JPS61103769A - Grinding work by robot and apparatus thereof - Google Patents

Grinding work by robot and apparatus thereof

Info

Publication number
JPS61103769A
JPS61103769A JP22202784A JP22202784A JPS61103769A JP S61103769 A JPS61103769 A JP S61103769A JP 22202784 A JP22202784 A JP 22202784A JP 22202784 A JP22202784 A JP 22202784A JP S61103769 A JPS61103769 A JP S61103769A
Authority
JP
Japan
Prior art keywords
grinding
robot
amount
grinding tool
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22202784A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katsura
桂 裕之
Norihisa Miyake
徳久 三宅
Tsugio Udagawa
宇田川 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22202784A priority Critical patent/JPS61103769A/en
Publication of JPS61103769A publication Critical patent/JPS61103769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To efficiently polish the polished surface having a curvature by a robot, etc. by extracting the polished part necessary for smooth finishing after reproducing the shape of the polished surface through copying grinding and repeating the grinding until the smooth polished surface is obtained. CONSTITUTION:Grinding is carried-out, copying the grinding object surface, and at the same time, the position on the transfer locus of a grinding tool 2 is detected at each proper scan distance by shift detectors 10a-10f, and the detected values are memorized into a memory apparatus 15 included into a controller 7, and grinding is continued to a prescribed position. After the copying grinding, the position on the transfer locus of the grinding tool 2 is read-out from the memory apparatus 15, and the variation amount in the transfer direction of a grinding tool 3 is obtained in a calculation part 16, and the calculated amount of variation and the value set by a variation-amount setting device 17 are compared by a comparator 18, and a smooth orbit is generated so that the part where the variation amount is larger than the set value reduces in the calculation part 19. Then, grinding is performed again along the generated orbit, and at the same time, position detection, memory, and the calculation of the amount of variation of the operation direction and executed, and when the value becomes below a preset value, grinding is completed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば鋳物の表面研削などの研削作業の方法お
よび装置に係り、特に滑らかな研削面を得るのに好適な
ロボットによる研削作業方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for grinding work such as surface grinding of castings, and in particular to a method and apparatus for grinding work using a robot suitable for obtaining a smooth ground surface. Regarding.

〔発明の背景〕[Background of the invention]

ロボットによる研削作業方法としては、例えば特開昭5
3 126594号公報に示されるように、研削工具の
負荷トルクが過負荷とならないように負荷トルクを調整
しながら研削し、この負荷トルクが所定値以下になるま
で研削を繰返す方法が知られている。しかし、この方法
においては平面の研削面を対象としており、ゆるやかな
曲率をもつ研削面を対象にこれを滑らかに仕上げるとい
う点について考慮されていなかった。
As a grinding work method using a robot, for example,
3 As shown in Publication No. 126594, a method is known in which grinding is performed while adjusting the load torque of the grinding tool so as not to overload it, and the grinding is repeated until the load torque becomes equal to or less than a predetermined value. . However, this method targets a flat ground surface and does not take into consideration the smooth finishing of a ground surface with a gentle curvature.

