JPS61107065A - Air-conditioning and hot-water supply heat pump device - Google Patents

Air-conditioning and hot-water supply heat pump device

Info

Publication number
JPS61107065A
JPS61107065A JP59230603A JP23060384A JPS61107065A JP S61107065 A JPS61107065 A JP S61107065A JP 59230603 A JP59230603 A JP 59230603A JP 23060384 A JP23060384 A JP 23060384A JP S61107065 A JPS61107065 A JP S61107065A
Authority
JP
Japan
Prior art keywords
hot water
heating
heat pump
storage tank
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230603A
Other languages
Japanese (ja)
Inventor
道夫 大坪
大熊 圭子
山崎 起助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59230603A priority Critical patent/JPS61107065A/en
Priority to KR1019850000646A priority patent/KR900000809B1/en
Priority to US06/699,128 priority patent/US4592206A/en
Priority to EP85101360A priority patent/EP0151493B1/en
Priority to DE8585101360T priority patent/DE3562666D1/en
Publication of JPS61107065A publication Critical patent/JPS61107065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプを用いて冷暖房および貯湯槽
の水を加熱することができるようにした冷暖房・給湯ヒ
ートボンゾ装置に関し、特に給湯加熱運転モードを各種
条件により制御することによって、経済的な運転を可能
にした冷暖房・給湯ヒートポンプ装置するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air conditioning/hot water supply heat bonzo device that uses a heat pump to heat water in a hot water storage tank. This is a heat pump device for air conditioning, heating, and hot water supply that enables economical operation by controlling it according to various conditions.

〔従来の技術〕[Conventional technology]

従来、ヒートポンプを使用した冷暖房装置としては第6
図に示すように、空気調和設備の実務の知識、昭和51
年度版、第83頁に開示されているものがある。同図に
おいて、■は圧縮機、2は冷暖房切換用の四方弁、3a
、3bは室内熱交換器、4は可逆式の冷媒膨張機構であ
って、冷房。
Conventionally, it was the 6th type of air conditioning system using a heat pump.
As shown in the figure, practical knowledge of air conditioning equipment, 1977
There is something disclosed on page 83 of the annual edition. In the figure, ■ is a compressor, 2 is a four-way valve for switching between air conditioning and heating, and 3a is a
, 3b is an indoor heat exchanger, and 4 is a reversible refrigerant expansion mechanism for cooling.

暖房時に於ける冷媒の流れ方向にそれぞれ対応した膨張
管4a、4bとを有している。5は室外熱交換器、6a
、6bは上記室内熱交換器3a。
It has expansion pipes 4a and 4b that respectively correspond to the flow direction of the refrigerant during heating. 5 is an outdoor heat exchanger, 6a
, 6b is the indoor heat exchanger 3a.

3bの四方弁2の連結側に設けられた電磁弁である。This is a solenoid valve provided on the connection side of the four-way valve 2 of 3b.

この様に構広された従来のヒートポンプ装置において、
複数の部屋を冷房する場合には、第6図に示すように圧
縮機lから吐出した高温高圧の冷媒ガスは、図中の実線
矢印のように流れて四方弁2から室外熱交換器5に至り
、ここで冷却されて凝縮する。そして凝縮し危高圧の液
冷媒は膨張弁4aを通ることで減圧される。このとき室
内熱交換器3a、3bの二方電礎弁6a、6bは各々負
荷が発生することで開くため、膨張弁4aからの低圧の
液冷媒は室内熱交換器3a、3bに於いて蒸発1〜で室
内空気から熱を奪うことによりガス化する。この低圧冷
媒ガスは四方弁2を通り圧縮機1に吸い込1れ、Plび
圧縮されて吐き出すサイクルが繰り返される。
In the conventional heat pump device configured in this way,
When cooling multiple rooms, as shown in FIG. 6, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows as shown by the solid arrow in the figure from the four-way valve 2 to the outdoor heat exchanger 5. At this point, it is cooled and condensed. Then, the condensed and extremely high pressure liquid refrigerant is depressurized by passing through the expansion valve 4a. At this time, the two-way electric foundation valves 6a and 6b of the indoor heat exchangers 3a and 3b open due to the generation of loads, so the low-pressure liquid refrigerant from the expansion valve 4a evaporates in the indoor heat exchangers 3a and 3b. In steps 1 to 1, the indoor air is gasified by removing heat from it. This low-pressure refrigerant gas is sucked into the compressor 1 through the four-way valve 2, and the cycle of being compressed and discharged is repeated.

