JPS61107666A - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JPS61107666A
JPS61107666A JP59229277A JP22927784A JPS61107666A JP S61107666 A JPS61107666 A JP S61107666A JP 59229277 A JP59229277 A JP 59229277A JP 22927784 A JP22927784 A JP 22927784A JP S61107666 A JPS61107666 A JP S61107666A
Authority
JP
Japan
Prior art keywords
fuel
water
tank
fuel cell
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59229277A
Other languages
Japanese (ja)
Inventor
Tsutomu Tsukui
津久井 勤
Saburo Yasukawa
安川 三郎
Toshio Shimizu
利男 清水
Ryota Doi
良太 土井
Motoo Yamaguchi
元男 山口
Shuzo Iwaasa
岩浅 修蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59229277A priority Critical patent/JPS61107666A/en
Priority to US06/792,888 priority patent/US4629664A/en
Priority to CA000494271A priority patent/CA1257647A/en
Priority to EP85113834A priority patent/EP0181569B1/en
Priority to DE8585113834T priority patent/DE3582716D1/en
Publication of JPS61107666A publication Critical patent/JPS61107666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To continue safety operation for a long time by adjusting flow rate based on the liquid level of mixed fuel and fuel concentration or cell output. CONSTITUTION:In a fuel cell having, for example, an output of 12V, 50W, a circulation flow rate in a fuel circulation flow passage is set to 700cc/min. When the liquid level is lowered, about 30cc of water a time is supplied to the fuel circulation passage from a tank 101 by the signal of a liquid level sensor 12. When fuel concentration is decreased to below 1mol/l, about 10cc of fuel a time is supplied to the fuel circulation passage by the signal of a methanol concentration sensor 13. Even if load current or operation temperature of the fuel cell is varied, the fuel cell is safely operated for a long time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体を用いた燃料電池に係り、特に該電池の長
時間安定な運転を可能とする燃料や水の供・給に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell using a liquid, and particularly relates to the supply and supply of fuel and water that enable long-term stable operation of the cell.

〔発明の背景〕[Background of the invention]

第2図は液体燃料電池の単位電池1の原理構成図である
。同図に示すように、電極2は燃料極2−1と酸化剤極
2−2からなシ、この両電極間に電解質室3が構成され
ている。燃料極2−1に隣接して燃料6が送られる燃料
室4、また酸化剤極2−2に隣接して゛酸化剤7が送ら
れる酸化剤室5が構成されている。燃料6としてはメタ
ノールやギ酸、ホルムアルデヒド、ヒドラジンのような
液体が用いられる。酸化剤7としては酸素あるいは酸素
を含むガス(一般には空気)が用いられる。
FIG. 2 is a diagram showing the basic structure of a unit cell 1 of a liquid fuel cell. As shown in the figure, the electrode 2 consists of a fuel electrode 2-1 and an oxidizer electrode 2-2, and an electrolyte chamber 3 is formed between these two electrodes. A fuel chamber 4, into which fuel 6 is sent, is arranged adjacent to the fuel electrode 2-1, and an oxidizer chamber 5, into which oxidizer 7 is sent, is arranged adjacent to the oxidizer electrode 2-2. As the fuel 6, a liquid such as methanol, formic acid, formaldehyde, or hydrazine is used. As the oxidizing agent 7, oxygen or a gas containing oxygen (generally air) is used.

また、燃料極2−1では、メタノールやギ酸、ホルムア
ルデヒド等が燃料の場合には炭酸ガスが、またヒドラジ
ンが燃料の場合には窒素が排出系81へへの中<tまれ
る。一方、酸化剤極2−2では排出系82′@、の中に
電解質が酸性の場合生成水が含まれる。なお、電解質が
塩基性の場合には燃料極2−1で水が生成する。
Further, in the fuel electrode 2-1, carbon dioxide gas is emitted into the exhaust system 81 when the fuel is methanol, formic acid, formaldehyde, etc., and nitrogen is emitted into the exhaust system 81 when the fuel is hydrazine. On the other hand, in the oxidizer electrode 2-2, produced water is contained in the discharge system 82'@ when the electrolyte is acidic. Note that when the electrolyte is basic, water is generated at the fuel electrode 2-1.

第2図のような単位電池1の構成において、電解質室3
内の電解液として硫酸や力性カリのような電解質の水溶
液を用いる場合には液が電解質室3からもれて電極にも
よく浸透するので良好な性能が得られ、一般に採用され
ている。この場合、電解液が燃料供給系側にもれ出すの
で、あらかじめ電解液と燃料との混合した液(アノライ
ト)を供給する必要があるため、第3図のように、これ
を供給するための循環路(ポンプ9で循環される)とこ
の循環路に燃料を燃料タンク1oからパルプ11を通し
て供給する系とをそなえている。
In the configuration of the unit battery 1 as shown in FIG.
When an aqueous solution of an electrolyte such as sulfuric acid or potassium is used as the electrolyte in the chamber, the solution leaks from the electrolyte chamber 3 and permeates well into the electrodes, resulting in good performance and is generally used. In this case, the electrolyte leaks into the fuel supply system, so it is necessary to supply a mixture of electrolyte and fuel (anorite) in advance. It is provided with a circulation path (circulated by a pump 9) and a system for supplying fuel from the fuel tank 1o through the pulp 11 to this circulation path.

