JPS61107104A - Method and apparatus for measuring depth of fine pattern - Google Patents

Method and apparatus for measuring depth of fine pattern

Info

Publication number
JPS61107104A
JPS61107104A JP22771984A JP22771984A JPS61107104A JP S61107104 A JPS61107104 A JP S61107104A JP 22771984 A JP22771984 A JP 22771984A JP 22771984 A JP22771984 A JP 22771984A JP S61107104 A JPS61107104 A JP S61107104A
Authority
JP
Japan
Prior art keywords
light
diffraction
wavelength
depth
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22771984A
Other languages
Japanese (ja)
Other versions
JPH0566522B2 (en
Inventor
Minoru Noguchi
稔 野口
Toru Otsubo
徹 大坪
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22771984A priority Critical patent/JPS61107104A/en
Priority to US06/685,550 priority patent/US4615620A/en
Publication of JPS61107104A publication Critical patent/JPS61107104A/en
Priority to US07/254,964 priority patent/USRE33424E/en
Publication of JPH0566522B2 publication Critical patent/JPH0566522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the depth of a fine groove, by irradiating a specimen having a fine groove formed thereto with light from the groove depth direction and measuring the wavelengths of rays of light corresponding to a plurality of extreme values of the distribution of spectral intensity other than the zero-dimensional diffraction light while changing the wavelength of irradiated light. CONSTITUTION:Light is allowed to irradiate an object to be measured and the diffraction lattice 33 of a spectral part 37 is rotated to continuously change the wavelength of irradiated light in a range of 300-800nm. At this time, a mirror 38 is rotated in matching relation to a wavelength lambda according to formula (wherein theta is the diffraction angle of diffraction light, lambda is a wavelength, lambda is the pitch of the diffraction lattice and am is a predetermined value and 3 when tertiary diffraction light is taken in). As mentioned above, zero-dimensional and n-dimensional (three-dimensional) rays of diffraction light are respectively detected by light detectors 41, 42 while the diffraction lattice 33 and the mirror 38 are rotated and the take-in light is subjected to photoelectric conversion by a light detector, amplified to be subjected to A/D conversion and processed by a calculator.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体基板上の微細な凹凸溝の深さを測定す
る微細パターン深さ測定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to fine pattern depth measurement for measuring the depth of fine grooves on a semiconductor substrate.

〔発明の背景〕[Background of the invention]

半導体デバイスは高集積化を達成するため、従来の平面
的素手構造から立体的素子構造へ転換が行われている。
In order to achieve high integration of semiconductor devices, the conventional planar bare-handed structure is being converted to a three-dimensional element structure.

そのため例えば、エツチング等の加工手段によシシリコ
ン基板に深さ3〜5μmの穴をあけたシ、1〜約2μ扉
幅の溝を作る技術が必要とされるが、従来の技術では非
接触の深さ測定が困難でめった。
Therefore, for example, a technique is required to create a hole with a depth of 3 to 5 μm in the silicon substrate by processing means such as etching, and to create a groove with a door width of 1 to about 2 μm, but conventional technology does not allow contact. Depth measurement was difficult and rare.

ビデオディスク等の凹凸パターンの深さを測定する一手
段として光干渉法を利用する方法がある(特開昭54−
17872号公報)。これは入射光の波長を変化させつ
つ非接触でパターンの深さを測定する方法であるが、本
発明の利用分野であるエツチングによる穴や溝の深さを
測定することはできない。なぜなら穴や溝等の凹部の面
積が被加工面に比べて非常に小さいため、凹部から反射
する光量が上記測定方法により検出できる程度に大きく
ないからである。即ち、凹部からの反射光と被加工面か
らの反−光との干渉光強度変化の幅(コントラスト)が
小さくなシ干渉光を検知できないことに起因する。
One way to measure the depth of uneven patterns on video discs, etc. is to use optical interferometry (Japanese Unexamined Patent Application Publication No. 1983-1999).
17872). Although this is a method of measuring the depth of a pattern without contact while changing the wavelength of incident light, it cannot measure the depth of holes or grooves formed by etching, which is the field of application of the present invention. This is because the area of the recesses such as holes and grooves is very small compared to the surface to be processed, so the amount of light reflected from the recesses is not large enough to be detected by the above measurement method. That is, this is due to the fact that interference light with a small width (contrast) of change in interference light intensity between the reflected light from the recess and the reflected light from the surface to be processed cannot be detected.

また、5olirL 5tate 5cience &
 Tgahnology1973年5月号[0ptic
al Monitoring of theEtchi
ng of Sin、 arLti Sin、 on 
Si by tht Useof Grating T
e5t Pattrn J (H,P、 K1gink
rbtcht& H,khiar )には、回折光を利
用した水平干渉法によりエツチング中の深さを測定する
技術が紹介されている。
Also, 5olirL 5tate 5science &
Tgahnology May 1973 issue [0ptic
al Monitoring of the Etchi
ng of Sin, arLti Sin, on
Si by th Use of Grating T
e5t Pattrn J (H,P, K1gink
rbtcht & H, khiar) introduces a technique for measuring the depth during etching by horizontal interferometry using diffracted light.

しかし前記文献の方法は、Kg −Meレーザを用い単
一の波長を照射して、エツチング中に深さが変わってい
くことによる干渉光強度変化を検出しているため、エツ
チング後、深さを測定するという処理過程に適さない。
However, the method in the above document irradiates with a single wavelength using a Kg-Me laser and detects the change in interference light intensity due to the change in depth during etching. Not suitable for the process of measurement.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、干渉光の強度を確保し、検出に用いる
光の波長を変化させることによって微細な溝の深さを正
確に測定できる、微細パターン溝深さ測定方法及びその
装置を提供することにある。
An object of the present invention is to provide a method and device for measuring the depth of fine pattern grooves, which can accurately measure the depth of fine grooves by ensuring the intensity of interference light and changing the wavelength of light used for detection. There is a particular thing.

