection film 209 on the side end face of the modulation region 210 is configured to suppress reflection by using a silicon nitride film, the coating film may be a silicon oxide film or the like, or may be composed of a multilayer film thereof. Furthermore,
The reflection suppressing structure may be a so-called window structure in which the optical waveguide is interrupted in the vicinity of the end face on the modulation region 210 side.

(発明の効果) 本発明による単一軸モード半導体レーザ装置によれば、
2Gb/aの高速変調時においても発振スペクトルの半
値幅が3〜4 GHz程度と狭いため、光   ′ファ
イバの分散の影響をほとんど受けず、長距離大容量の光
通信が可能となる。
(Effects of the Invention) According to the single-axis mode semiconductor laser device according to the present invention,
Even during high-speed modulation of 2 Gb/a, the half-width of the oscillation spectrum is as narrow as about 3 to 4 GHz, making long-distance, high-capacity optical communication possible with almost no influence from dispersion of optical fibers.

また、外部変調器を用いた場合には光源と外部変調器と
の結合損失が大きいが、本発明による単一モード半導体
レーザ装置では半導体レーザと変調器との間の結合損失
が小さいため、出力の大きな変調信号が得られ、よシ長
距離の光フアイバ伝送が可能となる。例えば第1の実施
例で示した単一軸モード半導体レーザ装置を用いれば、
1100kを超える伝送速度2Gb/sの光フアイバ伝
送も実現できる。
In addition, when an external modulator is used, the coupling loss between the light source and the external modulator is large, but in the single mode semiconductor laser device according to the present invention, the coupling loss between the semiconductor laser and the modulator is small, so the output A large modulated signal can be obtained, making long-distance optical fiber transmission possible. For example, if the single-axis mode semiconductor laser device shown in the first embodiment is used,
Optical fiber transmission with a transmission rate of 2 Gb/s exceeding 1100 k can also be achieved.

更に本発明による単一モード半導体レーザ装置は高速変
調時でも発振スペクトルが狭いと云う特徴を生かして、
光へテロダイン通信用の光源兼変調器として使用でき、
第1の実施例で示した構造のものは振幅変調による光ヘ
テロダイン通信方式に1第2の実施例で示した構造のも
のは位相変調による光ヘテロダイン通信方式に使用でき
る効果を有するものである。
Furthermore, the single mode semiconductor laser device according to the present invention takes advantage of the characteristic that the oscillation spectrum is narrow even during high-speed modulation.
Can be used as a light source and modulator for optical heterodyne communication,
The structure shown in the first embodiment can be used in an optical heterodyne communication system using amplitude modulation, and the structure shown in the second embodiment can be used in an optical heterodyne communication system using phase modulation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示すブロック図、第2
図は第1の実施例に用いた半導体レーザ素子の断面図、
第3図は第2の実施例に用いた半導体レーザ素子の断面
図である。 図において、101・・・変調信号発生器、102・・
・分岐回路、103・・・移相回路、104・・・極性
反転回路、105・・・第1の駆動回路、106・・・
第2の駆動回路、107・・・第1の通流電源、108
・・・第1の混合回路、109・・・第2の混合回路、
110第2の直流電源、111・・・半導体レーザ素子
、202・・・回折格子、203・・’n型InGaA
IIP光閉じ込め層、204− InGaAsP活性層
、207・・・第1の電極、208・・・第2の電極、
209・・・反射防止膜、210・・・変調領域、21
1・・・レーザ領域、212・・・共通電極 特許出願人 1日本電気株式会社 代 理 人  弁理士 内 原   晋7”’ y−”
”’ ”l)’ 。 \t、・′ 第2図
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the semiconductor laser device used in the first example.
FIG. 3 is a cross-sectional view of the semiconductor laser device used in the second embodiment. In the figure, 101...modulation signal generator, 102...
- Branch circuit, 103... Phase shift circuit, 104... Polarity inversion circuit, 105... First drive circuit, 106...
Second drive circuit, 107...first current power supply, 108
...first mixing circuit, 109...second mixing circuit,
110 second DC power supply, 111 semiconductor laser element, 202 diffraction grating, 203 n-type InGaA
IIP optical confinement layer, 204- InGaAsP active layer, 207... first electrode, 208... second electrode,
209... Antireflection film, 210... Modulation region, 21
1... Laser area, 212... Common electrode patent applicant 1 NEC Corporation Representative Patent attorney Susumu Uchihara 7"'y-"
”'”l)'.\t,・' Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)活性層の近くに回折格子を有するレーザ領域及び
このレーザ領域に光学的に結合させて光導波路層を埋め
こんだ変調領域、並びにこの変調領域の端面に設けられ
た光の反射抑制構造を備えた半導体レーザ素子と、 前記半導体レーザ素子の変調領域に変調信号電流を加え
て半導体レーザ素子の出射光を変調する手段と、 前記変調信号電流とは一定の振幅比関係及び一定の位相
差関係を有する制御電流を前記半導体レーザ素子のレー
ザ領域に加えて変調された出射光のスペクトルの拡がり
を抑える手段とを具備することを特徴とする単一軸モー
ド半導体レーザ装置。
(1) A laser region having a diffraction grating near the active layer, a modulation region optically coupled to this laser region and embedded with an optical waveguide layer, and a light reflection suppressing structure provided on the end face of this modulation region a semiconductor laser device comprising: means for applying a modulation signal current to a modulation region of the semiconductor laser device to modulate the emitted light of the semiconductor laser device; and the modulation signal current has a certain amplitude ratio relationship and a certain phase difference. 1. A single-axis mode semiconductor laser device, comprising means for applying a related control current to a laser region of the semiconductor laser element to suppress spectrum broadening of modulated emitted light.
JP22862684A 1984-10-30 1984-10-30 Single axial-mode semiconductor laser device Pending JPS61107781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22862684A JPS61107781A (en) 1984-10-30 1984-10-30 Single axial-mode semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22862684A JPS61107781A (en) 1984-10-30 1984-10-30 Single axial-mode semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61107781A true JPS61107781A (en) 1986-05-26