また、上記の電解液の代りに高分子電解質などを電解質
室3中の電解質として使用し、運転に最適な濃度に調節
された燃料と水との混合燃料液を第3図と同様に循環す
る路と、この循環路に燃料タンク10から燃料を供給す
る系とを備えたものもある。
In addition, instead of the electrolyte mentioned above, a polymer electrolyte or the like is used as the electrolyte in the electrolyte chamber 3, and a mixed fuel liquid of fuel and water adjusted to the optimum concentration for operation is circulated in the same manner as shown in Fig. 3. Some of them are equipped with a circulation path and a system for supplying fuel from the fuel tank 10 to this circulation path.

なお、第3図に示すように循環路の燃料室4を通過後に
は生成ガス811を分離して、残9の液812が再び循
環される。
As shown in FIG. 3, after passing through the fuel chamber 4 of the circulation path, the produced gas 811 is separated and the remaining nine liquids 812 are circulated again.

ところで、従来は上記の燃料供給方式において第3図に
示す1つの燃料タンク10から、一定の混合割合で混合
された燃料混液な循環路中に供給していた。しかるに、
燃料を含む循環液6中の燃料と水の消費割合がいつも一
定とは限らないことが明らかとなった。これは、負荷の
大きさが変化した場合、負荷が一定でも運転時の燃料電
池の温□、6化、え場合、工、1.。1ゎいゃ給すう、
−;気の温度や湿度が変化した場合のいずれの場合にも
言えることである。
By the way, conventionally, in the above-mentioned fuel supply system, a fuel mixture mixed at a constant mixing ratio was supplied into the circulation path from one fuel tank 10 shown in FIG. However,
It has become clear that the consumption ratio of fuel and water in the circulating fluid 6 containing fuel is not always constant. This means that if the load changes, even if the load is constant, the temperature of the fuel cell during operation will change. . I'll give you 1.
−; This applies to any case where the temperature or humidity of the air changes.

このことを更に詳説する。液体を燃料とする燃料電池に
おいては、燃料供給系に燃料と水の2成分は必ず含まれ
ておシ、更にこの他に電解液があシ、普通この3成分で
使用されることが多い。これらの3成分の中で、消費さ
れるのは燃料と水であり、通、常は電解液は消費を考慮
しなくてよい。
This will be explained in more detail. In a fuel cell that uses liquid as fuel, the fuel supply system always contains two components, fuel and water, and in addition to these, an electrolyte is also included, and these three components are often used. Among these three components, fuel and water are consumed, and consumption of the electrolyte solution does not normally need to be considered.

ところで、燃料の消費と水の消費の割合は相違する。By the way, the ratio of fuel consumption and water consumption is different.

燃料の消費と水の消費の割合が同一にならない原因につ
いて述べると、第1に、燃料電池の起電反応において、
燃料極と酸化剤極とでは電解質が酸性かアルカリ性かに
よっていずれの電極で起るかの違いがあるものの、必ず
一方の電極で水の消費があり他方の電極で水の生成があ
る。すなわち、酸性電解質の場合は酸化剤極で水が生成
し、燃料極で水が消費され、アルカリ性電解質の場合は
その逆になる。この場合、原理的には、トータルの反応
からみれば、燃料の種類に応じて1モルの燃゛  料に
対して1モルか2モルの水が生成することになる。けれ
ども、実際上は水の消費と生成がそれぞれ別の電極で起
こることから、電解質室を介して水バランスを保つよう
に水が移動することを考慮しても、水の飛散が大きいこ
と又は電解質室を介しての水バランスが十分に保たれる
のが難しいことによって、一方の電極で水不足を生じ他
方の電極で水過剰を生じる。
To explain the reasons why the ratio of fuel consumption and water consumption is not the same, firstly, in the electromotive reaction of the fuel cell,
Although there is a difference in which electrode occurs between the fuel electrode and the oxidizer electrode depending on whether the electrolyte is acidic or alkaline, water is always consumed at one electrode and water is generated at the other electrode. That is, in the case of an acidic electrolyte, water is produced at the oxidizer electrode and water is consumed at the fuel electrode, and vice versa in the case of an alkaline electrolyte. In this case, in principle, from the perspective of the total reaction, 1 or 2 moles of water will be produced per 1 mole of fuel, depending on the type of fuel. However, in practice, water consumption and generation occur at separate electrodes, so even if we take into account the movement of water through the electrolyte chamber to maintain water balance, there may be large splashes of water or electrolyte Difficulties in maintaining sufficient water balance across the chambers result in a water deficit at one electrode and a water surplus at the other electrode.

