JPS61105876A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61105876A
JPS61105876A JP59226654A JP22665484A JPS61105876A JP S61105876 A JPS61105876 A JP S61105876A JP 59226654 A JP59226654 A JP 59226654A JP 22665484 A JP22665484 A JP 22665484A JP S61105876 A JPS61105876 A JP S61105876A
Authority
JP
Japan
Prior art keywords
solar cell
conductive
cell element
parts
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59226654A
Other languages
Japanese (ja)
Inventor
Kunio Asai
邦夫 浅井
Osamu Nakamura
修 中村
Mitsuo Matsumura
松村 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP59226654A priority Critical patent/JPS61105876A/en
Publication of JPS61105876A publication Critical patent/JPS61105876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable to manufacture a photovoltaic device with good productive efficiency by serially connecting the plural amorphous semiconductors and to enable to obtain high-output voltage with a large area by a method wherein a film is inserted in between the superposing parts of the solar cell elements. CONSTITUTION:An amorphous silicon solar cell element 2 is disposed on an insulative substrate 30. The left end of a second solar cell element 2b is superposed on the right end of a first solar cell element 2a as many as a width (d) and the left end of a third solar cell element 2c is superposed on the right end of the second solar cell element 2b as many as a width (d)l. A buffer connecting means 40 is interposingly provided in between the superposing parts of the solar cell elements. An insulating film 44, wherein holes 42 are provided by boring, is provided at the central part of each buffer connecting means 40. A conductive part 46 is formed at the central part of each surface of the insulating films 44, adhering parts 48 are formed at both side parts of the conductive part 46 and the conductive parts 46 are electrically connected to the superposing parts by conductive coupling parts 50, which are filled in the holes 42. Accordingly, a press-contact stress to generate at the superposing parts when the solar cell elements are coupled together in series connection is significantly relaxed. As a result, a breakdown of the elements can be prevented and the production of the photovoltaic device can be made to improve.

Description

【発明の詳細な説明】 産 −にの利 分 本発明は、一般には光起電力装置に関するものであり、
特にアモルファス半導体太陽電池を複数個電気的てに接
続して構成される光起電力装置に関するものである。本
明細書において、アモルファス半導体とは、微結晶化半
導体をも含むものとして使用する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates generally to photovoltaic devices;
In particular, the present invention relates to a photovoltaic device constructed by electrically connecting a plurality of amorphous semiconductor solar cells. In this specification, amorphous semiconductor is used to include microcrystallized semiconductor.

近年、アモルファス半導体1例えばアモルファスシリコ
ン太陽電池は、(1)薄膜であること、つまり結晶化シ
リコンに比べ可視光域tの吸収係数が大きく、結晶シリ
コンと同程度の変換効率を得るには約1けた薄い膜厚で
よいこと、(2)アモルファスシリコン太陽電池の製造
に要した電力は結晶シリコン太陽電池よりも極めて少な
く、エネルギ回収率が少ないこと、(3)基板加熱が少
なく且つアモルファスシリコンが基板と反応することが
なく。
In recent years, amorphous semiconductors such as amorphous silicon solar cells (1) are thin films, that is, have a larger absorption coefficient in the visible light range t than crystallized silicon, and in order to obtain the same conversion efficiency as crystalline silicon, it takes about 1 (2) The power required to manufacture amorphous silicon solar cells is much lower than that of crystalline silicon solar cells, and the energy recovery rate is low. (3) Substrate heating is small and amorphous silicon is without reacting.

ステンレス板。ガラス板等のように種々の基板を1史川
し得ろこと、(4)シラン(SiH4)からグロー放′
亀分解にて直接基板上に膜を形成し得ろため連続生産が
容易であること1等々の理由に゛よって光用′市力装首
の構成要素として注目を浴びている。
Stainless steel plate. (4) Glow emission from silane (SiH4)
It is attracting attention as a component of optical headpieces for several reasons, including the fact that a film can be formed directly on a substrate by turmeric decomposition, making continuous production easy.

しかしながら、アモルファスシリコン太陽電池の単位面
積当りの出力は極めて小さく、従って実用に供しイr+
ろ大電力を発生するには、太陽電池の表面積を大とする
ことが不可欠である。
However, the output per unit area of amorphous silicon solar cells is extremely small, so it is difficult to put it into practical use.
In order to generate large amounts of power, it is essential to increase the surface area of solar cells.

助石欠点を解決するべく、一つの太陽電池素子の表面積
を大とすると2素子の表面積を構成する透明導電層のシ
ート抵抗により効率が低下することが分っている。更に
又、このような大きな太陽電池を製造するのは技術的に
はより困難となり。
It has been found that when the surface area of one solar cell element is increased in order to solve this problem, the efficiency decreases due to the sheet resistance of the transparent conductive layer that constitutes the surface area of the two elements. Furthermore, it is technically more difficult to manufacture such large solar cells.

歩留まりが低下するという不利益があった。There was a disadvantage that the yield rate decreased.