Family

ID=16879285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22862684A Pending JPS61107781A (en) 1984-10-30 1984-10-30 Single axial-mode semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61107781A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100385A (en) * 1988-08-10 1990-04-12 Shildon Ltd Method of generating control light signal and generator
JPH02236989A (en) * 1989-03-09 1990-09-19 Matsushita Electric Ind Co Ltd Cooker
JPH04137778A (en) * 1990-09-28 1992-05-12 Nec Corp Direct modulation method for semiconductor laser
JP2014168097A (en) * 2014-05-12 2014-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical transmission/reception system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550874A (en) * 1991-08-22 1993-03-02 Kotobukiya Furonte Kk Floor carpet for automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550874A (en) * 1991-08-22 1993-03-02 Kotobukiya Furonte Kk Floor carpet for automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100385A (en) * 1988-08-10 1990-04-12 Shildon Ltd Method of generating control light signal and generator
JPH02236989A (en) * 1989-03-09 1990-09-19 Matsushita Electric Ind Co Ltd Cooker
JPH04137778A (en) * 1990-09-28 1992-05-12 Nec Corp Direct modulation method for semiconductor laser
JP2014168097A (en) * 2014-05-12 2014-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical transmission/reception system

Similar Documents

Publication Publication Date Title
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
JPS6155981A (en) Semiconductor light-emitting element
JPH07307530A (en) Polarizable and modulatable semiconductor laser
JPH0632332B2 (en) Semiconductor laser device
JPS5844785A (en) Semiconductor laser
US4743087A (en) Optical external modulation semiconductor element
US20060104321A1 (en) Q-modulated semiconductor laser with electro-absorptive grating structures
US5155737A (en) Semiconductor wavelength conversion device
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JPH07231134A (en) Semiconductor laser capable of modulating polarization, and application thereof
Suematsu et al. Integrated optics approach for advanced semiconductor lasers
JP2018060974A (en) Semiconductor optical integrated element
JPS61168980A (en) Semiconductor light-emitting element
JPS5878488A (en) Distributed feedback type semiconductor laser
WO2015085544A1 (en) Laser
JP3382471B2 (en) Semiconductor optical device and optical network using the same
JP4766775B2 (en) Terahertz light generation device and terahertz light generation method
JPS61107781A (en) Single axial-mode semiconductor laser device
JP3227701B2 (en) Mode-locked semiconductor laser
US6356382B1 (en) Optical wavelength converter with active waveguide
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP3397511B2 (en) Semiconductor laser capable of polarization modulation
JPS63186210A (en) Semiconductor integrated light modulating element
JP3270648B2 (en) Semiconductor laser device and optical transmitter using the same