のみならず、電極間を移動しての水バランスがうまくい
かないことによる水の過剰および不足が運転温度や負荷
電流などに左右されやすいこと、更に、燃料極で電流に
変換されない余剰の燃料が電解質室を通って酸化剤極に
浸入し燃料の直接酸化が起きたり、電解質室内のイオン
の移動にともなって水が移動する(例えば酸性電解質に
おけるヒドロニウムイオンとしての移動)などの現象が
みられ、これらの量が負荷電流や燃料電池の運転温度に
よシ変化すること、更には酸化剤に伴って一緒に酸化剤
極から蒸発して持ち出される水分の持ち出し量が酸化剤
の供給量と温度や湿度によって違ってくること等がある
In addition, excess or shortage of water due to poor water balance between the electrodes is likely to be affected by operating temperature, load current, etc. Furthermore, surplus fuel that is not converted into electric current at the fuel electrode may be absorbed into the electrolyte chamber. Phenomena such as direct oxidation of the fuel by penetrating the oxidizer through the oxidizer electrode, or movement of water with the movement of ions in the electrolyte chamber (e.g. movement as hydronium ions in acidic electrolytes) are observed. The amount of water changes depending on the load current and the operating temperature of the fuel cell, and furthermore, the amount of water that evaporates and is taken out from the oxidizer electrode along with the oxidizer depends on the amount of oxidizer supplied, temperature, and humidity. There are some things that differ depending on the situation.

以上のように、燃料と水の消費割合が相違するため、従
来方式の如く一つのタンクから一定混合割合の燃料と水
との混液を循環路中に供給するだけでは、燃料室を含む
燃料循環系中の燃料と水の2成分の量の変化に対して1
成分の量の変化のみにしか対処し得ないので、十分な燃
料および水の供給制御ができず、短時間はともかく、長
時間に亘シ燃料電池の安定な運転は不可能であった。
As mentioned above, since the consumption ratio of fuel and water is different, it is not possible to simply supply a mixture of fuel and water at a fixed mixing ratio from one tank to the circulation path as in the conventional system. 1 for changes in the amounts of the two components, fuel and water, in the system.
Since it can only deal with changes in the amounts of components, it is not possible to control the supply of fuel and water sufficiently, making it impossible to operate the fuel cell stably over a long period of time, if not for a short period of time.

すなわち、燃料循環系内の燃料が濃くなシすぎて発熱が
多くなシ出力が低下したシ、または燃料の供給が追いつ
かなくなって燃料が薄くなシすぎたシする状況が生じて
いた。
That is, situations have arisen in which the fuel in the fuel circulation system is too rich, causing a lot of heat to be generated and the output is reduced, or the fuel supply cannot keep up and the fuel is too thin.

従来技術に関する文献: 特開昭57−182975号公報 特開昭58−28175  号公報 〔発明の目的〕 本発明の目的は、液体燃料電池において、燃料と水の消
費割合の相違にもかかわらず、長時間に1   亘って
安定な運転を可能ならしめるよう燃料循環系の燃料と水
との補給に関し改善を行うことICある。
Documents related to the prior art: JP-A-57-182975 JP-A-58-28175 [Object of the Invention] The object of the present invention is to solve the problem in liquid fuel cells, despite the difference in consumption ratio of fuel and water. The IC needs to improve the supply of fuel and water in the fuel circulation system to enable stable operation over long periods of time.

〔発明の概要〕[Summary of the invention]

本発明は、燃料供給のための燃料および水を含む混合燃
料液の循環系を有する液体燃料電池において、水または
水り、チな水−燃料混合液の入っている第1のタンクと
、燃料または燃料リッチな水−燃料混合液の入っている
第2のタンクと、前記循環系内の前記混合燃料液の液面
レベルを検出する第1の検出器と、前記循環系内の混合
燃料液の燃料濃度または燃料電池出力を検出する第2の
検出器と、前記第1の検出器の出力に応答して前記第1
のタンクの内容物の前記循環系内への流入を調節する弁
手段と、前記第2の検出器の出力に応答して前記第2の
タンクの内容物の前記循環系内への流入を調節する弁手
段とを備えたことを特徴とする。
The present invention provides a liquid fuel cell having a circulation system for a mixed fuel liquid containing fuel and water for fuel supply, including a first tank containing water or a water-fuel mixture; or a second tank containing a fuel-rich water-fuel mixture, a first detector for detecting a level of the mixed fuel liquid in the circulation system, and a first detector for detecting the liquid level of the mixed fuel liquid in the circulation system; a second detector for detecting the fuel concentration or fuel cell output; and a second detector for detecting the fuel concentration or fuel cell output;
valve means for regulating the flow of the contents of the second tank into the circulatory system in response to the output of the second detector; The invention is characterized by comprising a valve means for.