上記の如き不利益の中、特に透明導電膜層のシート抵抗
による効率低下ケ解消するべく、絶縁基板上に複数の太
陽電池素子を形成し、各太陽型I’11!素子を直列に
接続″fろよ5にした集積型が考見られているが、製造
工程が慴雑で、製造価格が大であるというばかりでなく
、素子占有面イh匠IIsべ有効発電面積が狭い、つま
り、実用効率が(Ijいという欠点があった。又1例え
集積型であっても1例えば20cIrL角のセルを作る
には2(lcIn角の基板−ににアモルファスシリコン
等を堆積せねばならず、大面積化による歩留まりの低下
が余儀なくされる。
In order to overcome the disadvantages mentioned above, especially the decrease in efficiency due to the sheet resistance of the transparent conductive film layer, a plurality of solar cell elements are formed on an insulating substrate, and each solar type I'11! An integrated type in which elements are connected in series in a ``5'' configuration has been considered, but not only is the manufacturing process complicated and expensive, but it also requires less space for the elements and is less effective in generating power. It has the disadvantage that the area is small, that is, the practical efficiency is low.Also, even if it is an integrated type, to make a cell of, for example, 20 cIrL square, it is necessary to use amorphous silicon, etc. Therefore, the yield is inevitably lowered due to the larger area.

発明が解決しようとする問題点 本出願人は、上記従来の太陽電池が有した諸欠点を解決
するべく、導電性基板、アモルファス半導体層及び透明
導電膜層を檀1−シて構成されろ太陽電池素子を複数個
直列帳様で配置し、隣接する太1%′屯池素子は、一方
の太陽電池素子の透明導電膜層上K 111J方の太陽
′電池素子の導電性基板が一部1になり合うようにして
心気的に直列接続されて成る光起電力装置dな提案した
Problems to be Solved by the Invention In order to solve the various drawbacks of the conventional solar cells described above, the present applicant has proposed a solar cell constructed by combining a conductive substrate, an amorphous semiconductor layer, and a transparent conductive film layer. A plurality of battery elements are arranged in series, and the conductive substrate of the solar cell element on the side K111J is partially on the transparent conductive film layer of one solar cell element. We have proposed a photovoltaic device which is connected in series with each other.

このように構成される光起電力装着は、(1)各太陽電
池素子を1例えば20 m X 1.2酬といった比較
的小面積とし、変嬶効率及び歩留まり共高く保つことが
できろ、(2)各太1情亀池素子は20段といった的外
配置(構成とすることができ1例えば16■といった実
用的な1儲い出力車圧を得ることができる。 (3+例
えば20・・m角といった光起電力装置のほぼ全面(N
tで発電が行なわれ面積効率が著しく大−〇ル、ろ、(
4)導電性基板としてステンレス薄板等の低1曲格の材
料′?使用することができ、低価格の太陽型1112−
従って低価格の光起電力装置を提供し得ろ、どいつた神
々の利益な有するものであるが。
The photovoltaic mounting configured in this way has the following advantages: (1) Each solar cell element has a relatively small area, for example, 20 m x 1.2 square meters, and can maintain high conversion efficiency and yield. 2) Each of the 1-inch Kameike elements can be arranged in an unconventional arrangement (configuration) such as 20 stages, and it is possible to obtain a practical output vehicle pressure of 1, for example, 16 mm. (3 + for example, 20 m square) Almost the entire surface of the photovoltaic device (N
Electricity is generated in t, and the area efficiency is extremely large.
4) Low 1 curvature material such as thin stainless steel plate as a conductive substrate? Solar type 1112-
Therefore, it is in the gods' interest to provide a low-cost photovoltaic device.

谷太1・功1東池素子を直列に接続する際に互いに重な
り合5部分が圧着作業時に圧着時のストレスにて破壊す
ることがあり、歩留まりケ悪くするといった問題小かk
)つた。
When connecting Tanita 1, Kou 1, and Higashiike elements in series, the 5 parts that overlap each other may break due to the stress during crimping, resulting in a small problem such as poor yield.
) ivy.

斯ろ問題は慎重な圧着作業又は圧着装置な頻繁従って1
本発明の主たる目的は、複数の半導体。
Therefore, the problem is that careful crimping work or crimping equipment is often
The main object of the present invention is to provide a plurality of semiconductors.

特にアモルファス半導体を直列に接続して構成され、し
かも生産性よく製造することのできる光起電力装置を提
供することである。
In particular, it is an object of the present invention to provide a photovoltaic device which is constructed by connecting amorphous semiconductors in series and which can be manufactured with high productivity.

本発明の他の目的は、大面積を有し、効率が良く、高出
力電圧を得ることのできろ低価格の光起電力装置を提供
することである。
Another object of the present invention is to provide a low-cost photovoltaic device having a large area, high efficiency, and capable of obtaining a high output voltage.