また、暖房運転時にあっては、圧縮機lから吐出;−た
高温高圧の冷媒ガスは図中の破線矢印のように流れて四
方弁2から室内熱交換器3a、3bに至り、ここで放熱
して凝縮することにより室内f暖房する。さらに凝縮し
た高圧の液冷媒は膨張弁4bを通ることで減圧され、こ
の低圧の液冷媒は室外熱交換器5に至り、外気で加熱さ
れることで蒸発する。蒸発した低圧ガスは四方弁2を通
シ、圧縮機Iに吸い込捷れ、再び圧縮されて吐出するサ
イクルが繰り返えされる。
In addition, during heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows as shown by the broken line arrow in the figure and reaches the indoor heat exchangers 3a and 3b from the four-way valve 2, where it radiates heat. It heats the room by condensing it. Further, the condensed high-pressure liquid refrigerant is depressurized by passing through the expansion valve 4b, and this low-pressure liquid refrigerant reaches the outdoor heat exchanger 5, where it is heated by outside air and evaporated. The evaporated low-pressure gas passes through the four-way valve 2, is sucked into the compressor I, is compressed again, and is discharged, and the cycle is repeated.

第7図は、冷凍、voL58、A 671に開示されて
いる従来の冷暖房・給湯ヒートポンプ装置の他の例を示
すもので、W6図と同一符号は同一オたけ相当部分を示
す。同図に於いて7け貯湯槽であり、その内部には加熱
コイル8が般けられている。そして、この加熱コイル8
け電磁弁6bを介して室内熱交換器3aと電磁弁6aと
の直列回路に並列に接続されている。9は貯湯s6の市
水取入口、10は貯湯槽7に連結した給湯用蛇口である
FIG. 7 shows another example of the conventional cooling/heating/hot water heat pump device disclosed in Refrigeration, voL58, A 671, and the same reference numerals as in FIG. W6 indicate the same parts. In the figure, there are seven hot water storage tanks, and a heating coil 8 is installed inside the tank. And this heating coil 8
It is connected in parallel to the series circuit of the indoor heat exchanger 3a and the solenoid valve 6a via the solenoid valve 6b. 9 is a city water intake port of the hot water storage s6, and 10 is a hot water supply faucet connected to the hot water storage tank 7.

この様に構成されたヒートポンプ装置において、給湯加
熱を打力う場合には、電磁弁6aを閉じて電磁弁6bを
開く。これにより圧縮機1から吐出される高温高圧の冷
媒ガスは、第7図中の破線矢印のように流れ、四方弁2
から電磁弁6bを通つ゛テ加熱コイル8に至υ、ここで
放熱して凝縮することにより貯湯槽6内の水を加熱する
。凝縮した高温高圧の液冷媒は膨張弁4bを通ることで
減圧されて窟外熱交換器5に至り、外気で加熱されて蒸
発する。そしてこの低圧ガスは四方弁2を介して圧縮機
lへ吸い込まれることにより再び圧縮さね、るサイクル
を繰り返すことで給湯加熱を行なう。
In the heat pump device configured in this way, when heating hot water, the solenoid valve 6a is closed and the solenoid valve 6b is opened. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows as shown by the broken line arrow in FIG. 7, and the four-way valve 2
The water passes through the electromagnetic valve 6b to the heating coil 8, where heat is radiated and condensed to heat the water in the hot water tank 6. The condensed high-temperature, high-pressure liquid refrigerant is depressurized by passing through the expansion valve 4b and reaches the outside heat exchanger 5, where it is heated by the outside air and evaporated. This low-pressure gas is then sucked into the compressor 1 through the four-way valve 2, where it is compressed again, and the cycle is repeated to heat the hot water.

オた、暖房運転時には電磁弁6aが開くとともに電磁弁
6bが閉になり、さらに冷房運転時には雷、磁弁6bが
開くとともに電磁弁6aが閉になって第7図の破線矢印
または実線矢印に示す冷媒の流れを生じさせることで暖
房または冷房を行なうものであり、その動作は第6図に
おいて述べたものと同様である。
Also, during heating operation, solenoid valve 6a opens and solenoid valve 6b closes, and during cooling operation, when lightning strikes, solenoid valve 6b opens and solenoid valve 6a closes, as shown by the broken line arrow or solid line arrow in FIG. Heating or cooling is performed by producing the flow of refrigerant shown in FIG. 6, and its operation is the same as that described in FIG.