以下、これを説明する。This will be explained below.

燃料は燃料の循環系内においてあまり濃くする。11□
ケい。□、5、ツェヵ8.いゎやヮ。  。
The fuel should not be too concentrated in the fuel circulation system. 11□
Kei. □, 5, Tseka 8. Yay! .

燃料が燃料極から酸化剤極に電解質を浸透して移動し直
接酸化によシ消費することとなり燃料利用率を大幅に低
下させることになるためである。通常、燃料循環系内の
燃料の濃度は0.3〜2モル/l程度であって燃料循環
系内の燃料の絶対量は少ない。
This is because the fuel permeates the electrolyte from the fuel electrode to the oxidizer electrode and is consumed by direct oxidation, resulting in a significant reduction in fuel utilization. Normally, the concentration of fuel within the fuel circulation system is about 0.3 to 2 mol/l, and the absolute amount of fuel within the fuel circulation system is small.

従って本発明においては、燃料供給のための循環路中の
燃料濃度検出は燃料濃度センナを用いるか、又は燃料電
池の出力電圧あるいは電流が燃料が少なくなると低下す
ることからこれを検出することによって行い、これらの
値が基準値以下になると燃料タンクのパルプを開く信号
を出して燃料循環系に燃料を供給する。
Therefore, in the present invention, the fuel concentration in the circulation path for fuel supply is detected by using a fuel concentration sensor or by detecting the fact that the output voltage or current of the fuel cell decreases when the fuel becomes low. When these values fall below the reference values, a signal is issued to open the pulp in the fuel tank, supplying fuel to the fuel circulation system.

また、水の供給について言うと、一般に燃料循還系内の
水の割合は多いため、そこに一定量の水があるかないか
で判断するのがよく、従って燃料電池内の燃料循環系の
一部に液面レベルセンサを置き、液面が基準レベル以下
に低下したことを検出したとき水供給用タンクのパルプ
を開く信号を発して燃料循環系に供給する。
Regarding water supply, since the proportion of water in the fuel circulation system is generally large, it is best to judge whether there is a certain amount of water there. A liquid level sensor is placed in the fuel tank, and when it detects that the liquid level has fallen below a reference level, it issues a signal to open the pulp in the water supply tank and supply the water to the fuel circulation system.

本発明においては、燃料タンクと水タンクとの2種類の
タンクを備えることになるが、燃料タンクには燃料のみ
を、水タンクには水のみを入れておいてもよい。しかし
、より好ましくは、必要な燃料と水の量を各々のタンク
に分配してそれぞれのタンク中に燃料と水との混合液を
入れておく方が燃料電池の運転にとって好都合である。
In the present invention, two types of tanks, a fuel tank and a water tank, are provided, but the fuel tank may contain only fuel, and the water tank may contain only water. However, more preferably, it is more convenient for the operation of the fuel cell to distribute the required amounts of fuel and water to each tank and to store a mixture of fuel and water in each tank.

即ち、燃料タンクから燃料のみを燃料循環系に供給した
場合、循環量に制約があるため一時期局部的に燃料濃度
の高い部分ができて、その部分では燃料の利用率が下が
るなど好ましくない状況が起り得るので、燃料に少し水
も混合した混合燃料を燃料タンクに入れておくことで上
記の問題点を解決できる。この混合燃料の水と燃料のモ
ル比は5以下で且つ零(即ち燃料のみ)以上の範囲がよ
い。この範囲の選択の目安は、燃料電池の運転において
平均的に消費する水と燃料の量からその割合に近い値を
とることである。
In other words, if only fuel is supplied from the fuel tank to the fuel circulation system, there are restrictions on the amount of circulation, so there will be areas where the fuel concentration is locally high for a period of time, resulting in unfavorable situations such as a decrease in the fuel utilization rate in those areas. This problem can be solved by storing a fuel mixture containing a little water in the fuel tank. The molar ratio of water to fuel in this mixed fuel is preferably in the range of 5 or less and 0 (ie, fuel only) or more. A guideline for selecting this range is to take a value close to the ratio of the amounts of water and fuel consumed on average during operation of the fuel cell.