〔発明の概要〕[Summary of the invention]

干渉光強度変化(コントラスト)を大きくするために、
凹部と凸部でそれぞれ反射する光量を同程度にして検出
する構成とする。具体的には、フラウンホー“ファー領
域の回折現象及びBαパnet (バピネ)の原理に着
目し、0次回新党以外の高次回折光では凹部・と凸部と
でそれぞれ反射する光量が同程度になることを見出し、
特定の高次回折光を検出する構成としている。
In order to increase the change in interference light intensity (contrast),
The configuration is such that the amount of light reflected by the concave portion and the convex portion is the same and is detected. Specifically, we focused on the diffraction phenomenon in Fraunho's far region and the principle of Bαpanet, and found that for higher-order diffracted light other than the 0th order, the amount of light reflected by concave and convex portions is approximately the same. I found out that
The configuration is such that specific high-order diffraction light is detected.

(11Bahingtの原理について 本発明は「2つの相補的な図形(白、黒の反転した図形
)によるフラウンホーファ領域の回折像は、中央の1点
(O次回折像)を除いた点で、それぞれの光強度が等し
く位相がπずれているJ(バビネの原理:物理学大系、
光学■。
(11 Regarding the Bahingt principle, the present invention states that ``The diffraction images of the Fraunhofer region by two complementary figures (inverted figures of white and black) are different from each other except for one point in the center (O-order diffraction image) J where the light intensity is equal and the phase is shifted by π (Babinet's principle: Physics Department,
Optics ■.

みすソ書房)なる性質を利用している。Misuso Shobo).

第9図に示すようなエツチング後の半導体基板上のパタ
ーンに光を照射する場合を考える。
Consider the case where light is irradiated onto a pattern on a semiconductor substrate after etching as shown in FIG.

このパターンでは、α〔μ扉〕×α〔μm〕の開口、深
さh〔μm〕の穴がピッチ!〔μm〕で連続して並んで
いる。ここで穴部面積、穴以外の面積はそれぞれ、A、
zとする。
In this pattern, the pitch is an opening of α [μ door] x α [μm] and a hole of depth h [μm]! They are arranged continuously in [μm]. Here, the hole area and the area other than the hole are A, respectively.
Let it be z.

このパターンに広い範囲で垂直に光を照射した場合、そ
の反射光は表面の規則性により第10図のような回折像
を形成する。
When this pattern is perpendicularly irradiated with light over a wide range, the reflected light forms a diffraction image as shown in FIG. 10 due to the regularity of the surface.

この回折像の中央の像を0次とし外側に1次。The central image of this diffraction image is 0th order, and the outside is 1st order.

2次、・・・、路次回折像と呼びそれぞれの光強度。The light intensity of the 2nd order,..., called the path order diffraction image.

をII 、 I” 、・・・ IWと表記する。工1は
穴の底で反射し穴開口で回折する光と、穴以外の部分で
反射して回折する光との干渉光強度であり、干渉を生じ
る27)の光強度をそれぞれI、6 、 I、  と表
記する。また穴に入った光は減衰し、α倍になり穴から
射出するものとする(αく1)。
are expressed as II, I", ... IW. Technique 1 is the interference light intensity between the light reflected at the bottom of the hole and diffracted at the hole opening, and the light reflected and diffracted at parts other than the hole, The light intensities of 27) that cause interference are expressed as I, 6, and I, respectively. It is also assumed that the light that enters the hole is attenuated, multiplied by α, and exits from the hole (α × 1).

このようなモデルでは、穴開口と穴以外の部分は、将に
バピネの原理に従う相補的な図形である。
In such a model, the hole opening and the parts other than the hole are complementary figures that generally follow Bapinet's principle.

もちろん実際には、穴に入シ大の底で反射し穴から出よ
うとする際の光の波面は乱れていて穴に入射する際の光
の波面とは同一でないから完全に相補的な図形とは言え
ないが、近似的に相補的な図形と考えて良い。そこで次
式が底型するO αI″ m11   ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1)また穴部
とそれ以外の面積比から 工;とI:については、フレネル−キルヒホッフの式を
フラウンホー77近似した式で、3Ci−”0 、 y
i→0の極限をとり次式が成シ立つ。
Of course, in reality, the wavefront of the light that is reflected from the bottom of the hole and exits the hole is disordered and is not the same as the wavefront of the light that enters the hole, so it is a completely complementary figure. Although it cannot be said that they are approximately complementary shapes. Therefore, the following equation is the base type O αI″ m11 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1) Also, from the area ratio of the hole and other areas, and So, 3Ci-”0, y
Taking the limit of i→0, the following formula holds true.

y、→0 ・・・・・・ (3) ここで、y(xo、ya>、 w(z;、y;)はそれ
ぞれ開口面9回折像面上の点(”o + ’10 ) 
* (” + ’l s )での光強度分布、ノは虚数
単位、には波数ベクトル(/λ)である。
y, →0 ...... (3) Here, y(xo, ya>, w(z;, y;) are the points on the aperture surface 9 diffraction image plane ("o + '10)"
* The light intensity distribution at (''+'l s ), where is the imaginary unit and is the wave number vector (/λ).

2重積分の部分は、!!(−:、 y< ) −1+す
なわち均一な光強度分布を持つ開口の面積を示すから、
工′は開口部面積の2乗に比例する。従って、 以上のfi+ 、 +21 、 (41式から弐f51
 、 (61より、工!とI: の干渉による光強度工
a、■、7と工Z  の干渉による光強度が求められる
The double integral part is! ! (-:, y<) -1+, which indicates the area of the aperture with a uniform light intensity distribution,
The diameter is proportional to the square of the opening area. Therefore, the above fi+ , +21, (from formula 41, 2f51
, (From 61, the light intensity due to the interference of d! and I: The light intensity due to the interference of d), 7, and z can be determined.

ピーS2+αb”+2y’ct sb cas (4π
h/λ)・・・(7)I’−(1+α) sb −2(
a zb cos (4πh/λ)−ts1式(71、
(81よりI’ 、 I’の強度変化のコントラストc
’ 、 c’″を求めると、 となる。b/z −0,01、α纒0.5を式+91 
、 (11に代入すると、 C’ −0,o14 、 C” −Q、9d3となジ、
O次回新党ではコントラストが1多しか得られない時に
、1次回折光では94%と高いコントラストが得られる
ことがわかる。従って1次回折光の強度変化を検出する
ことで深さが測定できる。
P S2+αb"+2y'ct sb cas (4π
h/λ)...(7)I'-(1+α) sb-2(
a zb cos (4πh/λ)-ts1 formula (71,
(From 81, the contrast of intensity changes of I' and I' c
', c''' is calculated as follows.b/z -0,01, α line 0.5 is calculated by formula +91
, (Substituting into 11 yields C' -0,o14, C" -Q,9d3,
It can be seen that when the O-th order new party obtains only 1 more contrast, the 1st order diffracted light provides a contrast as high as 94%. Therefore, the depth can be measured by detecting the change in the intensity of the first-order diffracted light.