〔発明が解決しようとしている問題点〕しかしながら、
上述した従来のヒートポンプ装置を利用して給湯加熱を
行なう場合には、第7図で示した様に室内熱交換器3a
 、3bの一方を加熱コイルに置き換えて貯湯槽に装着
することにより、冷媒回路を暖房運転することによって
貯湯槽内の水を加熱する必要があるために、冷房時の廃
熱を回収して給湯加熱に利用する等の経済的な運転が行
なえない問題を有している、 また、上記構成に於いては、圧縮機の回転数が常に一定
であることから、効率的な運転が行なえない等の問題を
有している。
[Problem that the invention is trying to solve] However,
When heating hot water using the conventional heat pump device described above, an indoor heat exchanger 3a is used as shown in FIG.
, 3b is replaced with a heating coil and attached to the hot water storage tank. Since it is necessary to heat the water in the hot water storage tank by heating the refrigerant circuit, the waste heat from cooling can be recovered to supply hot water. In addition, in the above configuration, the rotation speed of the compressor is always constant, so efficient operation cannot be performed. I have this problem.

〔問題を解決するための手段〕[Means to solve the problem]

従って、この発明による冷暖房・給湯ヒートポンプ装置
は、圧縮機の吐出1111に三方弁を設けて圧縮機から
出力される高温高圧の冷媒を貯湯槽内の加熱コイルに導
き、この加熱コイルによって水を加熱することで凝縮し
た冷媒を膨張弁および室内外熱交換器を介して圧縮機に
戻すように構成したものである。また、インノ々−夕を
用いて圧縮機の回転数を副側1する様に構成したもので
ある。
Therefore, the air conditioning/hot water heat pump device according to the present invention includes a three-way valve at the discharge 1111 of the compressor to guide the high-temperature, high-pressure refrigerant output from the compressor to the heating coil in the hot water storage tank, which heats water. The condensed refrigerant is then returned to the compressor via an expansion valve and an indoor/outdoor heat exchanger. Further, the rotation speed of the compressor is controlled by 1 by using an inlet.

〔作用〕[Effect]

この様に構成された冷暖房・給湯ヒートボンゾ装置に於
いては、圧縮機から出力される高温高圧の冷媒によって
貯湯槽内の水を加熱することが出来ることから、効率的
な給湯加熱が行なえることになる。また、インバータに
よって圧縮機の回転数制菌が行々えることから、給湯加
熱モードを袂数種設定し、9荷条件によりモード選択を
行なうことによって経済性を高めることが出来るもので
ある。
In the air-conditioning/heating/hot-water supply heat bonzo system configured in this way, the water in the hot water storage tank can be heated by the high-temperature, high-pressure refrigerant output from the compressor, so hot water can be heated efficiently. become. Furthermore, since the rotational speed of the compressor can be sterilized by the inverter, economical efficiency can be increased by setting several hot water heating modes and selecting the mode based on nine loading conditions.

〔実施ゼII ) 第1図は本発明による冷暖房・給湯ヒートポンプ装面の
一実施例を示す構成図であって、第6図、第7図と同一
部分は同一記号を用いて示しである。同図に於いて11
は圧縮機lから吐出される高温高圧冷媒の流路切り換え
を行々う三方弁であって、その流入ポートa々一方の吐
出yN−トbは四方弁2に接続されている。また上記三
方弁11の加熱コイル8の一端が接続され、加熱コイル
8の他端は別々の電磁弁12.13f介して膨張機構4
の両端側に接続されている。
[Embodiment II] FIG. 1 is a block diagram showing an embodiment of the air-conditioning/hot-water supply heat pump installation according to the present invention, and the same parts as in FIGS. 6 and 7 are indicated using the same symbols. In the same figure, 11
is a three-way valve for switching the flow path of the high-temperature, high-pressure refrigerant discharged from the compressor 1, and its inlet ports a, one outlet yN, and the outlet b are connected to a four-way valve 2. Also, one end of the heating coil 8 of the three-way valve 11 is connected, and the other end of the heating coil 8 is connected to the expansion mechanism 4 through separate solenoid valves 12 and 13f.
is connected to both ends of the

I4け圧縮機lの容量制御用インバータ、15け上記三
方弁11.ilf磁弁12,13及びインバータ14.
を制御するタイマ付き制御装置であシ、このタイマ付き
制御装置fi:15には貯湯槽上部水温度検知器16及
び貯湯槽7の下部水mを検知する検知器17からの検知
信号が入力されるようになっている。
Inverter for capacity control of I4 compressor, 15 three-way valve 11. ILF magnetic valves 12, 13 and inverter 14.
This timer-equipped control device fi:15 receives detection signals from a hot water tank upper water temperature detector 16 and a detector 17 that detects lower water m of the hot water tank 7. It has become so.