また、水タンクから水のみを燃料循環系に供給した場合
にも上記同様、循環量に制約があるため一時期局部的に
今度は燃料濃度の低い部分ができて、その部分では燃料
不足となり燃料電池の性能を下げるなど好ましくない状
況が起9得るので、水に少し燃料を混合した混合燃料を
水タンクに入れておくことで上記の問題点を解決できる
。この混合燃料の燃料と水のモル比は1以下で且つ零(
即ち水のみ)以上の範囲がよい。この範囲の選択の目安
は燃料電池の燃料循環系の燃料の濃度とほぼ同じ程度の
濃度になるように燃料と水の割合をとることである。
In addition, even if only water is supplied from the water tank to the fuel circulation system, as described above, there is a restriction on the amount of circulation, so there will be a region with a low fuel concentration locally for a period of time, and there will be a fuel shortage in that region and the fuel cell This can lead to unfavorable situations such as deterioration of the performance of the engine, so the above problems can be solved by storing a mixed fuel mixture of water and a small amount of fuel in the water tank. The molar ratio of fuel and water in this mixed fuel is less than 1 and zero (
In other words, the range above (water only) is preferable. The standard for selecting this range is to set the ratio of fuel and water so that the concentration is approximately the same as the concentration of fuel in the fuel circulation system of the fuel cell.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図によシ説明する。これはメタ
ノールを燃料とし硫酸を電解質とする燃料電池で、電極
2(燃料極2−1.酸化剤極2−2)は多孔質のカーデ
ン板を基体とし、これにカー+fン粉体に白金系の物質
を担持した触媒を添着したものである。燃料室4には燃
料であるメタノールと希硫酸(これは水を轟然含む)の
混合液アノライトをボンデ9によシ循環させている。燃
料極2−1では生成ガス811として炭酸ガスが発生す
る。酸化剤7として空気を酸化剤室5に供給し、排出ガ
ス82の中には生成水が同時に含まれる。
An embodiment of the present invention will be explained with reference to FIG. This is a fuel cell that uses methanol as fuel and sulfuric acid as electrolyte. Electrode 2 (fuel electrode 2-1, oxidizer electrode 2-2) has a porous carbon plate as a base, and carbon powder and platinum are used as the base electrode. A catalyst supporting a system substance is attached. In the fuel chamber 4, a mixed liquid anolyte of methanol and dilute sulfuric acid (which contains a large amount of water) as fuel is circulated through a bonder 9. Carbon dioxide gas is generated as generated gas 811 at the fuel electrode 2-1. Air is supplied as the oxidizer 7 to the oxidizer chamber 5, and the exhaust gas 82 simultaneously contains produced water.

電極2の上端近傍の液面レベルしきい値に相当する液面
レベルに液面センサ12を燃料循環系路の一部内に設け
、これよシ液面が低下するとセンサが働いてパルプ11
1が開いて、水タンク101から必要量の水を燃料循環
系路中に供給するようになっている。
A liquid level sensor 12 is installed in a part of the fuel circulation system at a liquid level corresponding to the liquid level threshold near the upper end of the electrode 2, and when the liquid level decreases, the sensor operates to increase the pulp 11.
1 is opened to supply the necessary amount of water from the water tank 101 into the fuel circulation system.

更に、燃料循環系路中にメタノール濃度l mo4/1
に設定した電気化学反応を利用したメタノール濃度セン
サ13をセットし、この濃度より低下すれば、この濃度
センサよシの信号によってパルプ112を開いて燃料タ
ンク102よシ燃料循環系路中に燃料を供給するように
なっている。なお、パルプはポンプのようなものであっ
てもよい。
Furthermore, methanol concentration l mo4/1 in the fuel circulation system
A methanol concentration sensor 13 that uses an electrochemical reaction set to supply. Note that the pulp may be something like a pump.

第1図の構成を有する12V、50Wの出力を持つ燃料
電池において、燃料循環路中の循環流量は700 CC
/mlnにと9、液面が低下すると液面レベルセンサ1
2の信号によりタンク101より燃 □料循環路中に工
回自シ約30Ql:の水を供給するよ  □゛うにした
。また、メタノール濃度センサ13の1mol/lよυ
濃度低下の信号で燃料循環路中に1回当υ約100Hの
燃料を供給するようにした。
In a fuel cell with an output of 12V and 50W having the configuration shown in Fig. 1, the circulating flow rate in the fuel circulation path is 700 CC.
/mln9, when the liquid level drops, the liquid level sensor 1
At the signal No. 2, approximately 30 Ql of water was supplied from the tank 101 into the fuel circulation path. Also, 1 mol/l of the methanol concentration sensor 13 is υ
Approximately 100H of fuel was supplied into the fuel circulation path at a time when the concentration decreased.

なお、燃料電池運転時の燃料の濃度は常に1mol/l
である必要℃はなく、負荷電流の比較的大きい場合には
これよシ高い濃度で運転可能であるし、負荷電流が比較
的小さい場合には低い濃度で運転可能である。
The concentration of fuel during fuel cell operation is always 1 mol/l.
There is no need for the temperature to be 0.degree. C.; if the load current is relatively large, it is possible to operate at a higher concentration, and if the load current is relatively small, it is possible to operate at a lower concentration.