(2)パターンへの応用について 次に、表面に別のパターンが配設されバビネの原理で説
明できない場合の測定原理を示す(第13図)。
(2) Application to patterns Next, we will show the measurement principle when another pattern is arranged on the surface and cannot be explained by Babinet's principle (FIG. 13).

一般に、スリット数がN1幅dなる多スリットの回折像
を考えることに本測定原理は帰着される。この場合の光
強度は第11図曲線1のようになり、次式(1)に従う
Generally, the principle of this measurement is based on considering a multi-slit diffraction image in which the number of slits is N1 and the width is d. The light intensity in this case is as shown in curve 1 in FIG. 11, and follows the following equation (1).

%式% ここで工0は回折像の中心強度、jはスリットのピッチ
、λは光の波長、bはスリットから回折像面までの距離
、Xは像平面上の位置であり回折像中心からの距離であ
る。
% Formula % Here, 0 is the central intensity of the diffraction image, j is the pitch of the slit, λ is the wavelength of the light, b is the distance from the slit to the diffraction image plane, and X is the position on the image plane from the center of the diffraction image. is the distance.

包絡線2(第11図)は、幅dなる単スリットの回折像
の強度分布であるが、式αυから包絡線2が0になるの
は次式aのが成立する時である。
Envelope 2 (FIG. 11) is the intensity distribution of a diffraction image of a single slit having width d. From equation αυ, envelope 2 becomes 0 when the following equation a holds true.

またNが十分大きい時は、多重干渉によシ鋭いピークが
現われるが、そのピークの位置は次式(13に従う。
When N is sufficiently large, a sharp peak appears due to multiple interference, and the position of the peak follows the following equation (13).

式αり及び式αJでmは整数、θは方向を示す角度であ
る。
In the formulas α and αJ, m is an integer and θ is an angle indicating the direction.

従って幅の異なるスリットの回折パターンは第12図1
曲線6及び曲a4のごとき形状になる。
Therefore, the diffraction patterns of slits with different widths are shown in Figure 12.
The shapes are as shown by curve 6 and curve a4.

この時、X軸と各曲線との間の面積は、それぞれの光の
光量を示す。
At this time, the area between the X axis and each curve indicates the amount of light of each light.

式αυかられかるように、曲a4を形成するスリットの
方が幅が小さく、光量は小さいということになる。とこ
ろが点5の位置では、2つの光束の光量は同程度となっ
ている。あるいは領域6では、曲線4を形成する光束の
光量が大きくなっている。
As can be seen from the formula αυ, the slit forming the curve a4 has a smaller width and a smaller amount of light. However, at the position of point 5, the amounts of light of the two light beams are approximately the same. Alternatively, in region 6, the amount of light beam forming curve 4 is large.

ここで第13図に示したパターンの回折像について考え
る。
Consider now the diffraction image of the pattern shown in FIG.

X方向の回折光8.9に着目すると、幅dx、 。Focusing on the diffracted light 8.9 in the X direction, the width dx.

cox、 、 cox3ともに同程度の大きさになって
いるため、各パターンからの回折像は同じ形状をしてい
る。さらに穴の面積に比べ、穴のない部分の面積が太き
いため(穴のない方の長さCL’Isが長い)、大成か
ら反射してくる光8の回折像は第14図曲線12のよう
に表面から反射してぐる光9の回折像面i13に比べ全
体に小さくなるため干渉のコントラストは小さくなり、
測定は難しい。
Since cox, cox3, and cox3 have approximately the same size, the diffraction images from each pattern have the same shape. Furthermore, since the area of the part without a hole is larger than the area of the hole (the length CL'Is of the part without a hole is longer), the diffraction image of the light 8 reflected from Taisei is curve 12 in Figure 14. The contrast of the interference becomes smaller because it is smaller overall than the diffraction image plane i13 of the light 9 reflected from the surface,
Difficult to measure.

これに対しy方向の回折は、’3’+#”/2であるの
に”/sは大きい(第13図)。また領域14はy方向
の回折光を持たない。従って第15図のよつic CL
 y s K 、jニル回折光11(第13図)の曲線
15が、’y2による回折光10(第13図)の曲線1
6より小さくなる次数が存在する。
On the other hand, the diffraction in the y direction is '3'+#''/2, but '/s is large (Fig. 13). Further, the region 14 does not have diffracted light in the y direction. Therefore, the ic CL in Figure 15
y s K , j The curve 15 of the diffracted light 11 (Fig. 13) is the curve 1 of the diffracted light 10 (Fig. 13) due to 'y2.
There are orders smaller than 6.

’31+−”/l−I Cμml+(L’/s5−5C
p〕 の時を計算してみると、式αり及び式αJよりm
−3及びm−5(3次回折光及び5次回折光)を検出す
れば、コントラストの大きい検出が行える。
'31+-''/l-I Cμml+(L'/s5-5C
When calculating the time when p], from formula α and formula αJ, m
-3 and m-5 (third-order diffraction light and fifth-order diffraction light) can perform detection with high contrast.

即ち、第13図に示した表面パターンを有する場合は、
y方向の回折光のうち3次、5次のものを検出しなけれ
ばならないことになる。
That is, in the case of having the surface pattern shown in FIG.
This means that it is necessary to detect the third and fifth orders of the diffracted light in the y direction.

さらに複雑なパターンの場合、表面のパターンから類推
できず、全ての回折像を検出し、強度変化の生じるもの
を選び出さねばガらないこともある。
In the case of more complex patterns, it may not be possible to make an analogy based on the surface pattern, and it may be necessary to detect all diffraction images and select those that cause intensity changes.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図。 An embodiment of the present invention is shown in FIGS. 1 and 2 below.