[発明の目的〕                  
   5本発明の目的は、曲率を有する研削面を効率良
く研削することができるロボット等による研削作業方法
および装置を提供することにある。
[Purpose of the invention]
5. An object of the present invention is to provide a method and apparatus for grinding using a robot or the like, which can efficiently grind a grinding surface having a curvature.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、研削工具による
研削面への倣い研削により研削表面形状を再現した後、
研削面を滑らかに仕上げるために、研削の必要な研削部
分を抽出し、その部分が滑らかになるまで研削を繰り返
すようにしたものである。
In order to achieve the above object, the present invention reproduces the shape of the ground surface by tracing the ground surface with a grinding tool, and then
In order to finish the ground surface smoothly, the grinding part that requires grinding is extracted and the grinding is repeated until that part becomes smooth.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の装置の一実施例を備えたロボットの構
成を示すもので、この図において6軸間節型ロボット1
の手先部11には砥石等の研削工具2およびそのモータ
3が支持部材4と支持軸5により取付けられている。ロ
ボット本体には、さらにモータなどの関節駆動装置8a
〜8fにより駆動される関節98〜9fと、その関節9
a〜9fの変位を検出するエンコーダなどの変位検出器
LOa〜lofが含まれている。この変位検出器10a
〜10fの出力結果により、手先部11の位置を検出し
、さらに手先部11との位置関係が一意的に決められた
研削工具2の位置を検出する機能となっている。また、
支持軸5には、例えば6軸力センサなどの力検出器6が
取付けられている。この力検出器6は研削中の研削反力
を検出し、これを制御装置7に含まれる比較器13に出
力する。比較器13には、あらかじめ反力を設定するた
めの反力設定器12からの値が入力され、前記研削反力
と比較する。そして、比較器13の出力に応じて、演算
部14にて、後述する補正量を求め、関節8a〜8fに
指令値を出力する構成となっている。
FIG. 1 shows the configuration of a robot equipped with an embodiment of the device of the present invention. In this figure, a 6-axis articulated robot 1
A grinding tool 2 such as a grindstone and its motor 3 are attached to the tip portion 11 of the tool by means of a support member 4 and a support shaft 5. The robot body further includes a joint drive device 8a such as a motor.
Joints 98 to 9f driven by ~8f and their joints 9
Displacement detectors LOa to lof such as encoders that detect displacements of a to 9f are included. This displacement detector 10a
The function is to detect the position of the hand portion 11 based on the output results of ~10f, and further detect the position of the grinding tool 2 whose positional relationship with the hand portion 11 is uniquely determined. Also,
A force detector 6, such as a six-axis force sensor, is attached to the support shaft 5, for example. This force detector 6 detects a grinding reaction force during grinding and outputs it to a comparator 13 included in a control device 7. A value from the reaction force setter 12 for setting the reaction force in advance is input to the comparator 13, and is compared with the grinding reaction force. Then, in accordance with the output of the comparator 13, a calculation unit 14 calculates a correction amount, which will be described later, and outputs a command value to the joints 8a to 8f.

一方、変位検出器10a〜10fの値は、記憶装置15
に記憶される。演算部16はこの記憶された値を読み出
して、後述する研削工具2の移動方向変化量を算出する
。比較器18は変化量設定器17にあらかじめ設定され
た値と前記変化量とを比較し、その値を演算部19に出
力する。演算部19は比較器18からの値により新しい
軌道を生成し、関節8a〜8fに指令値を出力する構成
となっている。
On the other hand, the values of the displacement detectors 10a to 10f are stored in the storage device 15.
is memorized. The calculation unit 16 reads this stored value and calculates the amount of change in the moving direction of the grinding tool 2, which will be described later. The comparator 18 compares the amount of change with a value preset in the amount of change setter 17 and outputs the value to the calculation section 19. The calculation unit 19 is configured to generate a new trajectory based on the value from the comparator 18, and output command values to the joints 8a to 8f.

次に前述した本発明のロボットによる研削作業方法の実
施例を、以下に詳細に説明する。
Next, an embodiment of the above-mentioned method for grinding using a robot according to the present invention will be described in detail below.

本発明による研削方法は、第1の研削対象面に倣った研
削を行なう。また第2に工具2の移動方向の変化量から
研削終了、あるいは次の軌跡を生成して研削を続行する
ことを基本としている。
The grinding method according to the present invention performs grinding that follows the first surface to be ground. Secondly, it is basically based on the amount of change in the moving direction of the tool 2 that the grinding is completed or the next trajectory is generated and the grinding is continued.

まず、研削対象面に倣う研削方法を第2図のフローチャ
ートに基づいて説明する。
First, a method of grinding that follows the surface to be ground will be explained based on the flowchart shown in FIG.

ステップ201に示すように、研削を開始し、研削対象
面とほぼ平行な走査方向に走査させながら研削する。研
削と同時に研削反力を力検出器6で検出しくステップ2
02)、制御装[7に含まれる比較器13に出力する。
As shown in step 201, grinding is started, and the grinding is performed while scanning in a scanning direction substantially parallel to the surface to be ground. Step 2: Detect the grinding reaction force with the force detector 6 at the same time as grinding.
02), is output to the comparator 13 included in the control device [7].