次に、上記のように構成された本実施例の動作について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

(al  暖房時 圧縮機1から吐出された高温高圧の冷媒は、三方弁11
の流入及び吐出ポートa、bから四方弁2の破線の経路
を経由し、室内熱交換器3a及び3bの一方または両方
に至り、ここで凝縮された後、膨張機構4で減圧され、
さらに室外熱交換器5において蒸発し、この蒸発した冷
媒ガスは四方弁2を通り圧縮機lに戻る。
(al During heating, the high temperature and high pressure refrigerant discharged from the compressor 1 is
from the inlet and discharge ports a and b of the four-way valve 2 to one or both of the indoor heat exchangers 3a and 3b, where it is condensed and then depressurized by the expansion mechanism 4,
Further, the refrigerant gas is evaporated in the outdoor heat exchanger 5, and this evaporated refrigerant gas passes through the four-way valve 2 and returns to the compressor 1.

(b>  冷房時 冷房時には圧縮機lから吐出した冷媒は、三方弁11の
流入及び吐出ボー)a、bから四方弁2の実線の経路を
経由し、室外熱交換器5に至シ、ここで外気と熱交換し
て凝縮し、さらに膨張機構4で減圧された後に室内熱交
換器3a及び3bの一方もしくは両方に供給されて蒸発
する。この蒸発したガス冷媒は四方弁2を経由して再び
圧縮機lに戻る。
(b> During cooling During cooling, the refrigerant discharged from the compressor 1 flows through the inflow and discharge bows of the three-way valve 11) from a and b to the outdoor heat exchanger 5 via the solid line path of the four-way valve 2. The air is condensed by exchanging heat with the outside air, and after being further reduced in pressure by the expansion mechanism 4, it is supplied to one or both of the indoor heat exchangers 3a and 3b and evaporated. This evaporated gas refrigerant returns to the compressor l via the four-way valve 2.

(C1冷房給湯時 この場合の圧縮機Iから吐出した冷媒は、三方弁11の
流入及び吐出ボー)a、eから貯湯槽加熱コイル8に至
り、ここで凝縮することにより貯湯槽7内の水を加熱す
る。そして凝縮した液冷媒は電磁弁13を経て膨張機構
4に至り、減圧された後に室内熱交換器3a及び3bの
いずれか一方または両方に至り、ここで室内の熱を吸収
して蒸発する。そして、このガス冷媒は、四方弁2の実
線を経由して再び圧縮機lに戻る。このようにして、冷
房と同時に給湯加熱が行なわれることになる。
(C1 During cooling hot water supply, the refrigerant discharged from the compressor I in this case reaches the hot water storage tank heating coil 8 from the inflow and discharge bows of the three-way valve 11) a and e, where it is condensed and the water in the hot water storage tank 7 is heat up. The condensed liquid refrigerant then passes through the electromagnetic valve 13, reaches the expansion mechanism 4, is depressurized, and then reaches one or both of the indoor heat exchangers 3a and 3b, where it absorbs indoor heat and evaporates. Then, this gas refrigerant returns to the compressor l again via the solid line of the four-way valve 2. In this way, hot water supply and heating are performed at the same time as cooling.

(dl  給湯加熱時 給湯加熱時に圧縮機Iから吐出された冷媒は、三方弁1
1の流入及び吐出一方a、cから貯湯槽加熱コイル8に
至り、ここで凝縮して貯湯槽7内の水を加熱する。そし
て凝縮し九液冷媒は電磁弁12から膨張機構4を通って
室外熱交換器5に至り、ここで蒸発する。蒸発したガス
冷媒は四方弁2を経由して再び圧縮機lに戻る。
(dl When heating hot water The refrigerant discharged from compressor I when heating hot water is
1, the inflow and discharge of water from one side a and c leads to a hot water storage tank heating coil 8, where it condenses and heats the water in the hot water storage tank 7. The condensed liquid refrigerant passes from the solenoid valve 12 through the expansion mechanism 4 to the outdoor heat exchanger 5, where it evaporates. The evaporated gas refrigerant returns to the compressor l via the four-way valve 2.

以上は各運転時における冷媒の流れについて述べたが、
暖房期にあっては、通常暖房最優先となり、かつ暖房負
荷に応じた暖房運転がなされる。
The above describes the flow of refrigerant during each operation, but
During the heating season, heating is usually given top priority and heating operation is performed according to the heating load.

一般に住宅の暖房負荷は、第2図に示すように朝6時か
ら9時頃までに第1のピークがあり、そして日中(12
時から15時頃)は天候に応じ−C幾分かの第2のピー
クがあり、さらに夕方から夜間(17時から24時頃)
にかけて第3のピークがある。そして24時以降は負荷
がなくなる。
Generally speaking, the heating load of a house has its first peak between 6:00 and 9:00 in the morning, and then during the day (12:00), as shown in Figure 2.
to around 3 p.m.) depending on the weather -C There is some second peak, and then from evening to night (from around 17 p.m. to around 11 p.m.)
There is a third peak around After 24:00, the load disappears.