第16図及び第17図により説明する。This will be explained with reference to FIGS. 16 and 17.

fil構成 本発明は、 光源17.レンズ19,20.21j球面鏡18゜光源
22から成る光源部23゜ ミラー24,25 、ハーフミラ−28,対物レンズ2
6.し7ズ系27 、 He −Ntレーザ29から成
るレーザ光源部30゜ ミラー31,32.スリット3a、55 、凹面回折格
子33.ステッピングモータ36から成るモノクロメー
タ部37.゛ レンズ40.ハーフミラ−39,ミラー38.光検出器
45、光検出器&1 、42 、スリット43,44.
採光開口46゜ステッピングモータ52から成る光検出
部47゜オリフラ合せ治具48.ウェハ載置台49が設
けられたXYステージ50を主要部とするウェハ位置決
定部59゜ アナログデジタル変換器51.モータ制御系55 、C
RT 55 、マイクロコンピュータ54.プリンタ5
7j7セグメント表示器56から成る制御演算出力部5
8より構成される。
fil configuration The present invention includes a light source 17. Lenses 19, 20, 21j Spherical mirror 18° Light source section 23 consisting of light source 22 Mirrors 24, 25, half mirror 28, objective lens 2
6. laser beam system 27 , a laser light source section 30 consisting of a He-Nt laser 29 and mirrors 31 , 32 . slits 3a, 55, concave diffraction grating 33. A monochromator section 37 consisting of a stepping motor 36.゛Lens 40. Half mirror 39, mirror 38. Photodetector 45, photodetector &1, 42, slits 43, 44.
Lighting aperture 46°; light detection unit 47° consisting of a stepping motor 52; orientation flat alignment jig 48. A wafer position determining unit 59, the main part of which is an XY stage 50 provided with a wafer mounting table 49; an analog-to-digital converter 51; Motor control system 55, C
RT 55, microcomputer 54. printer 5
Control calculation output unit 5 consisting of 7j7 segment display 56
Consists of 8.

光源部23は、光源17からの光を効率良くモノクロメ
ータ部37のスリット34に入射するように、レンズ1
9,20.21および球面鏡18が設けられ、光源17
は輝度の高いキセノンランプが用いられる。
The light source section 23 controls the lens 1 so that the light from the light source 17 efficiently enters the slit 34 of the monochromator section 37.
9, 20, 21 and a spherical mirror 18 are provided, and a light source 17
A high-brightness xenon lamp is used.

さらに光源17は波長300〜800ル展の光を多く含
む必要がありキセノンランプが適している。しかし、光
源17はキセノンランプに限らず、さらに短波長領域の
光を多く含む水銀ランプ、あるいはハロゲンランプでも
良い。また、レンズ系のかわシに、楕円ミラーで光を集
めてスリットに入射させても良い。
Furthermore, the light source 17 must contain a large amount of light with a wavelength of 300 to 800 radians, and a xenon lamp is suitable. However, the light source 17 is not limited to a xenon lamp, but may also be a mercury lamp or a halogen lamp that contains a large amount of light in a short wavelength region. Alternatively, the light may be collected by an elliptical mirror and made incident on the slit in the lens system.

ここで光源の使用波長の選択について説明する。Here, selection of the wavelength used by the light source will be explained.

回折格子のピッチを!波長なλ、回折光の回折角をθと
すると、 ここで、回折光が存在するということは、ル≧1なるル
が存在することである。血θ≦1より、ル=1が存在す
るのは次式が成り立つ時である。
The pitch of the diffraction grating! If the wavelength is λ and the diffraction angle of the diffracted light is θ, then the existence of the diffracted light means the existence of R≧1. Since blood θ≦1, Le=1 exists when the following equation holds true.

λくl  ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・−・・・・・・・tL4
’′従って、光源の波長λは、回折、格子のピッチ!よ
シ短い必要がある。
λkul ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・−・・・・・・・tL4
''Therefore, the wavelength λ of the light source is the pitch of the diffraction grating! It needs to be short.

また、第13図に示したようなパタンの測定の場合、幅
の広い回折図形からの回折像の光強度が0≦なる方向が
存在する必要があるため、式α3よシ次式が成り立つ必
要がある。
In addition, in the case of measuring a pattern as shown in Figure 13, there needs to be a direction in which the light intensity of the diffraction image from a wide diffraction pattern is 0≦, so the formula α3 must hold true. There is.

λく己  ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・@′以上より
、測定対象バタンの幅、ピッチを考えて、使用波長を決
める必要がある。本実施例では、線幅1〜3μmピッチ
数μmの測定対象を考え、300〜800 nmの波長
の光を用いる。
λkumi ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ @' From the above, it is necessary to decide the wavelength to be used by considering the width and pitch of the batten to be measured. In this example, a measurement target having a line width of 1 to 3 μm and a pitch of several μm is considered, and light with a wavelength of 300 to 800 nm is used.

レーザ光源部30は、径0.4〜2mm程度のレーザビ
ームを、対物レンズ26で広がる光に変え、ハーフミラ
−28を通し、レンズ27でモノクロメータ部37のス
リット34に集光する。この結果、スリット34に入射
するレーザ光束は光源部23で作られる光束と同じ形状
になる。
The laser light source section 30 converts a laser beam with a diameter of about 0.4 to 2 mm into light that spreads with an objective lens 26, passes through a half mirror 28, and focuses the light on a slit 34 of a monochromator section 37 with a lens 27. As a result, the laser beam incident on the slit 34 has the same shape as the beam generated by the light source section 23.

またハーフミラ−28は、透過対反射比を9:1程度に
し光源部23からの光を保存している。
Further, the half mirror 28 has a transmission to reflection ratio of about 9:1 and stores the light from the light source section 23.

分光部37で、スリット34から入射した光は、ミラー
31を通して凹面回折格子33により回折する。このう
ち1次回折光が、ミラー32を通してスリット55に達
する。この時、波長により回折角が異なるため、凹面回
折格子33を、ステッピング七−夕36で回転させるこ
とでスリット35から特定の範囲の波長の光をと9出せ
る。
In the spectrometer 37 , the light incident from the slit 34 passes through the mirror 31 and is diffracted by the concave diffraction grating 33 . Of these, the first-order diffracted light reaches the slit 55 through the mirror 32. At this time, since the diffraction angle differs depending on the wavelength, the concave diffraction grating 33 is rotated by the stepping Tanabata 36 to emit light in a specific range of wavelengths from the slit 35.