一方1反力設定器12には検出した反力が所定の範囲内
かどうか比較するための設定値を入力しておき、比較器
13にて、検出した反力と比較する(ステップ203)
。検出した反力が所定の範囲内であれば研削を続ける。
On the other hand, a set value for comparing whether the detected reaction force is within a predetermined range is input into the 1 reaction force setting device 12, and the comparator 13 compares it with the detected reaction force (step 203).
. If the detected reaction force is within a predetermined range, grinding is continued.

所定の範囲外の場合には、研削対象面とほぼ垂直で、走
査方向と直角な補正方狗に、研削反力が所定範囲内にな
るように補正量を算出しくステップ204)、駆動装置
8a〜8fに補正指令値を出して補正動作をさせ(ステ
ップ205)、研削を続ける。
If it is outside the predetermined range, use a correction method that is substantially perpendicular to the surface to be ground and perpendicular to the scanning direction to calculate a correction amount so that the grinding reaction force falls within the predetermined range (Step 204), the drive device 8a A correction command value is issued at ~8f to perform a correction operation (step 205), and grinding is continued.

上述の動作をあらかじめ定めた研削終了点まで繰返す(
ステップ206.207)ことにより。
Repeat the above operation until the predetermined grinding end point (
Step 206.207) By.

研削反力を所定の範囲内に保ちながら研削対象面に倣っ
て研削することができる。
Grinding can be carried out following the surface to be ground while keeping the grinding reaction force within a predetermined range.

次に、前述した研削表面に倣う研削方法を第3図のフロ
ーチャートに基づいて説明する。
Next, a method of grinding that follows the above-described grinding surface will be explained based on the flowchart shown in FIG.

研削を開始しくステップ301)、前述したように研削
対象面に倣いながら研削しくステップ302)、同時に
変位検出器10a〜10fにより、研削工具2の移動軌
跡上の位置を適当な走査距離ごとに検出する(ステップ
303)。この検出値を制御装置7に含まれる記憶装置
15に記憶しくステップ304)−所定の位置まで倣し
)研削を続ける(ステップ305)。倣い研削終了後、
     J記憶装置15から研削工具2の移動軌跡上
の位置を読み出し、演算部16にて研削工具3の移動し
た方向(以下、移動方向と呼ぶ)の変化量を求める(ス
テップ306)。この変化量の求め方は後述する。算出
した変化量と、変化量設定器17にてあらかじめ設定し
た値とを比較器18で比較しくステップ307)、演算
部19では前記変化量が設定値より大きい部分について
、設定値より小さくなるように滑らかな軌道を生成する
(ステップ308)。この滑らかな軌道の生成について
も後述する。
Start grinding step 301), start grinding while tracing the surface to be ground as described above step 302), and at the same time detect the position on the movement trajectory of the grinding tool 2 at appropriate scanning distances by the displacement detectors 10a to 10f. (step 303). This detected value is stored in the storage device 15 included in the control device 7, and the grinding (step 304) - copying to a predetermined position) is continued (step 305). After copy grinding,
The position on the movement trajectory of the grinding tool 2 is read from the J storage device 15, and the amount of change in the direction in which the grinding tool 3 has moved (hereinafter referred to as the movement direction) is determined by the calculation unit 16 (step 306). How to obtain this amount of change will be described later. The comparator 18 compares the calculated amount of change with the value preset by the amount of change setter 17 (step 307), and the calculation unit 19 adjusts the portion where the amount of change is larger than the set value so that it becomes smaller than the set value. A smooth trajectory is generated (step 308). Generation of this smooth trajectory will also be described later.

生成軌道に従い、再び研削をしくステップ309)、同
時に位置検出(ステップ310)、記憶(ステップ31
1)、動作方向の変化量算出(ステップ306)を行な
い、設定値以下になったら研削を終了する(ステップ3
12)。
Grinding is performed again according to the generated trajectory (step 309), and at the same time position detection (step 310) and storage (step 31) are performed.
1) Calculate the amount of change in the operating direction (step 306), and end the grinding when the amount is less than the set value (step 3).
12).