この発明の場合の制餌1を第3図に示す運転フローチャ
ート図を参照し々から説明する。
The feeding control 1 according to the present invention will be explained with reference to the operation flowchart shown in FIG.

なお、第3図の制御手順のプログラムは制御装[115
の内部メモリに格納されているものとする。
Note that the program for the control procedure shown in FIG.
Assume that it is stored in the internal memory of

第3図において、ステップS1は手動による運転モード
選択を行うものである。そして、ステップS1が冷房モ
ーFであると判定された時はステップS2に移行して、
冷媒回路が冷房運転になるように三方弁II、電磁弁1
2.13を制御する。
In FIG. 3, step S1 is for manually selecting an operating mode. Then, when it is determined that step S1 is the cooling mode F, the process moves to step S2,
Three-way valve II and solenoid valve 1 are installed so that the refrigerant circuit is in cooling operation.
2.13 control.

またステップSlが冷房以外のモードである場合にはス
テップS3に進み、暖房負荷があるm合にはステップS
4に進んで暖房運転をおこなう。
Further, if step Sl is a mode other than cooling, the process advances to step S3, and if there is a heating load, step S
Proceed to step 4 to start heating operation.

一方ステツゾS3で暖房負荷がないときにはステップS
5に進み、時間帯に応じて条件のAから0のいずれかに
進む。
On the other hand, when there is no heating load in Stetsuzo S3, step S
Proceed to step 5 and proceed to any of the conditions A to 0 depending on the time zone.

条件A(ステップS6)の場合には、貯湯槽下部に設け
た温度検知器17により貯湯槽水温度を検知し、も]−
貯@槽水鴻度が設定温度以下であわばtjP力優先モー
ド(ステップS7)により給湯加熱運転をイ[う。また
貯湯槽水温度が設定湛度以」;であわば、ステップS3
にもどる。
In the case of condition A (step S6), the temperature sensor 17 provided at the bottom of the hot water storage tank detects the water temperature of the hot water storage tank.
When the water level in the storage tank is below the set temperature, the hot water heating operation is started in the tjP power priority mode (step S7). In addition, if the water temperature of the hot water tank is higher than the set water temperature, step S3
Return to

能力優先モードと(17t、通常インノ々−夕の回転数
を能力の高い高速回転として運転することをいう。
Capacity priority mode (17t) refers to driving at a normal engine speed at a high speed with high capacity.

−f−1〜て、この場合に於けるインバータ周波数と定
格給湯加熱能力との関併は第4図に示すようになる。条
件Aの時間帯は、通常大きな給湯負荷が発生する時刻の
数時間前から大きな給湯負荷の発生が終了するまでの時
間を言う。
-f-1~, the relationship between the inverter frequency and the rated hot water heating capacity in this case is as shown in FIG. The time period under condition A refers to the time period from several hours before a large hot water supply load normally occurs until the generation of a large hot water supply load ends.

条fI+1(ステップ88)の嚇合には、貯湯槽上部T
L設けた温度検知器16により貯湯槽水温度を検知1−
1もし貯湯槽水温度が設定温度ノン下であれtI′:i
:人力優先モード(ステップ89)により給湯加熱+ψ
転全全行。1だ貯湯槽水温度が設定温度以上であt’1
.l−Jステップ83にもどる。貯湯槽下部の水温を使
うのに最・低必要゛!i1の温水を確保するに留めるた
めである。
In the case of condition fI+1 (step 88), the upper T of the hot water storage tank is
Detecting the water temperature of the hot water tank by the temperature detector 16 provided in L1-
1 If the water temperature in the hot water tank is not below the set temperature, tI':i
: Hot water heating +ψ by manual power priority mode (step 89)
Complete transfer. 1 If the water temperature in the hot water tank is higher than the set temperature, t'1
.. Return to l-J step 83. The minimum required to use the water temperature at the bottom of the hot water tank! This is to ensure only hot water for i1.

入力優先モードとは、入力をある設定値以下に抑えて運
転することを言い、時間帯は電力負荷ピークが現ねる時
間帯を言う。
The input priority mode refers to operating with the input suppressed to a certain set value or less, and the time period refers to the time period when the power load peak appears.