燃料の濃度の設定には、電気化学反応を利用する場合、
定電圧方式であれば電流値が濃度の関数となるので、設
定電流値を変化させればよい。また、電池電圧のレベル
でみる場合には、タンク内の燃料濃度の高い方の燃料の
供給量を増やすか、濃度り、チにして供給する方法など
を採用することができる。
When using an electrochemical reaction to set the fuel concentration,
If the constant voltage method is used, the current value becomes a function of the concentration, so it is sufficient to change the set current value. In addition, when looking at the level of battery voltage, it is possible to adopt a method such as increasing the amount of fuel supplied in the tank with higher fuel concentration, or increasing the concentration and supplying the fuel.

以上述べたように燃料のみの入ったタンクと水のみの入
りたタンクの2個のタンクを備えた燃料電池とすること
によって、負荷電流の変動や運転温度、雰囲気等の変動
に対しても安定な燃料電池の運転が可能となった。
As mentioned above, by creating a fuel cell with two tanks, one containing only fuel and the other containing only water, it is stable against fluctuations in load current, operating temperature, atmosphere, etc. It has become possible to operate fuel cells.

他の実施例を第4図に示す。この実施例では第1図と同
じ燃料電池において液面レベルセンナによって液間の低
下dL%らQ7’4とき不足量を供給する水タンク10
1中には、水のみの代シに水と燃料の混合した混合燃料
を入れである。燃料循環路中の燃料濃度が1 mu!I
Iであることから、水タンク101内の混合燃料はメタ
ノール濃度が1 mol/1になるように配合した。即
ちメタノールと水のmob比を約0.02にとった。
Another embodiment is shown in FIG. In this embodiment, in the same fuel cell as in FIG. 1, a water tank 10 supplies the insufficient amount when the liquid level decreases from dL% to Q7'4 by means of a liquid level sensor.
Instead of just water, put a mixed fuel mixture of water and fuel into the container. The fuel concentration in the fuel circulation path is 1 mu! I
I, the mixed fuel in the water tank 101 was blended so that the methanol concentration was 1 mol/1. That is, the mob ratio of methanol and water was set to about 0.02.

また、燃料循環路中の燃料濃度を測定する代シに、燃料
の濃度が小さくなれば燃料電池の出力電圧が低下するこ
とを利用して、この出力電圧、のレベルをチェックする
検出器15を設け、出力電圧レベルの低下がみられると
き検出器15からの信号により燃料タンク102のパル
プ112が開いて燃料を燃料循環系に供給する。この場
合、燃料タンク102中には燃料のみの代シに燃料と水
との・混液を入れてあり、これにより燃料循環路の局部
的、過渡的な燃料濃度の上昇を押えようとするものであ
る。燃料タンク102中の水とメタノールの混合割合は
モル比で2にとった。
In addition, instead of measuring the fuel concentration in the fuel circulation path, a detector 15 is installed that checks the level of the output voltage by taking advantage of the fact that the output voltage of the fuel cell decreases as the fuel concentration decreases. When a drop in the output voltage level is detected, a signal from the detector 15 causes the pulp 112 of the fuel tank 102 to open and supply fuel to the fuel circulation system. In this case, instead of only fuel, a mixture of fuel and water is placed in the fuel tank 102 to suppress local and transient increases in fuel concentration in the fuel circulation path. be. The mixing ratio of water and methanol in the fuel tank 102 was set at a molar ratio of 2.

この場合の両タンクの水と燃料の総容積は第1図で説明
した実施例の場合と同じである。
The total volumes of water and fuel in both tanks in this case are the same as in the embodiment described in FIG.

この実施例では両タンク101;102とも混合燃料を
入れているので、燃料循環系中の局部的。
In this embodiment, both tanks 101 and 102 contain mixed fuel, so the fuel is mixed locally in the fuel circulation system.

過渡的な燃料濃度のアンバランスな大幅に改善されるの
で、ポンプ9による燃料循環系の流量が少なくてすみ、
200αし’winに低減しても良好な燃料電池の性能
を示した。
Since the transient imbalance of fuel concentration is greatly improved, the flow rate of the fuel circulation system by the pump 9 can be reduced.
Good fuel cell performance was shown even when the value was reduced to 200α and 'win'.

更に他の実施例を第5図に示す。前記第4図と違うとこ
ろは、燃料循環路に燃料り、チの混合燃料をタンク10
2から供給するための信号を燃料電池の負荷電流の低下
に応じて取出すように、抵抗18を跨いで検出器16を
接続し、この検出器16からの信号によ・シバルブ11
2の開閉を行なわせるようにしていること、訃よび酸化
剤室5からの排出ガス82中の水分の全部あるいは一部
を回収器17により回収し、水リッチのタンク101に
戻す系を備えていることである。この場合には水回収装
置を備えているのでタンク101の容量を小さくするこ
とができる。
Still another embodiment is shown in FIG. The difference from the above figure 4 is that fuel is added to the fuel circulation path and the mixed fuel of
A detector 16 is connected across the resistor 18 so as to extract a signal to be supplied from the fuel cell valve 11 according to a decrease in the load current of the fuel cell.
2, and a system is provided for recovering all or part of the moisture in the exhaust gas 82 from the carcass and oxidizer chamber 5 using the recovery device 17 and returning it to the water-rich tank 101. It is that you are. In this case, since a water recovery device is provided, the capacity of the tank 101 can be reduced.