次に、前述した研削工具2の移動方向の算出と軌道生成
について、第4図および第5図により説明する。
Next, calculation of the moving direction and trajectory generation of the grinding tool 2 described above will be explained with reference to FIGS. 4 and 5.

研削工具2の移動方向の変化量は、研削工具2の移動軌
跡上の位置を適当な走査距離ごとに記憶し、この位置を
結ぶ線分の傾きの変化から求める。
The amount of change in the moving direction of the grinding tool 2 is determined by storing the positions on the movement trajectory of the grinding tool 2 for each appropriate scanning distance, and from the change in the slope of the line segment connecting these positions.

第4図は点P0から点PlIまで倣い研削を行なった場
合の研削工具2の移動軌跡を示すもので。
FIG. 4 shows the locus of movement of the grinding tool 2 when copy grinding is performed from point P0 to point PlI.

この図においてAは研削工具2の走査方向、Hはその補
正方向を示す。いま適当な走査距離lJXごとに求めた
点をP 1 + P x +・・・・・・ p7として
しする。例えば点P、における移動方向の変化量θ1は
、線分p0.p、の傾きから線分P、、P、の傾きを差
引いて求まる。したがって、この場合θlは負の値を持
つ。同様にして求めた点P2での変化量θ2は、正の値
を持つ。次に、このようにして求めた変化量が所定値よ
り大きい場合に、次に研削すべき滑らかな軌道を生成す
る。これを第5図により説明する。この図において、点
P1から点P7までの各点における移動方向変化量が全
て設定値より大きかったとすると、研削した場合に移動
方向の変化量が所定値以下になるような点211点P7
を通る滑らかな軌道41を生成する。この軌道上の点P
 、 l 、 P、 r、・・・・・・を目標値として
研削工具2を移動させることにより、滑らかな仕上り面
を得ることができる。
In this figure, A indicates the scanning direction of the grinding tool 2, and H indicates the correction direction. Now, let the points found for each appropriate scanning distance lJX be P 1 + P x + . . . p7. For example, the amount of change θ1 in the moving direction at point P is the line segment p0. It is found by subtracting the slope of line segment P,,P, from the slope of p. Therefore, in this case, θl has a negative value. The amount of change θ2 at point P2 obtained in the same manner has a positive value. Next, if the amount of change obtained in this way is larger than a predetermined value, a smooth trajectory to be ground next is generated. This will be explained with reference to FIG. In this figure, assuming that the amount of change in the moving direction at each point from point P1 to point P7 is all larger than the set value, there are 211 points P7 at which the amount of change in the moving direction becomes less than the predetermined value when grinding is performed.
A smooth trajectory 41 passing through is generated. Point P on this orbit
, l, P, r, . . . by moving the grinding tool 2 using target values, a smooth finished surface can be obtained.

次に、上述した研削工具の移動方向の変化量と研削面の
滑らかさについて詳しく説明する。
Next, the amount of change in the moving direction of the grinding tool and the smoothness of the grinding surface described above will be explained in detail.

一般に滑らかさを表わす手段として1曲率を用いる方法
が知られている。ある曲率上の点P(S)における曲率
は、 p (s)における接線とp(s)からΔS@れ
た同−曲線上の点P (S+As)における接線のなす
角Δωとすると。
Generally, a method using one curvature as a means of expressing smoothness is known. The curvature at a point P(S) on a certain curvature is the angle Δω between the tangent at p(s) and the tangent at a point P(S+As) on the same curve, which is ΔS@ from p(s).

tim(Δω/ΔS)     ・・・・・曲(υΔS
→0 で表わされる。
tim (Δω/ΔS) ... Song (υΔS
→Represented by 0.

一方、第4図において、点P2における接線をP、、P
□で1点P、における接線をP2.P。
On the other hand, in Fig. 4, the tangents at point P2 are P, ,P
□ defines the tangent at point P as P2. P.

で近似すると、点P2での移動方向の変化量θ2と走査
距離ΔXを用いて θx / 14 x           ・・・・・
・(2)として点P2での曲率を近似的に求めることが
できる。
Approximately, using the amount of change θ2 in the moving direction at point P2 and the scanning distance ΔX, θx / 14 x ...
- As (2), the curvature at point P2 can be approximately determined.