条件O(ステップ810)の場合には、貯湯槽下部に設
けた温度検知器17により貯湯槽水温度を検知し、もし
貯湯槽水温度が設定温度以下であればCl0F優先モー
ド(ステップ811)により給湯加熱運転17行う。脣
た貯湯槽水温度が設定温度以上であれば、ステップ83
にもどる。
In the case of condition O (step 810), the temperature sensor 17 installed at the bottom of the hot water storage tank detects the water temperature of the hot water storage tank, and if the water temperature of the hot water storage tank is below the set temperature, the Cl0F priority mode is activated (step 811). Perform hot water heating operation 17. If the water temperature in the hot water storage tank is equal to or higher than the set temperature, step 83
Return to

COP優先モードとは、第5図に示すように通常インバ
ータの回転数1!tnopの高い低速回転として運転す
ることをいう。また条件0の時間帯は条件AおよびB以
外の時間帯とする。
As shown in Fig. 5, the COP priority mode means that the rotation speed of the normal inverter is 1! This means operating at low speed with high tnop. Further, the time period for condition 0 is a time period other than conditions A and B.

なお、上記実施例では、室内熱交換器が2台ある場合に
ついて説明したが、これね、3台以上の場合でも同様に
適用できる。また、三方弁11の変わりに二方弁2個の
組み合わせたものでも良いほか、三方弁11を流11・
調整可能力電動弁と(−でも良い。
In the above embodiment, the case where there are two indoor heat exchangers has been described, but the present invention can be similarly applied to a case where there are three or more indoor heat exchangers. Also, instead of the three-way valve 11, a combination of two two-way valves may be used, and the three-way valve 11 can be replaced with a flow valve 11.
Adjustable force motorized valve (- may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明1−だように、この発明による冷暖房・給湯ヒ
ートポンプ装ff1は、給湯加熱モードを時間帯により
3つのモードに分けて制御するものであることから、各
時間帯ごとに最適な運転を行うことが出来る。つまり、
電力負荷ピークが発生するような時間帯では消費電力を
抑えるような運転を行い、また大きい給湯負荷が発生す
る少し前の時間帯では高能力での運転を行い貯湯槽の水
を完全に沸かす。それ以外の時間帯では経済性を高める
ために高00F運転行い、貯湯槽の水を除徐に沸かす事
が出来る優れた効果を有する。
As explained above in Explanation 1-, the air conditioning/hot water supply heat pump system ff1 according to the present invention controls the hot water supply heating mode by dividing it into three modes depending on the time of day, so it performs the optimum operation for each time period. I can do it. In other words,
During times when power load peaks occur, the system operates to reduce power consumption, and shortly before a large hot water supply load occurs, it operates at high capacity to completely boil water in the hot water tank. At other times, high 00F operation is performed to increase economic efficiency, and has the excellent effect of gradually boiling water in the hot water storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明による冷暖房・給湯ヒートポンプ装置の一
実施例を示す構成図、第2図は一般住宅に於ける暖房負
荷発生Aターンを示す図、第3図は第1図に示す装置の
動作を説明するためのフローチャートを示す図、第4図
はインメ々−タ周波数と定格給湯加熱能力との関係を示
す図、第5図はCOPとイン/々−タ周波数の関係を示
す図、第6図、第7図は従来の冷暖房用ヒートポンプ装
置の一例を示す構収図である。 1・・・圧縮機、2・・・四方弁、3a、3b・・・室
内熱交換器、4・・・膨張機構、5・・・室外熱交換器
、7・・・貯湯槽、11・・・三方弁(切換弁)、8・
・・加熱コイル、12.13・・・電磁弁、14・・・
インバータ。 15・・・タイマ付き制御装置、16・・・貯湯槽上部
氷温度検知器、17・・・貯湯槽下部水温度検知器。 なお、図中同一部分または相当部分は同−符弓により示
す。 代理人大′1・“;1::、、し11−(外2名)第4
図 第5図 4)ハーフ局廊目ダ fct−4z〕 手続補正書(自発) 1.事件の表示   特願昭59−230603号2、
発明の名称   冷暖房・給湯ヒートポンプ装置3、補
正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3け名
 称  (601)三菱電機株式会社代表者片由仁八部 4、代理人 5、補正の対象 (1)  明IIIfl*の発明の詳細な説明の欄6、
補正の内容 (11明細書第6頁4行目「電磁弁6 b・・・・・・
閉にt「つ」とあるをriv、磁弁6胤が開くとともに
電磁弁6bが閉になり」と補正する。 (2)同第8頁6行目[流入ポート−と一方の吐出ボー
1− b Jとあるを[流入ポートaと一方の吐出ボー
1− b Jと補正する。 (3)同第14頁11行目「除徐に」とあるを「徐々に
」と補正する。
Fig. 1 is a configuration diagram showing one embodiment of the air conditioning/hot water supply heat pump device according to the present invention, Fig. 2 is a diagram showing A turn of heating load generation in a general house, and Fig. 3 is the operation of the device shown in Fig. 1. FIG. 4 is a diagram showing the relationship between the meter frequency and the rated hot water heating capacity. FIG. 5 is a diagram showing the relationship between the COP and the meter frequency. 6 and 7 are composition diagrams showing an example of a conventional heat pump device for heating and cooling. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3a, 3b... Indoor heat exchanger, 4... Expansion mechanism, 5... Outdoor heat exchanger, 7... Hot water storage tank, 11.・・Three-way valve (switching valve), 8・
...Heating coil, 12.13...Solenoid valve, 14...
inverter. 15...Control device with timer, 16...Hot water storage tank upper ice temperature detector, 17...Hot water storage tank lower water temperature detector. In the figures, the same or equivalent parts are indicated by the same arrows. Agent Dai′1・“;1::、、し11-(2 others) 4th
Figure 5 Figure 4) Half station corridor fct-4z] Procedural amendment (voluntary) 1. Indication of the incident Patent application No. 59-230603 2,
Title of the invention Air-conditioning/hot water supply heat pump device 3, relationship to the amended case Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Katayuni Hachibe 4 , Agent 5, Subject of amendment (1) Detailed explanation of the invention of Akira IIIfl* Column 6,
Contents of the amendment (11 Specification, page 6, line 4 “Solenoid valve 6 b...
The word "t" in "close" is corrected to "riv, solenoid valve 6b opens and solenoid valve 6b closes." (2) On page 8, line 6, [Inflow port - and one discharge bow 1-b J] is corrected to [Inflow port a and one discharge bow 1-b J. (3) On page 14, line 11, the phrase ``gradually'' is amended to ``gradually''.