問題点を解決fろだめの手段 本発明者等は、上記本出願人に係る技術の欠点を改良す
るべく研究した結果、各太陽ミノ111素子^・面接型
ね合せず、市ね合せ部分にフイルムヶ挿入することによ
って、上記諸欠点を完全に解決L 、、i!#ることを
μ出した。つまり1本発明は1υ「石■[1,い知見に
基づきなされたものであり、上d[i諸目的は本発明に
よって達tizさねる。本発明は要約すると2導′亀性
基板、アモルフス半導体1朝及び透明導電膜層を積1−
シて構成される太陽電池素子な幀数個面列惑様子配置し
、隣接する太陽電池素子は、一方の太1vi′市池素子
の透明導*、Ilψ層上に他方の太1潟電池素子の導電
性基板が一部屯なり合うようFfl +。
Means for Solving the Problems The present inventors conducted research to improve the shortcomings of the above-mentioned technology of the present applicant, and as a result, each Taiyo Mino 111 element did not have face-to-face contact, but instead had a face-to-face contact. By inserting a film, the above-mentioned drawbacks can be completely solved.L,,i! #I put out μ. In other words, the present invention has been made based on the knowledge of the present invention, and the above objects are achieved by the present invention. Layering the semiconductor layer and transparent conductive layer layer 1-
The adjacent solar cell elements are arranged in a transparent conductor layer on one side, and the other side is placed on the transparent conductive layer of the Ilψ layer. Ffl + so that the conductive substrates of Ffl+ are partially aligned.

て市、気的に直列接続されて成る光起電力装置において
、−市t「り合う部分に一部導通部な有した緩衝接続手
段を介設し両太陽′亀池素子を相互に接続するようにし
たことを特徴とする光起電力装置であるー 又1本発明の好ましい実施態様によると、緩衝接続手段
は、概略中央部に少なくとも1つの孔が穿設された矩形
状の絶縁フィルムを具!#シ、該絶縁フィルムの各面に
は導電部と接着部とが形成され、各面の導電部はAi前
記孔に形成された導電連結部な介して電気的に接続され
る。又、絶縁フィルムはプラスチックフィルム、紙又は
布とされる。
In a photovoltaic device in which two solar cells are electrically connected in series, a buffer connection means having a partially conductive part is interposed in the part where they meet, and both solar and Kameike elements are connected to each other. According to a preferred embodiment of the present invention, the buffer connection means includes a rectangular insulating film having at least one hole formed approximately in the center thereof. !#shi, a conductive part and an adhesive part are formed on each surface of the insulating film, and the conductive part on each surface is electrically connected through the conductive connection part formed in the hole of the Ai. The insulating film may be a plastic film, paper or cloth.

次に1本発明に係る光起電力装置を図面に則I7て把1
明する。
Next, the photovoltaic device according to the present invention will be explained in accordance with the drawings.
I will clarify.

第2図は0本発明の光起電力装置1(第1図)な構成す
るアモルファス半導体太陽電池素子2(2a、2b、2
c )Y示す。アモルファス半導体太陽電池素子2は2
例えばステンレス薄板の導電性基板4上にアモルファス
半導体層6が積層される。ここで導電性基板4は鉄M板
など他の金属製基板を使用することができる。
FIG. 2 shows amorphous semiconductor solar cell elements 2 (2a, 2b, 2) constituting the photovoltaic device 1 (FIG. 1) of the present invention.
c) Show Y. Amorphous semiconductor solar cell element 2 is 2
For example, an amorphous semiconductor layer 6 is laminated on a conductive substrate 4 made of a thin stainless steel plate. Here, as the conductive substrate 4, other metal substrates such as an iron M plate can be used.

不実施態様ニおいて、アモルファス半4体1446は、
 pie構造、Hip構造、又はこれら構造体を二層に
積んだタンデム構造とfろことができる。父。
In a non-embodiment 2, the amorphous half body 1446 is
It can be a pie structure, a hip structure, or a tandem structure in which these structures are stacked in two layers. father.

p#、i層及びn Idはアモルファスシリコン層トて
ろことができるが、plm、n層には微結晶化シIJ 
:lI ン層、  i 層にはアモルファスシリコン・
ゲルマニウム層を用いることもできろ。
P#, i layer and nId can be made of amorphous silicon layer, but plm, n layer can be made of microcrystalline silicon layer.
:I layer and i layer are made of amorphous silicon.
A germanium layer could also be used.

第2図に示されろアモルファス半導体層6は、基板4側
より順次にアモルファスシリコンp型)@6a、アモル
ファスシリコンi WI−6b 及ヒアモルファスシリ
コンn型層6cな積層したpie構造であり、アモルフ
ァス半導体層6の上層には透明導電膜8が形成される。
The amorphous semiconductor layer 6 shown in FIG. 2 has a pie structure in which an amorphous silicon p-type layer 6a, an amorphous silicon i WI-6b, and a hyamorphous silicon n-type layer 6c are laminated in order from the substrate 4 side. A transparent conductive film 8 is formed on the semiconductor layer 6 .

アモルファス太陽電池素子2は、上述のように。The amorphous solar cell element 2 is as described above.

第2図に示されろ素子構造に限定されるものではな(1
例えば具体的に一例を掲げれば、基&/n−1−p(ア
モルファスシリコン/透明導電膜。
It is not limited to the element structure shown in FIG.
For example, to give a specific example, base &/n-1-p (amorphous silicon/transparent conductive film).

基&/p(アモルファスシリコン−i(アモルファスシ
リコン・ゲルマニウム)−n−p−i−n(アモルファ
スシリコン)/透明導電膜(タンデム榴)告)が考えら
れろ。
Consider the group &/p (amorphous silicon-i (amorphous silicon germanium)-np-i-n (amorphous silicon)/transparent conductive film (tandem film)).