したがって、上記のように一定走査距離ごとの研削工具
2の移動方向の変化量を把握することにより、近似的に
移動軌跡の曲率を把握することができる。さらに、第1
図に示すように、研削工具2の位置は、ロボツ)へ手先
部11の位置から一意的に決定されるため、ロボット手
先部11の移動軌跡の曲率を上記方法により求めれば、
研削工具2の移動軌跡の曲率を求めることができ、さら
に研削された表面の曲率を知ることができる。
Therefore, by understanding the amount of change in the movement direction of the grinding tool 2 for each fixed scanning distance as described above, it is possible to approximately understand the curvature of the movement trajectory. Furthermore, the first
As shown in the figure, the position of the grinding tool 2 is uniquely determined from the position of the robot's hand 11, so if the curvature of the movement trajectory of the robot's hand 11 is determined by the above method,
The curvature of the movement locus of the grinding tool 2 can be determined, and the curvature of the ground surface can also be known.

したがって、本発明の実施例によれば、研削面の曲率が
所定の範囲内になるように研削できるため、滑らかな仕
上り面を得ることができる。また。
Therefore, according to the embodiments of the present invention, it is possible to grind so that the curvature of the ground surface falls within a predetermined range, so that a smooth finished surface can be obtained. Also.

曲率が所定の範囲外の部分を抽出し、その部分のみを研
削するため、研削効率向上の効果がある。
Since a portion with a curvature outside a predetermined range is extracted and only that portion is ground, the grinding efficiency is improved.

さらに、研削された而の曲率が、所定の範囲内になるこ
とを研削終了の判断としているため研削後に研削面を検
査する必要がなくなり、さらに異なる加工間の研削面の
ばらつきを無くすことができ。
Furthermore, since grinding is judged to be completed when the curvature of the ground object falls within a predetermined range, there is no need to inspect the ground surface after grinding, and it is possible to eliminate variations in the ground surface between different machining processes. .

品質向上の効果がある。また、ティーチングプレイバッ
ク形のロボットを用いて上記研削方法を実施した場合、
上記倣い動作と、上記軌道生成機能により、研削開始点
と研削終了目標点を教示する程度でなく研削前の教示作
業を大幅に削減できる効果がある。
It has the effect of improving quality. In addition, when the above grinding method is carried out using a teaching playback type robot,
The above-mentioned copying operation and the above-mentioned trajectory generation function have the effect of significantly reducing the teaching work before grinding, rather than just teaching the grinding start point and the grinding end target point.

次に、本発明の研削作業方法を実際の研削対象物に応用
した場合の例を第6図を用いて説明する。
Next, an example of applying the grinding method of the present invention to an actual object to be ground will be described with reference to FIG.

第6図において研削対象面の断面形状を破線51で示す
。前述した方法で図に示した走査方向Aに研削工具2を
走査させ、研削反力を一定に保ち研削対象面の形状に倣
って研削すると、太い実線を含む実線A、B、C,D、
E、F、G、H。
In FIG. 6, the cross-sectional shape of the surface to be ground is indicated by a broken line 51. When the grinding tool 2 is scanned in the scanning direction A shown in the figure using the method described above, and the grinding reaction force is kept constant and grinding follows the shape of the surface to be ground, solid lines A, B, C, D, including the thick solid line, are formed.
E, F, G, H.

I、J、に、Lなる移動軌跡を得る。この際、上記方法
により設定値より大きい曲率部を求める。
Obtain a movement locus L for I, J,. At this time, a portion with a curvature larger than the set value is determined using the above method.

これを太い実l1AB、C,D、E、F、G、H1■。This is a thick fruit l1AB, C, D, E, F, G, H1 ■.

J、にで示す。この部分は曲率が設定値より大きいため
研削を必要とする。
Indicated by J. This part requires grinding because the curvature is larger than the set value.

そこで、次の研削工具2の軌道を生成する。軌道を生成
するには曲率が下に凸の部分に着目する。
Therefore, the next trajectory of the grinding tool 2 is generated. To generate a trajectory, focus on the part where the curvature is convex downward.