Claims (4)

【特許請求の範囲】[Claims] (1)インバータの出力によつて駆動されることにより
回転が可変されて容量制御が行なわれる圧縮機、冷暖房
切換四方弁、室内熱交換器、膨張機構および室外熱交換
器が閉ループ接続されて冷媒回路を構成する冷暖房・給
湯ヒートポンプ装置に於いて、上記圧縮機と上記四方弁
間に設けられて圧縮機から吐出される冷媒流路を切換え
る切換弁と、この切換弁の吐出ポートを貯湯槽内の水を
加熱する加熱コイルを介して上記膨張機構の両端側間に
電磁弁を介して接続され、給湯加熱モードが条件A(能
力優先モード)となつたときにはインバータの周波数を
高周波数または最高周波数で運転し、条件B(入力優先
モード)となつたときは、入力を検知して入力をある設
定値以下に抑え、条件C(COP優先モード)となつた
ときはインバータの周波数を低周波数または最低周波数
で運転することにより、高COP運転を行うように制御
するタイマー付き制御手段とを設けたことを特徴とする
冷暖房・給湯ヒートポンプ装置。
(1) A compressor that is driven by the output of an inverter to vary its rotation and perform capacity control, a four-way air-conditioning/heating switching valve, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger are connected in a closed loop, and the refrigerant is In the air conditioning/hot water heat pump device that constitutes the circuit, a switching valve is provided between the compressor and the four-way valve to switch the refrigerant flow path discharged from the compressor, and a discharge port of the switching valve is connected to the hot water storage tank. A heating coil that heats water is connected to both ends of the expansion mechanism via a solenoid valve, and when the hot water heating mode becomes condition A (capacity priority mode), the frequency of the inverter is set to a high frequency or the highest frequency. When the condition B (input priority mode) is reached, the input is detected and the input is kept below a certain set value, and when the condition C (COP priority mode) is reached, the inverter frequency is set to a low frequency or 1. A heat pump device for heating, cooling, and hot water supply, characterized in that it is provided with a control means with a timer that performs control to perform high COP operation by operating at the lowest frequency.
(2)設定時刻に貯湯槽下部水温度が設定温度以下とな
つていることを条件Aとすることを特徴とする特許請求
の範囲第(1)項記載の冷暖房・給湯ヒートポンプ装置
(2) The air conditioning/hot water supply heat pump device according to claim (1), wherein condition A is that the water temperature in the lower part of the hot water storage tank is equal to or lower than the set temperature at the set time.
(3)電力負荷ピーク時間帯などの設定時間に貯湯槽上
部水温度が設定温度以下となつていることを条件Bとす
ることを特徴とする特許請求の範囲第(1)項記載の冷
暖房・給湯ヒートポンプ装置。
(3) Condition B is that the temperature of the water at the top of the hot water storage tank is below the set temperature at a set time such as during peak power load hours. Hot water heat pump equipment.
(4)条件Aおよび条件C以外の時間帯でかつ貯湯槽下
部水温度が設定温度以下となつていることを条件Cとす
ることを特徴とする特許請求の範囲第(1)項記載の冷
暖房・給湯ヒートポンプ装置。
(4) The air conditioning and heating according to claim (1), characterized in that condition C is that the water temperature at the bottom of the hot water storage tank is below the set temperature during a time period other than conditions A and C.・Hot water heat pump equipment.
JP59230603A 1984-02-09 1984-10-30 Air-conditioning and hot-water supply heat pump device Pending JPS61107065A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59230603A JPS61107065A (en) 1984-10-30 1984-10-30 Air-conditioning and hot-water supply heat pump device
KR1019850000646A KR900000809B1 (en) 1984-02-09 1985-02-01 Room-warming/cooling and hot-water supplying heat-pump apparatus
US06/699,128 US4592206A (en) 1984-02-09 1985-02-07 Room-warming/cooling and hot-water supplying heat-pump apparatus
EP85101360A EP0151493B1 (en) 1984-02-09 1985-02-08 Room-warming/cooling and hot-water supplying heat pump apparatus
DE8585101360T DE3562666D1 (en) 1984-02-09 1985-02-08 Room-warming/cooling and hot-water supplying heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230603A JPS61107065A (en) 1984-10-30 1984-10-30 Air-conditioning and hot-water supply heat pump device