光検出部47で、レンズ40は、スリット35の実像を
ハーフミラ−39、基板60の測定面61、ミラー38
を通して、光検出器41前面に設けたスリット44上に
結像する。ノ・−7ミラー39は、測定面61で反射し
た光を光検出器42前面に設けたスリット43上に導く
。ミラー38は、減速器付のステッピングモータ52で
軸62を中心に回転する。
In the light detection section 47, the lens 40 transmits the real image of the slit 35 to the half mirror 39, the measurement surface 61 of the substrate 60, and the mirror 38.
The image is formed on a slit 44 provided in front of the photodetector 41 through the photodetector. The No.-7 mirror 39 guides the light reflected by the measurement surface 61 onto a slit 43 provided in front of the photodetector 42 . The mirror 38 is rotated about a shaft 62 by a stepping motor 52 equipped with a speed reducer.

この回転角を決めることで、測定面61から任意の角度
で回折する光を、定位置に置かれている光検出器44に
導く。
By determining this rotation angle, light diffracted at an arbitrary angle from the measurement surface 61 is guided to the photodetector 44 placed at a fixed position.

本実施例では測定面に光を垂直に照射している。これは
、測定面上の凹部に入りこんだ光が凹部の壁面に当たり
反射することなどがなく直接凹部底面にとどくことが望
ましいためである。
In this embodiment, the measurement surface is irradiated with light perpendicularly. This is because it is desirable that the light entering the recess on the measurement surface directly reach the bottom of the recess without being reflected by the wall of the recess.

したがって、凹部深さをル、開口部寸法をαとした時、
入射光θは以下の式を満たすことが望ましい。
Therefore, when the recess depth is l and the opening dimension is α,
It is desirable that the incident light θ satisfies the following equation.

しかしながら、入射光θが予めわかっていて壁面で反射
しながらも、底面からの反射光がもどってくる場合、θ
による補正を加えれば深さhの測定は可能である。
However, if the incident light θ is known in advance and is reflected from the wall surface, but the reflected light from the bottom surface returns, θ
It is possible to measure the depth h by adding correction by .

また、αが十分小さく、凹部を光が単一モードで伝播す
る場合は、θによる補正をかけずに深さhの測定が可能
となる。従ってθは必ずしも直角に限定する必要はない
Furthermore, if α is sufficiently small and light propagates through the recess in a single mode, the depth h can be measured without correction by θ. Therefore, θ does not necessarily need to be limited to a right angle.

ここで、ミラー38、測定点61、光検出器41は、第
2図に示すように同一円周63上におかれている。さら
に、ミラー38の回転軸62は測定点と光検出器を結ぶ
線分の垂直2等分線上にある。
Here, the mirror 38, the measurement point 61, and the photodetector 41 are placed on the same circumference 63 as shown in FIG. Further, the rotation axis 62 of the mirror 38 is on the perpendicular bisector of the line connecting the measurement point and the photodetector.

このような位置関係により、任意の回折角θで回折して
くる光を、固定されている光検出器41の受光面上に反
射させるためのミラーの角度制御が容易になる。すなわ
ち、この場合、光の回折角θ、と、ミラーの回転角θ2
が必ず一致するからである。
Such a positional relationship facilitates angle control of the mirror for reflecting light diffracted at an arbitrary diffraction angle θ onto the light receiving surface of the fixed photodetector 41. That is, in this case, the diffraction angle θ of the light and the rotation angle θ2 of the mirror
This is because they always match.

光源部23から出た光は分光部37で幅Δλを持つ単色
光として基板60に照射される。照射された光は、次式
(14+に従う方向に離散的に回折する。
The light emitted from the light source section 23 is irradiated onto the substrate 60 by the spectroscopic section 37 as monochromatic light having a width Δλ. The irradiated light is discretely diffracted in directions according to the following equation (14+).

この時、光検出面で、となり合う回折光が相互に干渉し
てはならない場合がある。バビネの原理が適用できる場
合にはさしつかえない。
At this time, adjacent diffracted lights may not interfere with each other on the photodetection surface. It is okay if Babinet's principle can be applied.

そこで測定点から検出面までの光路長をLとし、検出面
での光束の幅をd、とした時、次式が成り立たなければ
いけない。
Therefore, when the optical path length from the measurement point to the detection surface is L, and the width of the light beam at the detection surface is d, the following equation must hold true.

すなわち、この観点からは、光束の幅d、は測定対象に
より許される一最大値が存在する。
That is, from this point of view, the width d of the luminous flux has one maximum value allowed by the measurement object.

さらに、測定点を小さくするという観点からも光束の幅
g、は許容される最大値が存在する。
Furthermore, from the viewpoint of reducing the measurement point, there is a maximum allowable width g of the luminous flux.

ところが分光部の射出側スリット35の像を拡大して検
出面に結像しているため、光束の幅d、を小さくするに
は、スリット幅を小さくする必要がある。
However, since the image of the exit side slit 35 of the spectroscopic section is magnified and focused on the detection surface, it is necessary to reduce the slit width in order to reduce the width d of the light beam.

スリット幅d、は、分光幅Δλ、回折格子間隔もモノク
ロメータ焦点距離り、を用いると次式αので決定される
The slit width d is determined by the following formula α, using the spectral width Δλ and the diffraction grating interval also being equal to the monochromator focal length.

ここで、分光幅に関しては、分光幅を変えて干渉コント
ラストをプロットした第16図によシ3〜5rLrnで
十分という結果がでている。
Regarding the spectral width, FIG. 16, which plots the interference contrast by changing the spectral width, shows that 3 to 5rLrn is sufficient.

またcL、は、入光側を考えてよシ多くの光を入党でき
る工うにできるだけ大きい方が良いため上記光束の幅d
、lに許される最大値になるよう設定する。
Also, considering the light input side, cL should be as large as possible in order to allow more light to enter, so the width d of the luminous flux mentioned above is
, l is set to the maximum value allowed.

d2、Δλが上記の条件を満たすようにLld。Lld such that d2 and Δλ satisfy the above conditions.

を設定する必要がある。need to be set.

(2)動作 次に測定の動作を説明する。(2) Operation Next, the measurement operation will be explained.

測定対象が載置され、光が照射される。A measurement target is placed and irradiated with light.

分光部37の回折格子33を回転することで、照射光の
波長を300 rzmから800 rL77Lの範囲で
連続的に変化させる。
By rotating the diffraction grating 33 of the spectrometer 37, the wavelength of the irradiated light is continuously changed in the range of 300 rzm to 800 rL77L.