次に、、第2図に示f p −i −n (アモルファ
スシリコン)構造の太陽電池素子2の一製造方法につい
て、l′4λ3図ケ参照して説明する。
Next, a method for manufacturing the solar cell element 2 having the fp-i-n (amorphous silicon) structure shown in FIG. 2 will be explained with reference to FIG.

第3図にはアモルファスシリコン堆積装置10の構成が
m 1li4図示されている。該装@10は内部に、p
型層形成チャンバ12.i型層形成チャンバ14及びn
lfJj層形成チャンバ16を有する。各チャンバ12
.14及び16は、対をなす電極18a、b、20a、
b及び22a、b?備えたグロー放電装fi!t 18
 、20及び22を有する。
FIG. 3 shows the structure of the amorphous silicon deposition apparatus 10. The package @10 has p
Mold layer forming chamber 12. i-type layer forming chamber 14 and n
It has a lfJj layer forming chamber 16. Each chamber 12
.. 14 and 16 are paired electrodes 18a, b, 20a,
b and 22a, b? Equipped with glow discharge equipment fi! t 18
, 20 and 22.

父、杓11記各チャンバ12,14及び16を貫通1〜
で、即ち、各チャンバの対の電極間を通って長尺の導電
性基板4が、供給ロール4aから巻取ロール4hへと供
給される。
Father, Ladle 11 Penetrate each chamber 12, 14 and 16 1~
That is, the long conductive substrate 4 is supplied from the supply roll 4a to the take-up roll 4h through between the pairs of electrodes in each chamber.

更に、谷チャンバ12,14及び16には、所定のドー
パントガスが供給される。即ち、チャンバ12には5i
)I<とfhH−の混合ガス、チャンバ14には3 i
 Haガス及びチャンバ161CはP Tl m 。
Furthermore, valley chambers 12, 14 and 16 are supplied with a predetermined dopant gas. That is, the chamber 12 has 5i
) I< and fhH−, chamber 14 contains 3 i
Ha gas and chamber 161C are P Tl m .

8+Ha及びHzの混合ガスが供給される。A mixed gas of 8+Ha and Hz is supplied.

導電性基板4は1例えば0.111V、20cm幅のス
テンレス薄板とされ、供給ロール4 a (Llllか
ら。
The conductive substrate 4 is made of a thin stainless steel plate with a voltage of, for example, 0.111V and a width of 20 cm, and a supply roll 4a (from Lllll).

各チャンバの′電極間を曲って巻ルロール4b1則へと
搬送される。基板4上には、チャンバ12にてp型層6
aが1次でチャンバ14にては前記p型j@6 a上に
ifi層6bが堆積され、最後にチャンバ16にては前
記i型層6b上に更にn型146cが堆積される。この
ようにして、導電性基板4には連続的にアモルファスシ
リコン層6が堆積される。
It is conveyed to the winding roll 4b1 by winding between the electrodes of each chamber. A p-type layer 6 is formed on the substrate 4 in a chamber 12.
a is primary, and in the chamber 14, an ifi layer 6b is deposited on the p-type layer 6a, and finally in the chamber 16, an n-type layer 146c is further deposited on the i-type layer 6b. In this way, the amorphous silicon layer 6 is continuously deposited on the conductive substrate 4.

アモルファスシリコン層が堆積された長尺導電性基板は
、長手方向に5〜5071111間隔幅、好ましくは1
0〜30朋幅にて順次に切断される。
The elongated conductive substrate on which the amorphous silicon layer is deposited has a width of 5 to 5071111 intervals in the longitudinal direction, preferably 1
Sequentially cut in widths of 0 to 30 mm.

切断された各アモルファスシリコンノー付基板は蒸着装
置に導入され、透明導電rfjj8が1通常態様にてア
モルファスシリコン層6上に形成される。
Each cut amorphous silicon coated substrate is introduced into a vapor deposition apparatus, and a transparent conductive rfjj 8 is formed on the amorphous silicon layer 6 in one conventional manner.

これによって、第2図に図示されるように、巾(財)2
0CTL、長さくL)5〜50 vry(のアモルファ
スシリコン太陽電池素子2が製造される。太陽電池2の
しさくL)は、前述のよう[5〜5ommとされるが、
切断幅即ち長さくL)を5−以下とすることは生産速度
の低下、生産コストの上昇をもたらし好ましく t、c
 < 、又長さく L )’t 50 mm以上とする
と、丙明導電層8σ)シート抵抗によって太陽電池の効
率が低下し、更に歩留まりが悪くなり好ましくない。
As a result, the width (wealth) 2
An amorphous silicon solar cell element 2 of 0CTL, length L) of 5 to 50 vry is manufactured.
It is preferable to set the cutting width (that is, the length L) to 5 or less because it reduces the production speed and increases the production cost.
< , and if the length L)'t is 50 mm or more, the efficiency of the solar cell will decrease due to the sheet resistance of the Ximei conductive layer (8σ), and the yield will further deteriorate, which is undesirable.