Publications (1)

Publication Number Publication Date
JPS61107065A true JPS61107065A (en) 1986-05-24

Family

ID=16910332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230603A Pending JPS61107065A (en) 1984-02-09 1984-10-30 Air-conditioning and hot-water supply heat pump device

Country Status (1)

Country Link
JP (1) JPS61107065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345099A (en) * 2005-08-30 2005-12-15 Daikin Ind Ltd Heat pump hot-water supply device
WO2012039153A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Air-cooling hot-water supply device and air-cooling hot-water supply method
JP2014202378A (en) * 2013-04-01 2014-10-27 リンナイ株式会社 Hot water storage water heater
US9562696B2 (en) 2010-04-15 2017-02-07 Mitsubishi Electric Corporation Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345099A (en) * 2005-08-30 2005-12-15 Daikin Ind Ltd Heat pump hot-water supply device
US9562696B2 (en) 2010-04-15 2017-02-07 Mitsubishi Electric Corporation Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
WO2012039153A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Air-cooling hot-water supply device and air-cooling hot-water supply method
JP2012067937A (en) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp Air conditioning and hot-water supply device
CN103119377A (en) * 2010-09-21 2013-05-22 三菱电机株式会社 Air-cooling hot-water supply device and air-cooling hot-water supply method
CN103119377B (en) * 2010-09-21 2015-12-02 三菱电机株式会社 Refrigeration hot water supply apparatus and refrigeration hot water supply method
US9651267B2 (en) 2010-09-21 2017-05-16 Mitsubishi Electric Corporation Cooling and hot water supply system and cooling and hot water supply method
JP2014202378A (en) * 2013-04-01 2014-10-27 リンナイ株式会社 Hot water storage water heater

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
EP2233864B1 (en) Air-conditioning and hot water complex system
CN103090537B (en) Heat pump type hot water supply apparatus and method of operation thereof
CN101476774B (en) Double-heat source heat pump water heater with air source and water source
JP5518101B2 (en) Air conditioning and hot water supply complex system
CN104949409B (en) A kind of flexible air source heat pump defrosting system and method that need not start compressor
CN1188217A (en) Forward cycle heat pump
JP5264936B2 (en) Air conditioning and hot water supply complex system
JPS61107065A (en) Air-conditioning and hot-water supply heat pump device
CN110486940A (en) A kind of boiler using air energy
JP3284905B2 (en) Heat pump system
JPH10185342A (en) Heat pump type air conditioner
KR102345648B1 (en) Geothermal heat pump system capable of simultaneous or independent hot water supply operation
CN109668348B (en) High-efficiency air source heat pump water heater with liquid pulse defrosting function
JP3615301B2 (en) Heat pump for hot water supply
CN110486941A (en) A kind of Air-source Heat Pump boiler and its refrigerating and heating method
JPS61107066A (en) Air-conditioning and hot-water supply heat pump device
CN212320082U (en) High-efficiency heat pump water heater
WO2023223373A1 (en) Heat pump device
JP2705492B2 (en) Water storage, hot water storage type hot water supply device
JPS611968A (en) Air-conditioning and hot-water supply heat pump device
JPH05340641A (en) Heat pump
JP3009481B2 (en) Heat pump type air conditioner
JPS62261862A (en) Heat pump system
JPS611967A (en) Air-conditioning and hot-water supply heat pump device