この時、ミラー38は、式α尋によシ波長λに合わせて
回転させる。式a4内のm(は予め決められた値であり
3次の回折光をとりこむ場合、3が代入される。
At this time, the mirror 38 is rotated according to the wavelength λ according to the formula α. m( in equation a4 is a predetermined value, and when third-order diffracted light is taken in, 3 is substituted.

このように回折格子33と、ミラー38を回転させなが
ら、光検出器41.および7!2でそれぞれ0次回出光
およびtLf31次回折光次回出光る。
While rotating the diffraction grating 33 and mirror 38 in this manner, the photodetector 41. and 7!2, the 0th-order light and tLf31st-order diffracted light are emitted in the next order, respectively.

とりこまれた光は光検出器で光電変換され、増幅された
後、九ω変換の後、計算機で処理される。波形を第17
図に示す。
The captured light is photoelectrically converted by a photodetector, amplified, and then processed by a computer after nine-omega conversion. Waveform No. 17
As shown in the figure.

処理手順を次に説明する。The processing procedure will be explained next.

第1に光源17の分光特性を補正する。これは予め測定
してメモリに格納しておいたキセノンランプの分光特性
工、で、測定信号工、・、Isを除算することにより達
成される。
First, the spectral characteristics of the light source 17 are corrected. This is accomplished by dividing the measured signal value, .Is, by the spectral characteristic value of the xenon lamp, which has been previously measured and stored in memory.

■、は、予め測定しておかなくても検出器45で測定し
ながら除算しても良い。
(2) may be divided while being measured by the detector 45 without being measured in advance.

次に干渉強度変化の極大極小値となる波長を求める予備
手順として、λ−1/λ変換を行う・。
Next, as a preliminary step to find the wavelength at which the maximum and minimum values of interference intensity change occur, λ-1/λ conversion is performed.

取り込んだデータ1..1.は横軸が波長λでるるか、
これを1/λに並べなおす。
Imported data 1. .. 1. Is the horizontal axis the wavelength λ?
Rearrange this into 1/λ.

その結果、第18図に示す波長とともに周期が変わる周
期関数が同一周期の関数忙変換される。
As a result, the periodic function whose period changes with the wavelength shown in FIG. 18 is transformed into a function with the same period.

この結果、極大極小点の検出に、ポイントマツチング法
を用いることができるようになる。
As a result, the point matching method can be used to detect maximum and minimum points.

データはλ−1/λ変換された後、隣り合う数点の平均
をとる方法で平滑処理され、ポイントマツチング法で極
大極小点をとる波長λが求められる。
After the data is subjected to λ-1/λ conversion, it is smoothed by taking the average of several adjacent points, and the wavelength λ at which the maximum and minimum points are obtained is determined by a point matching method.

こうして求められたλを小さい方からλ8.λ2゜・・
・λ、・・・λ、とする。
The λ obtained in this way is determined from the smallest to λ8. λ2゜・・
・Let λ, ...λ,.

路次回折光では2光束の位相がπずれるため極大となる
のは式(17)に従う時であり、極小となるのは式α碍
に従う時である。
In the optical order diffracted light, the phases of the two light beams are shifted by π, so that the maximum value is reached when the equation (17) is followed, and the minimum value is obtained when the equation (α) is followed.

これらの式を連立させて龜を消去すると波長から深さん
が求められる。
By combining these equations and eliminating the angle, the depth can be found from the wavelength.

ところが、この式で求めると、分母が小さいため誤差が
拡大されてしまい、算出精度は良くない。
However, when calculating using this formula, the error is magnified because the denominator is small, and the calculation accuracy is not good.

そこで、次式を用いて深さを算出する。Therefore, the depth is calculated using the following formula.

さらに、この式(1)で求めたんを式aη等に代入して
、tを算出し、iは整数という条件でまるめ直して、五
を算出しなおせば精度はさらに高くなる。
Furthermore, the accuracy can be further increased by substituting t obtained by this formula (1) into the formula aη, etc., calculating t, re-rounding on the condition that i is an integer, and recalculating 5.

0次回出光でも同様の処理を行う。Similar processing is performed for the 0th light emission.

異なる点は第1に平滑化処理で平均するデータ数を多く
して、周期の比較的大きいノイズも消している。0次回
出光から算出するものが表面の薄膜でアシ、膜厚が比較
的薄いため干渉強度変化の周期が大きいので、周期の比
較的大きいノイズも消去した方が都合が良い。
The difference is that first, the number of data to be averaged is increased in the smoothing process, and noise with a relatively large period is also eliminated. What is calculated from the 0th order light emission is a thin film on the surface, and since the thickness of the film is relatively thin, the period of interference intensity change is large, so it is convenient to also eliminate noise with a relatively large period.

さらに、厚さの算出式は、膜の屈折率をルとすると次式
aaになる。
Furthermore, the formula for calculating the thickness is the following formula aa, where the refractive index of the film is .

以下、第9図の測定対象を測定した場合、本実施例によ
る表面の光を透過する酸化膜の厚さによる穴深さhの測
定値の補正法を説明する。
Hereinafter, when measuring the object shown in FIG. 9, a method of correcting the measured value of the hole depth h based on the thickness of the oxide film on the surface that transmits light according to this embodiment will be described.

照射光は、酸化膜の表面、酸化膜と基板の界面および穴
の底面の3つの面で反射する。それぞれの面での厘射率
をr、 r、 r、とすると、回折光の強度Iは以下の
式に従う。
The irradiated light is reflected on three surfaces: the surface of the oxide film, the interface between the oxide film and the substrate, and the bottom of the hole. Letting the emissivity of each surface be r, r, r, the intensity I of the diffracted light follows the following formula.

%式% ここで、γ、くγ。夕γ、の場合、第5項が支配的とな
るため、深さみは、実際よジも(ルー1)dだけ浅く検
出される。従って、膜厚dおよび膜の屈折率ルを求めて
深さhを補正できる。
% formula % Here, γ, kuγ. In the case of γ, the fifth term becomes dominant, so the depth is actually detected to be shallower by (1)d. Therefore, the depth h can be corrected by determining the film thickness d and the refractive index l of the film.

第2の実施例として、本発明を凹凸パタンを形成するエ
ツチング装置に結合した場合を、第3図を用いて説明す
る。
As a second embodiment, a case where the present invention is combined with an etching apparatus for forming an uneven pattern will be described with reference to FIG.