父、所望に応じ、第4図に図示されるように。Father, as desired, as illustrated in FIG.

大+41 電池要素2の一端にパッシベーション膜24
を施すことができる。パッシベーション膜24は。
Large+41 Passivation film 24 on one end of battery element 2
can be applied. The passivation film 24 is.

透明導電層8を曲積”fる前のアモルファスシリコン層
6の上表面に幅(D ) 0.2〜2MrMにわたり、
目つ上表面から端面に沿って基板4に達するように設け
られろ。このパッシベーション膜24は。
A width (D) ranging from 0.2 to 2 MrM is formed on the upper surface of the amorphous silicon layer 6 before the transparent conductive layer 8 is curved.
It should be provided so as to reach the substrate 4 from the upper surface along the end surface. This passivation film 24.

3iH4及び02の混合ガス又はSiH4及びN Hs
の混合ガスを使用したプラズマCVD法によって形成さ
れた3i(h又はSiN4膜とすることもできるし。
3iH4 and 02 mixed gas or SiH4 and N Hs
It is also possible to use a 3i (h or SiN4 film) formed by a plasma CVD method using a mixed gas of

又は適当な有機材料を塗布して形成、された絶縁性有機
膜とすることができる。このようなパッシベーション膜
24を施すことにより、後述するように、直列に接続さ
れた各太陽電池素子の基板間のリークによる変換効率の
低下5歩留りの低下を防ぐことができる。又、パッシベ
ーション膜24を施すことによって太陽電池の変換効率
が低下することはない。
Alternatively, it can be an insulating organic film formed by coating an appropriate organic material. By applying such a passivation film 24, as will be described later, it is possible to prevent a reduction in conversion efficiency and a reduction in yield due to leakage between the substrates of each solar cell element connected in series. Further, by providing the passivation film 24, the conversion efficiency of the solar cell does not decrease.

以上の如くにして製造されたアモルファスシリコン太陽
電池素子2は、第1図に図示されるように、縁結性基板
30.例えばプラスチック基板上に、隣接する二つの太
陽電池素子2a及び2bの隣り合った端部が互いに重な
り合うように整列して配置される。更に詳しく言えば、
第1の太陽電池素子2aの右端には、第1の太陽電池素
子2aの直ぐ隣りに位置した第2の太陽電池素子2bの
左端が幅(d)だけ萌ね合せられ石。又第2の太陽゛市
Ml+素子2bの右端には、該第2の太陽電池素子2b
の1nぐ隣りに位置した第3の太陽電池素子2cの左端
が幅(d)だけ重ね合せられる。
As shown in FIG. 1, the amorphous silicon solar cell element 2 manufactured as described above is made of a bonding substrate 30. For example, two adjacent solar cell elements 2a and 2b are arranged in alignment on a plastic substrate so that their adjacent ends overlap with each other. To be more specific,
On the right end of the first solar cell element 2a, the left end of the second solar cell element 2b located immediately adjacent to the first solar cell element 2a is aligned with a width (d). Further, at the right end of the second solar cell element 2b, the second solar cell element 2b
The left ends of the third solar cell element 2c located 1n adjacent to each other are overlapped by a width (d).

本発明においては、各太陽電池2a、2b、2Cの重7
cり合い部分に緩衝接続手段40が介設されろ。該緩衝
接続手段40は、第5図〜第7図に図示されろように、
概略中央部に少なくとも1つの孔42が整夕11シて一
定間隔にて穿設された矩形状の絶縁フィルム44を具備
する。該絶縁フィルム44は例えばプラスチック、紙又
は布とされるであろう。
In the present invention, the weight of each solar cell 2a, 2b, 2C is 7
A buffer connection means 40 is provided at the joint portion. The buffer connection means 40, as shown in FIGS. 5-7,
A rectangular insulating film 44 is provided with at least one hole 42 formed at regular intervals at approximately the center thereof. The insulating film 44 may be made of plastic, paper or cloth, for example.

又前記絶縁フィルム44の各表面には、概略中央部に4
4部46及び該導′亀部46の両側部に接着部48がそ
れぞれ形成され、更に両表面に形成された導電1部46
は絶縁フィルム44の孔42に充填された導電連結部5
0によって互に電気的に接続されろ。導電部46及び導
電連結部50は通にie構成の緩衝接続手段40におい
て、絶縁フィルム44の膜厚tは10μm〜1順1幅d
、は重なり幅dより幾分大とされ0.5〜5朋、又長さ
Woは太陽電池素子の幅Wより幾分大とされ10〜10
00朋が好適であろう。
Further, each surface of the insulating film 44 has a 4
Adhesive parts 48 are formed on both sides of the fourth part 46 and the conductive turtle part 46, and a conductive part 46 is formed on both surfaces.
is the conductive connecting portion 5 filled in the hole 42 of the insulating film 44.
electrically connected to each other by 0. The conductive part 46 and the conductive connection part 50 are generally in the buffer connection means 40 of IE configuration, and the thickness t of the insulating film 44 is 10 μm to 1 width d.
, is somewhat larger than the overlap width d, which is 0.5 to 5 mm, and the length Wo is somewhat larger than the width W of the solar cell element, which is 10 to 10 mm.
00 tomo would be suitable.