以上の実施例はメタノールを燃料とし、酸性電解質な用
いる燃料電池について述べたが、〔発明の概要〕で述べ
たように、タンク2個を備え、それぞれ中の混合燃料の
割合を選べば、メタノールを燃料としたアルカリ性型燃
料電池や、他のヒドラジン、ホルムアルデヒド等を燃料
とする燃料電池に本発明は容易に適用できるものである
In the above embodiment, a fuel cell using methanol as fuel and an acidic electrolyte was described, but as described in [Summary of the Invention], if two tanks are provided and the ratio of mixed fuel in each tank is selected, methanol The present invention can be easily applied to alkaline fuel cells using hydrazine, formaldehyde, etc. as fuel, and fuel cells using other hydrazine, formaldehyde, etc. as fuel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料電池の負荷電流の変化や運転温度
の変化、更には雰囲気の温度や湿度が変化した場合でも
、燃料と水の消費割合の相違にかかわらず、性能よく安
定な燃料電池の運転が長時間にわたって可能となる。
According to the present invention, even when the load current of the fuel cell changes, the operating temperature changes, and even when the ambient temperature and humidity change, the fuel cell can maintain good performance and stability regardless of the difference in the fuel and water consumption ratio. can be operated for long periods of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要図、第2図は燃料電池
の原理図、第3図は燃料循環系をもつ従来例の燃料電池
の原理図、第4図、第5図は本発明の他の実施例を示す
概要図を示す。       、72−1・・・燃料極
   2−2・・・酸化剤極3・・・電解質室    
4・・・燃料室5・・・酸化剤室    9・・・循環
用ポンプ12・・・液面レベルセンサ 13・・・燃料
濃度センサ15・・・電゛圧検出器  16・・・電流
検出器17・・・水回収器 101・・・水あるいは水リッチ混合燃料タンク1α2
・・・燃料あるいは燃料リッチ混合燃料タンク第2図 第3図 第5図
Figure 1 is a schematic diagram of an embodiment of the present invention, Figure 2 is a diagram of the principle of a fuel cell, Figure 3 is a diagram of the principle of a conventional fuel cell with a fuel circulation system, and Figures 4 and 5 are Figure 3 shows a schematic diagram illustrating another embodiment of the invention. , 72-1... Fuel electrode 2-2... Oxidizer electrode 3... Electrolyte chamber
4... Fuel chamber 5... Oxidizer chamber 9... Circulation pump 12... Liquid level sensor 13... Fuel concentration sensor 15... Voltage detector 16... Current detection Container 17...Water recovery device 101...Water or water-rich mixed fuel tank 1α2
...Fuel or fuel rich mixture fuel tank Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 1、燃料供給のための燃料および水を含む混合燃料液の
循環系を有する液体燃料電池において、水または水リッ
チな水−燃料混合液の入っている第1のタンクと、燃料
または燃料リッチな水−燃料混合液の入っている第2の
タンクと、前記循環系内の前記混合燃料液の液面レベル
を検出する第1の検出器と、前記循環系内の混合燃料液
の燃料濃度または燃料電池出力を検出する第2の検出器
と、前記第1の検出器の出力に応答して前記第1のタン
クの内容物の前記循環系内への流入を調節する弁手段と
、前記第2の検出器の出力に応答して前記第2のタンク
の内容物の前記循環系内への流入を調節する弁手段とを
備えたことを特徴とする液体燃料電池。 2、前記第1のタンクには燃料と水とのモル比が1以下
の水−燃料混合液が入っており、第2のタンクには水と
燃料とのモル比が5以下の水−燃料混合液が入っている
特許請求の範囲第1項に記載の液体燃料電池。 3、液体燃料電池の酸化剤室から排出される水分を前記
第1のタンク中に回収する手段を備えた特許請求の範囲
第1項または第2項に記載の液体燃料電池。
[Claims] 1. In a liquid fuel cell having a circulation system for a mixed fuel liquid containing fuel and water for fuel supply, a first tank containing water or a water-rich water-fuel mixture; a second tank containing fuel or a fuel-rich water-fuel mixture; a first detector for detecting the level of the mixed fuel liquid in the circulation system; a second detector for detecting fuel concentration of the fuel liquid or fuel cell output; and regulating the flow of the contents of the first tank into the circulatory system in response to the output of the first detector. A liquid fuel cell comprising: a valve means; and a valve means for regulating the flow of the contents of the second tank into the circulation system in response to the output of the second detector. 2. The first tank contains a water-fuel mixture having a molar ratio of fuel to water of 1 or less, and the second tank contains a water-fuel mixture having a molar ratio of water to fuel of 5 or less. The liquid fuel cell according to claim 1, which contains a mixed liquid. 3. The liquid fuel cell according to claim 1 or 2, further comprising means for collecting moisture discharged from the oxidizer chamber of the liquid fuel cell into the first tank.
JP59229277A 1984-10-31 1984-10-31 Liquid fuel cell Pending JPS61107666A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59229277A JPS61107666A (en) 1984-10-31 1984-10-31 Liquid fuel cell
US06/792,888 US4629664A (en) 1984-10-31 1985-10-30 Liquid fuel cell
CA000494271A CA1257647A (en) 1984-10-31 1985-10-30 Liquid fuel cell
EP85113834A EP0181569B1 (en) 1984-10-31 1985-10-30 Liquid fuel cell
DE8585113834T DE3582716D1 (en) 1984-10-31 1985-10-30 LIQUID FUEL CELL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229277A JPS61107666A (en) 1984-10-31 1984-10-31 Liquid fuel cell