エツチング装置部64は、平行平板電極66.68高周
波電源65および真空室69よシ構成される。
The etching device section 64 includes parallel plate electrodes 66, 68, a high frequency power source 65, and a vacuum chamber 69.

ここで、エツチング終了後、下部電極68上に基板67
を載置したまま、基板搬送装置72により、測定部70
の下部に、基板67を搬送する。この位置で基板67に
は窓71を通して、光を照射し、エツチング深さhを測
定する。
Here, after the etching is completed, the substrate 67 is placed on the lower electrode 68.
The measurement unit 70 is moved by the substrate transport device 72 while the
The substrate 67 is conveyed to the lower part of the . At this position, the substrate 67 is irradiated with light through the window 71, and the etching depth h is measured.

本実施例では、本発明が被接触で深さを測定できること
を用いて、基板を真空室69から出さずに深さを測定で
きる。その結果、エツチング量が不足の場合、エツチン
グ装置部64に基板をもどしさらにエツチング可能なた
め基板上の異物が低減でき、測定に要する時間が短縮で
きるという効果を生む。
In this embodiment, the depth can be measured without taking the substrate out of the vacuum chamber 69 by using the fact that the present invention can measure the depth without contact. As a result, if the amount of etching is insufficient, the substrate can be returned to the etching device section 64 for further etching, resulting in the effect that foreign matter on the substrate can be reduced and the time required for measurement can be shortened.

以下、照射光の波長の変化に伴う回折角度の変化に追従
して、特定次数の回折光を採光する方法を第4図から第
9図を用いて説明する。
Hereinafter, a method of collecting diffracted light of a specific order by following a change in the diffraction angle due to a change in the wavelength of the irradiated light will be explained using FIGS. 4 to 9.

第4図に示した実施例は、ステッピングモータ73、ア
ーム74、光検出器75、アパーチャ76から構成され
る。
The embodiment shown in FIG. 4 is composed of a stepping motor 73, an arm 74, a photodetector 75, and an aperture 76.

ステッピングモータ7乙にニジ光検出器を移動し、照射
光波長の変化による回折角度の変化に追従させ光をとり
こむ。
The rainbow photodetector is moved by the stepping motor 7B, and the light is taken in to follow the change in the diffraction angle due to the change in the wavelength of the irradiated light.

第5図に示した実施例は、第4図の実施例の光検出器の
位置に光ファイバ77を設けることにより光検出器75
を固定したものでるる。
In the embodiment shown in FIG. 5, the photodetector 75 is
It is fixed.

第6図に示した実施例は、ハーフミラ−78を用いて、
ステッピングモータ73の回転軸の位置を変えたもので
、装置の大きさを小さくする効果を生む。
The embodiment shown in FIG. 6 uses a half mirror 78,
The position of the rotating shaft of the stepping motor 73 is changed, which has the effect of reducing the size of the device.

第7図に示した実施例は、ハーフミラ−78とレンズ7
9、アパーチャ8oから構成される。このアパーチャ8
0は、開口部81の位置を、XY駆動系82によシ変え
ることができる。この構成により光検出器75の位置を
固定することができる。
The embodiment shown in FIG. 7 has a half mirror 78 and a lens 7.
9 and an aperture 8o. This aperture 8
0, the position of the opening 81 can be changed by the XY drive system 82. With this configuration, the position of the photodetector 75 can be fixed.

さらに、バビネの原理に従う測定対象の場合0次以外の
回折光の強度変化は、波長の変化に対して、全ての次数
で同時に生じるため、特定の回折光だけをとりこむ必要
はない。そこで、この場合は、0次光だけを透過させな
いアパーチャとして、0次光以外を同時にとりこむこと
によって、採光する光量を犬きくすることができる。
Furthermore, in the case of a measurement object according to Babinet's principle, changes in the intensity of diffracted light other than the 0th order occur simultaneously in all orders with respect to a change in wavelength, so it is not necessary to capture only a specific diffracted light. Therefore, in this case, by using an aperture that does not transmit only the zero-order light and simultaneously taking in light other than the zero-order light, it is possible to increase the amount of light taken in.

さらに回折像のうちある領域の光が同時に強度変化をす
る場合、その領域の光を全てと9こめる形状のアパーチ
ャとして採光する光強度を大きくすることができる。
Furthermore, when the intensity of light in a certain region of the diffraction image changes at the same time, the intensity of light taken in can be increased by creating an aperture shaped to capture all the light in that region.

また、ハーフミラ−78を中央部を〈ジぬいたミラーと
して、0次回出光をとシ除いても良い。
Alternatively, the half mirror 78 may be a mirror with a hole in the center to eliminate the 0th order light emission.

第8図に示した実施例は、第7図の実施例のレンズに変
えて、回転楕円鏡8302つの焦点84゜85を用いた
ものである。
The embodiment shown in FIG. 8 uses a spheroidal mirror 830 with two focal points of 84.degree. 85 instead of the lens of the embodiment of FIG.

以上、いくつかの採光方法を説明したが、本発明では、
0次回出光以外の回折光を効果的にとシこめば良いわけ
であるから、ここに説明した以外の採光方法であっても
良い。
Several lighting methods have been described above, but in the present invention,
Since it is sufficient to effectively filter out diffracted light other than the 0th-order light emitted, a lighting method other than the one described here may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板上に形成された溝等の深さを干渉
法により測定する際、溝部の面積が微小で表面との面積
比が大きくても、溝部から射出する光と表面から射出す
る光との強度を同程度として採光でき、高精度の溝の深
さの測定ができる。より具体的には被食刻部の面積が微
小な深穴や溝深さを測定できる効果がある。
According to the present invention, when measuring the depth of a groove formed on a substrate by interferometry, even if the area of the groove is minute and the area ratio to the surface is large, light emitted from the groove and light emitted from the surface are The depth of the groove can be measured with high precision by allowing the light to enter with the same intensity as the light being used. More specifically, it has the effect of being able to measure the depth of deep holes and grooves where the area of the etched portion is minute.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図はミラー制
御の説明図、第3図は本発明をエツチング装置に応用し
た例を示す模式図、第4図ないし第8図は採光装置部分
の他の実施例を示す図、第9図は測定試料の断面図、第
10図は回折像を示す図、第11図は回折光強度を示し
た口笛12図は2つの回折像の比較図、第13図は試料
の断面図、第14図及び第15図は回折光強度を示した
図、第16図は分光器の波長分解能とコントラストの関
係を示す図、第17図は検出波形を示す図、第18図は
データ処理後の波形を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of mirror control, FIG. 3 is a schematic diagram showing an example of applying the present invention to an etching apparatus, and FIGS. 4 to 8 are Figure 9 shows a cross-sectional view of a measurement sample, Figure 10 shows a diffraction image, Figure 11 shows the intensity of diffracted light, and Figure 12 shows two diffraction images. Figure 13 is a cross-sectional view of the sample, Figures 14 and 15 are diagrams showing the diffracted light intensity, Figure 16 is a diagram showing the relationship between the wavelength resolution and contrast of the spectrometer, and Figure 17 is a diagram showing the relationship between the wavelength resolution and contrast of the spectrometer. A diagram showing the detected waveform, and FIG. 18 is a diagram showing the waveform after data processing.