本発明の光起電力装置1においては、上述の如き構成の
緩衝接続手段40が各太陽電池素子2a。
In the photovoltaic device 1 of the present invention, the buffer connection means 40 configured as described above is connected to each solar cell element 2a.

2b、2cの重なり合い部分に挿入されて、各太陽電池
2a、2b、2cは直列態様で接続される。
Each solar cell 2a, 2b, 2c is connected in series by being inserted into the overlapping portion of solar cells 2b, 2c.

従って、各太陽電池素子2 (2a 、 2 b + 
2 C+・・・)は、適当な接着剤でもってその導電性
基板4側が絶縁性基板30に固定され、互いに重なり合
った部分、つまり、一方の太陽電池素子の透明導電膜8
と他方の太陽電池素子の導電性基板との接合部分(d)
は、緩衝接続手段40の導通部、即ち導電部46及び導
電接続部50によって電気的接続が保証されろと共に、
接着部48によって6いに固着されろ。導電部46とし
て銀ペースト等のような導電性ペースト(接着jill
 ) ’a:使用した場合ては、場合によっては接着部
48を省略することも可能であろう。
Therefore, each solar cell element 2 (2a, 2b +
2 C+...) are fixed to the insulating substrate 30 on the conductive substrate 4 side with a suitable adhesive, and the overlapping parts, that is, the transparent conductive film 8 of one solar cell element
and the conductive substrate of the other solar cell element (d)
The electrical connection is ensured by the conductive part of the buffer connection means 40, that is, the conductive part 46 and the conductive connection part 50, and
It is fixed in place by the adhesive part 48. As the conductive part 46, a conductive paste such as silver paste (adhesive jill) is used.
) 'a: If used, it may be possible to omit the adhesive part 48 depending on the case.

重なり合い部分の長さくd)は、太陽電池の効率の点で
言えば任意の大きさとすることがtきるが、生産の容易
さ、原料コスト等乞考えると、05〜〜5酎が好適であ
る。又、@述のように、太陽電池素子2a、2b、2c
、・・・・・・の右端にパツシペーンヨン膜24を施せ
ば、各太陽電池端子の基板間のリークを未然に防止する
ことができる。このトキバツシベーション膜幅(’D 
)は、接合部分(d)より小とされるであろう。
The length d) of the overlapping part can be set to any value in terms of efficiency of the solar cell, but considering ease of production, raw material cost, etc., 05 to 5 is suitable. . Also, as mentioned in @, solar cell elements 2a, 2b, 2c
, . . . If a passivation film 24 is applied to the right end of the solar cell terminals, leakage between the substrates of each solar cell terminal can be prevented. This tokibatsivation film width ('D
) will be smaller than the joining part (d).

以後、新宅数の太陽電池素子が上述のようにして直列接
続態様で配置uさね、光起電力装置1が構成される。、
朋ろ直列接続態様の光起電力装置1を製造するに際し、
接合部分(d)に4kg/fflの圧看荷市が付加され
た場合、従来の方法に従うと歩留まりi)”−65%程
1uであったのが1本発明に従って緩(lIIi 4校
続千股4()を使用l〜だ光起電力装置の場合には歩留
まりが98係と著しく向上した。
Thereafter, a new number of solar cell elements are arranged in a series connection manner as described above, and the photovoltaic device 1 is constructed. ,
When manufacturing the photovoltaic device 1 in the form of series connection,
When 4 kg/ffl of pressure weight is added to the joint part (d), the yield was about 1 u by 1) -65% according to the conventional method, but it was reduced to 1 u by 1 u according to the present invention by 4 kg/ffl. In the case of a photovoltaic device using 4(), the yield was significantly improved to 98%.

]ソ1−の方法により1例えば幅(W)20α、長さく
 L )12叩1の太陽′電池素子2を、私いに重なり
部分((1)が2 urnとj【るようにl〜て絶縁性
基板30上に配列L、集積することによって、20(:
IrL角の′10起’rl(、力装置1を高能率匠て容
易に製造することができろ。
] By the method of 1-1, for example, the width (W) is 20α, the length L) 12 times 1 solar cell element 2 is attached to the overlapping part ((1) is 2 urn and j[l~ By integrating the array L on the insulating substrate 30, the 20(:
The force device 1 can be manufactured easily with high efficiency.

発明の効果 以上の如くに構成される本発明に係る光起電力装置は、
各太陽電池素子を直列接続態様で連結する際の重ね合せ
部分の圧着時ストレスが大幅に緩和され、太陽電池素子
の破壊を防ぎ、従って歩留まり、即ち生産性を著しく向
上せしめ得ろという利益を有する。
The photovoltaic device according to the present invention configured as described above has the following effects:
It has the advantage that the stress at the time of crimping of the overlapping parts when connecting each solar cell element in a series connection manner is greatly alleviated, the destruction of the solar cell element is prevented, and therefore the yield, that is, productivity can be significantly improved.