Publications (1)

Publication Number Publication Date
JPS61107666A true JPS61107666A (en) 1986-05-26

Family

ID=16889588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229277A Pending JPS61107666A (en) 1984-10-31 1984-10-31 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS61107666A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281276A (en) * 1986-05-29 1987-12-07 Shin Kobe Electric Mach Co Ltd Liquid fuel cell controller
WO2005020358A1 (en) * 2003-08-22 2005-03-03 Nec Corporation Fuel supply unit for fuel cell and fuel cell using same
JP2005150106A (en) * 2003-10-24 2005-06-09 Yamaha Motor Co Ltd Fuel cell system and transport equipment using above
JP2005203355A (en) * 2003-12-17 2005-07-28 Matsushita Electric Ind Co Ltd Fuel cell system and method of generating electric power in fuel cell system
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell
JP2006318675A (en) * 2005-05-10 2006-11-24 Nec Corp Polymer electrolyte fuel cell and starting method of polymer electrolyte fuel cell
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165274A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165274A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281276A (en) * 1986-05-29 1987-12-07 Shin Kobe Electric Mach Co Ltd Liquid fuel cell controller
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell
WO2005020358A1 (en) * 2003-08-22 2005-03-03 Nec Corporation Fuel supply unit for fuel cell and fuel cell using same
JPWO2005020358A1 (en) * 2003-08-22 2007-11-01 日本電気株式会社 Fuel supply for fuel cell and fuel cell using the same
JP4747842B2 (en) * 2003-08-22 2011-08-17 日本電気株式会社 Fuel supply for fuel cell and fuel cell using the same
JP2005150106A (en) * 2003-10-24 2005-06-09 Yamaha Motor Co Ltd Fuel cell system and transport equipment using above
JP2005203355A (en) * 2003-12-17 2005-07-28 Matsushita Electric Ind Co Ltd Fuel cell system and method of generating electric power in fuel cell system
JP2006318675A (en) * 2005-05-10 2006-11-24 Nec Corp Polymer electrolyte fuel cell and starting method of polymer electrolyte fuel cell
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
US4629664A (en) Liquid fuel cell
US6558827B1 (en) High fuel utilization in a fuel cell
US7622209B2 (en) Fuel cell system and fuel cell starting method
JP4455385B2 (en) Direct methanol fuel cell system and control method thereof
JP2939978B2 (en) Alcohol fuel cell and method of operating the same
JP4886170B2 (en) Fuel cell system
AU2005316096A1 (en) Alkaline fuel cell system
US20080248346A1 (en) Start up method for fuel cell and fuel cell power generation system
JPS61107666A (en) Liquid fuel cell
Giordano et al. An investigation of the effects of electrode preparation parameters on the performance of phosphoric acid fuel cell cathodes
US6743538B2 (en) Fuel cell system and method for operating same
US20150004507A1 (en) Fuel cell apparatus
Giordano et al. Analysis of the chemical cross-over in a phosphotungstic acid electrolyte based fuel cell
US5624538A (en) Measuring device for determining the concentration of alcohols
JPS59149668A (en) Fuel battery
US20050147854A1 (en) Method of generating electric power of fuel cell, and fuel cell
US6942939B2 (en) System and method for controlling methanol concentration in a fuel cell
JP5411901B2 (en) Fuel cell system
EP0072038A2 (en) Fuel cell
JPH0121593B2 (en)
JPS5816471A (en) Liquid fuel cell
JPS6210872A (en) Fuel concentration sensor for liquid fuel cell
JPS585266B2 (en) Device for electrochemically separating oxygen from air
JP2975470B2 (en) Electrochemical device
CA2429595A1 (en) Fuel cell stack