Claims (1)

【特許請求の範囲】 1、微細な溝が形成された試料に、該溝の深さ方向から
該試料に光を照射し、該照射光の波長を変えながら回折
光の0次以外の分光強度分布を検出し、該分光強度分布
の複数の極値に対応する光の波長から前記溝の深さを算
出する微細パターン深さ測定方法。 2、試料位置決定可能な試料載置台と、光の回折光が検
出可能となるに十分な光量を発する光源と、該光源から
の光を分光して前記試料に照射する手段と、前記試料か
らの回折光であって、0次光を除くものの任意の到達位
置へ検出器を配設可能な光検出手段と、前記載置台、前
記照射する手段及び前記光検出手段を制御する制御演算
手段とを有する微細パターン深さ測定装置。
[Claims] 1. A sample in which fine grooves are formed is irradiated with light from the depth direction of the grooves, and while changing the wavelength of the irradiated light, the spectral intensity of the diffracted light other than the 0th order is measured. A fine pattern depth measuring method that detects a distribution and calculates the depth of the groove from wavelengths of light corresponding to a plurality of extreme values of the spectral intensity distribution. 2. A sample mounting table capable of determining the sample position, a light source that emits a sufficient amount of light to enable detection of diffracted light, a means for dispersing the light from the light source and irradiating the sample, and a light detecting means capable of arranging a detector to any arrival position of the diffracted light excluding zero-order light; and a control calculation means for controlling the mounting table, the irradiating means, and the light detecting means. A fine pattern depth measurement device with
JP22771984A 1983-12-26 1984-10-31 Method and apparatus for measuring depth of fine pattern Granted JPS61107104A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22771984A JPS61107104A (en) 1984-10-31 1984-10-31 Method and apparatus for measuring depth of fine pattern
US06/685,550 US4615620A (en) 1983-12-26 1984-12-24 Apparatus for measuring the depth of fine engraved patterns
US07/254,964 USRE33424E (en) 1983-12-26 1988-10-07 Apparatus and method for measuring the depth of fine engraved patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22771984A JPS61107104A (en) 1984-10-31 1984-10-31 Method and apparatus for measuring depth of fine pattern

Publications (2)

Publication Number Publication Date
JPS61107104A true JPS61107104A (en) 1986-05-26
JPH0566522B2 JPH0566522B2 (en) 1993-09-22

Family

ID=16865279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22771984A Granted JPS61107104A (en) 1983-12-26 1984-10-31 Method and apparatus for measuring depth of fine pattern

Country Status (1)

Country Link
JP (1) JPS61107104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222208A (en) * 1987-03-11 1988-09-16 Japan Spectroscopic Co Apparatus for measuring depth of recessed part
JPH01145504A (en) * 1987-12-01 1989-06-07 Canon Inc Optically measuring apparatus
JPH0251005A (en) * 1988-08-12 1990-02-21 Hitachi Ltd Depth measuring method and apparatus
US4988198A (en) * 1987-06-22 1991-01-29 Dainippon Screen Mfg. Co., Ltd. Method and apparatus for measuring microlevel difference
US9988779B2 (en) 2013-09-02 2018-06-05 Nausicaa Tolde SARTORI Unmanned mobile device and relative method for treating a snow covered surface, and in particular of glaciers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222208A (en) * 1987-03-11 1988-09-16 Japan Spectroscopic Co Apparatus for measuring depth of recessed part
US4988198A (en) * 1987-06-22 1991-01-29 Dainippon Screen Mfg. Co., Ltd. Method and apparatus for measuring microlevel difference
JPH01145504A (en) * 1987-12-01 1989-06-07 Canon Inc Optically measuring apparatus
JPH0251005A (en) * 1988-08-12 1990-02-21 Hitachi Ltd Depth measuring method and apparatus
US9988779B2 (en) 2013-09-02 2018-06-05 Nausicaa Tolde SARTORI Unmanned mobile device and relative method for treating a snow covered surface, and in particular of glaciers

Also Published As

Publication number Publication date
JPH0566522B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
US4615620A (en) Apparatus for measuring the depth of fine engraved patterns
JP3958134B2 (en) measuring device
JP3292029B2 (en) Dry etching end point monitoring method and apparatus therefor
JP3624783B2 (en) Double pass etalon spectrometer
US7379192B2 (en) Optical metrology of single features
JPH07134007A (en) Measuring device for film thickness of thin-film by high space resolution
JPH05248825A (en) Equipment for measuring thickness of thin film
US20130077100A1 (en) Surface shape measurement method and surface shape measurement apparatus
US5859439A (en) Apparatus for aligning semiconductor wafer using mixed light with different wavelengths
JPS61107104A (en) Method and apparatus for measuring depth of fine pattern
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
US7292335B2 (en) Optical measurements of patterned structures
JP2533514B2 (en) Depth / thickness measuring device
USRE33424E (en) Apparatus and method for measuring the depth of fine engraved patterns
EP4067843A1 (en) Film thickness measuring device and film thickness measuring method
JPS5979122A (en) Laser power measuring device
US20050128478A1 (en) Optical unit and measuring apparatus having the same
JP2005504318A (en) measuring device
JPH01320409A (en) Film thickness measuring method
JPH10122824A (en) Film thickness measuring method
JP2000074648A (en) Surface evaluating device for substrate
JPH06331320A (en) Film thickness measuring device
US10753798B2 (en) Compact wideband VUV spectrometer
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JPH0562943A (en) End point detector of plasma etcher

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term