又1本発明に係る光起電力装置は、極めて容易に大面積
化し、効率のよいしかも高出力電圧を達成することがで
きる。
Furthermore, the photovoltaic device according to the present invention can be very easily enlarged in area, and can achieve high efficiency and high output voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る光起電力装置の部分1E面図で
ある。 第2図はアモルファス半導体太陽電池累子力刷視図であ
る。 第3図は、アモルファスシリコン太陽電池素子の製造装
置の概略断面図である。 第4図は、アモルファス半導体太陽′屯池素子の正面図
である。 第5図は、緩衝接続手段の絶縁フィルムの平面図である
。 第6図は、緩衝接続手段の平面図である。 第7図は、第6図の線■−■1断面図である。 1:光起電力装置 2:アモルファス半導体太陽電池素子 4:導電性基板 6:アモルファス半導体層 8:透明導電層 24:パッシベーション膜 40:緩衝接続手段 44:絶縁フィルム 46;導電部 48:接着部 50:導電連結部
FIG. 1 is a partial 1E view of a photovoltaic device according to the present invention. FIG. 2 is a perspective view of the amorphous semiconductor solar cell. FIG. 3 is a schematic cross-sectional view of an apparatus for manufacturing an amorphous silicon solar cell element. FIG. 4 is a front view of an amorphous semiconductor solar cell element. FIG. 5 is a plan view of the insulating film of the buffer connection means. FIG. 6 is a plan view of the buffer connection means. FIG. 7 is a sectional view taken along line 1--1 in FIG. 6. 1: Photovoltaic device 2: Amorphous semiconductor solar cell element 4: Conductive substrate 6: Amorphous semiconductor layer 8: Transparent conductive layer 24: Passivation film 40: Buffer connection means 44: Insulating film 46; Conductive part 48: Adhesive part 50 : Conductive connection part

Claims (1)

【特許請求の範囲】 1)導電性基板、アモルファス半導体層及び透明導電膜
層を積層して構成される太陽電池素子を複数個直列態様
で配置し、隣接する太陽電池素子は、一方の太陽電池素
子の透明導電膜層上に他方の太陽電池素子の導電性基板
が一部重なり合うようにして電気的に直列接続されて成
る光起電力装置において、重なり合う部分に一部導通部
を有した緩衝接続手段を介設し両太陽電池素子を相互に
接続するようにしたことを特徴とする光起電力装置。 2)緩衝接続手段は、概略中央部に少なくとも1つの孔
が穿設された矩形状の絶縁フィルムを具備し、該絶縁フ
ィルムの各面には導電部と接着部とが形成され、各面の
導電部は前記孔に形成された導電連結部を介して電気的
に接続されて成る特許請求の範囲第1項記載の装置。 3)絶縁フィルムは、プラスチックフイルム、紙又は布
である特許請求の範囲第2項記載の装置。 4)導電部は導電性ペーストである特許請求の範囲第2
項又は第3項記載の装置。 5)導電性ペーストは少なくとも1つの孔を覆つて配設
されて成る特許請求の範囲第4項記載の装置。 6)導電性ペーストは銀ペーストである特許請求の範囲
第4項又は第5項記載の装置。 7)接着部は合成樹脂系、合成ゴム系、セルロース系、
無機セラミック系等の接着剤である特許請求の範囲第6
項記載の装置。
[Claims] 1) A plurality of solar cell elements constituted by laminating a conductive substrate, an amorphous semiconductor layer, and a transparent conductive film layer are arranged in series, and adjacent solar cell elements are connected to one solar cell. In a photovoltaic device in which a conductive substrate of another solar cell element is electrically connected in series on a transparent conductive film layer of the element so that the conductive substrate of the other solar cell element partially overlaps, a buffer connection having a conductive part partially in the overlapping part. 1. A photovoltaic device characterized in that both solar cell elements are interconnected by intervening means. 2) The buffer connection means includes a rectangular insulating film with at least one hole bored approximately in the center, a conductive part and an adhesive part are formed on each surface of the insulating film, and a conductive part and an adhesive part are formed on each surface of the insulating film. 2. The device according to claim 1, wherein the conductive portion is electrically connected via a conductive connection formed in the hole. 3) The device according to claim 2, wherein the insulating film is a plastic film, paper, or cloth. 4) Claim 2 in which the conductive part is a conductive paste
The device according to paragraph 3 or paragraph 3. 5) The device of claim 4, wherein the conductive paste is disposed over at least one hole. 6) The device according to claim 4 or 5, wherein the conductive paste is a silver paste. 7) Adhesive parts are synthetic resin-based, synthetic rubber-based, cellulose-based,
Claim 6, which is an inorganic ceramic adhesive, etc.
Apparatus described in section.
JP59226654A 1984-10-30 1984-10-30 Photovoltaic device Pending JPS61105876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59226654A JPS61105876A (en) 1984-10-30 1984-10-30 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226654A JPS61105876A (en) 1984-10-30 1984-10-30 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS61105876A true JPS61105876A (en) 1986-05-23

Family

ID=16848565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226654A Pending JPS61105876A (en) 1984-10-30 1984-10-30 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61105876A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529640A (en) * 1991-07-19 1993-02-05 Tsukamoto Fukuo Connection terminal and holder of solar battery
JPH05267705A (en) * 1991-10-04 1993-10-15 Telefunken Syst Technik Ag Thin solar cell and method of manufacturing therefor
JPH0621501A (en) * 1992-03-31 1994-01-28 Canon Inc Solar cell module and manufacture thereof
JP2001185749A (en) * 1999-12-27 2001-07-06 Tdk Corp Solar cell and electronic apparatus
JP2009010355A (en) * 2007-05-29 2009-01-15 Toray Eng Co Ltd Solar battery module
JP2012501086A (en) * 2008-08-29 2012-01-12 オーダーサン アクチエンゲゼルシャフト Thin film solar cell and photovoltaic continuous assembly
JP2013102179A (en) * 2004-06-01 2013-05-23 Merck Patent Gmbh Solar cell module
WO2014065016A1 (en) * 2012-10-22 2014-05-01 東レエンジニアリング株式会社 Solar cell module
KR20190032864A (en) * 2017-09-20 2019-03-28 엘지전자 주식회사 Compound semiconductor solar cell module and manufacturing methods thereof
US10381499B1 (en) * 2016-12-07 2019-08-13 Solaero Technologies Corp. Flexible solar array and method for fabricating the same
JP2020513168A (en) * 2017-04-20 2020-04-30 泰州中来光電科技有限公司Jolywood (Taizhou) Solar Technology Co.,Ltd. Densely arranged solar cell strings, manufacturing method, module thereof, and system
CN112825337A (en) * 2019-11-21 2021-05-21 江苏宜兴德融科技有限公司 Flexible solar cell array

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529640A (en) * 1991-07-19 1993-02-05 Tsukamoto Fukuo Connection terminal and holder of solar battery
JPH05267705A (en) * 1991-10-04 1993-10-15 Telefunken Syst Technik Ag Thin solar cell and method of manufacturing therefor
US5320685A (en) * 1991-10-04 1994-06-14 Telefunken Systemtechnik Ag Thin solar cell
JPH0621501A (en) * 1992-03-31 1994-01-28 Canon Inc Solar cell module and manufacture thereof
JP2001185749A (en) * 1999-12-27 2001-07-06 Tdk Corp Solar cell and electronic apparatus
JP2013102179A (en) * 2004-06-01 2013-05-23 Merck Patent Gmbh Solar cell module
JP2009010355A (en) * 2007-05-29 2009-01-15 Toray Eng Co Ltd Solar battery module
JP2012501086A (en) * 2008-08-29 2012-01-12 オーダーサン アクチエンゲゼルシャフト Thin film solar cell and photovoltaic continuous assembly
WO2014065016A1 (en) * 2012-10-22 2014-05-01 東レエンジニアリング株式会社 Solar cell module
JP2014086510A (en) * 2012-10-22 2014-05-12 Toray Eng Co Ltd Solar cell module
US10381499B1 (en) * 2016-12-07 2019-08-13 Solaero Technologies Corp. Flexible solar array and method for fabricating the same
JP2020513168A (en) * 2017-04-20 2020-04-30 泰州中来光電科技有限公司Jolywood (Taizhou) Solar Technology Co.,Ltd. Densely arranged solar cell strings, manufacturing method, module thereof, and system
KR20190032864A (en) * 2017-09-20 2019-03-28 엘지전자 주식회사 Compound semiconductor solar cell module and manufacturing methods thereof
CN112825337A (en) * 2019-11-21 2021-05-21 江苏宜兴德融科技有限公司 Flexible solar cell array
CN112825337B (en) * 2019-11-21 2023-07-21 江苏宜兴德融科技有限公司 Flexible solar cell array

Similar Documents

Publication Publication Date Title
JPS61105876A (en) Photovoltaic device
US5441577A (en) Thin film solar cell and production method therefor
MX2011006182A (en) Solar cell module and method for producing the same.
ITMI960042A1 (en) PHOTOVOLTAIC GENERATOR WITH DIELECTRIC INSULATION AND MULTI-LAYER SILICON STRUCTURE INSULATED AND CONNECTED
JPS62142372A (en) Manufacture of photoelectric converter
JPS6288372A (en) Manufacture of light weight photocell array
JPS5961077A (en) Amorphous silicon solar battery
WO2019016118A1 (en) Stabilized shingled solar cell strings and methods for their production
EP1005096A3 (en) Solar cell module
JPH0548634B2 (en)
JP6291003B2 (en) Solar cell and solar cell module
NL2006966C2 (en) Photovoltaic system and connector for a photovoltaic cell with interdigitated contacts.
JPH05235391A (en) Thin film solar cell and its manufacture and manufacture of semiconductor device
TWI631814B (en) Photovoltaic module
JP4953562B2 (en) Solar cell module
JP2002050780A (en) Solar cell and method of manufacturing the same
JPS5821827B2 (en) photovoltaic device
JPH0261158B2 (en)
TW201306283A (en) Back-contact solar cell and method for producing such a back-contact solar cell
JP2001250965A (en) Solar battery module
JPS60783A (en) Manufacture of solar battery element
JPH06151941A (en) Photodiode array and its manufacture
JP2016063129A (en) Heterojunction back contact cell and photoelectric conversion device
CN115836397A (en) Solar cell panel and method for manufacturing same
JPS60143676A (en) Photovoltaic device