これは上記移動方向の変化量が負になる部分である。こ
のようにして求めた曲率が下に凸の部分が、第6図の丸
印で示したB、D、E、H,Jである。
This is the portion where the amount of change in the movement direction becomes negative. The parts whose curvatures thus obtained are convex downward are B, D, E, H, and J indicated by circles in FIG.

但し、曲率が下に凸の部分が、ある区間を持っときは、
この区間中の適当な点を選ぶ。その選び方は、例えば区
間の中間点を求めれば簡便である。
However, when the part whose curvature is convex downward has a certain section,
Select an appropriate point within this interval. The selection method is simple, for example, by finding the midpoint of the interval.

また、記憶した移動軌跡上の位置データ中、補正方向の
最小値を求める方法がある。この方法により区間中の点
を選ぶと、後述の研削動作を行なわせた場合に効率が良
い。
There is also a method of finding the minimum value in the correction direction among the stored position data on the movement trajectory. Selecting points within the section using this method is efficient when performing a grinding operation, which will be described later.

このような方法により曲率が下に凸である区間中の適当
な点を選び、研削開始点Aと選出した点B、D、E、+
4.J及び研削終了点しにおいて、各点間に研削必要部
(図中の太い実線で示された部分)があれば、その部分
について研削する。第6図の例では、A、B間は研削必
要が無いので研削をしない。B、D間には研削必要部が
あるので、新しい滑らかな軌道BC’Dを生成し、研削
する。
Using this method, select an appropriate point in the section where the curvature is convex downward, and set the grinding start point A and the selected points B, D, E, +
4. J and the grinding end point, if there is a part that requires grinding (the part indicated by the thick solid line in the figure) between each point, that part is ground. In the example shown in FIG. 6, there is no need for grinding between A and B, so no grinding is performed. Since there is a part between B and D that requires grinding, a new smooth trajectory BC'D is generated and ground.

D、E間はA、B間と同様、研削を必要とせず、E、H
間には研削必要部が存在するので滑らかな軌道E、F’
 、G’ 、Hを生成し研削する。以上の操作を繰返し
て、最終的には滑らかな仕上り形状A、B、C’ 、D
、E、F’ 、G’ 、H,r’ 。
As between A and B, grinding is not required between D and E, and E and H
There are parts in between that require grinding, so smooth trajectories E and F'
, G', and H are generated and ground. By repeating the above operations, you will finally get smooth finished shapes A, B, C', and D.
, E, F', G', H, r'.

J、に、Lを得ることができる。J, we can obtain L.

ところで、研削工具2に過負荷がかかり研削不能となる
ことを防ぐ、ためには、新しい軌道を生成し研削する際
に、研削反力が定められた範囲外になった場合には、定
められた範囲内に納まるように補正方向に補正を加えれ
ばよい。この場合、先に生成した滑らかな軌道を逸脱す
るため、研削工具の移動軌跡中には設定値より大きい曲
率を含む部分が生じる。そこで、設定値より大きい部分
が無くなるまで上記方法を繰返す。
By the way, in order to prevent the grinding tool 2 from being overloaded and becoming unable to grind, it is necessary to generate a new trajectory and grind, and if the grinding reaction force is outside the specified range, What is necessary is to make a correction in the correction direction so that the value falls within the specified range. In this case, since the grinding tool deviates from the previously generated smooth trajectory, a portion of the movement trajectory of the grinding tool includes a curvature larger than the set value. Therefore, the above method is repeated until there is no part larger than the set value.

したがって、本発明の実施例によれば、実際的な研削対
象物の研削に対し、次のような効果がある。すなわち、
研削の必要な部分だけを抽出して。
Therefore, according to the embodiment of the present invention, the following effects can be achieved with respect to grinding of a practical object to be ground. That is,
Extract only the parts that need grinding.

この部分を研削することにより、研削効率が向上する効
果がある。また、仕上り面の曲率が所定の範囲内となる
滑らかな仕上り面を得ることができる。さらに、全ての
仕上り面の曲率が所定の範囲内となるまで研削すること
から、研削終了後の検査を研削と同時に行なっているこ
とになり、検査に要する手間を削除できる効果がある。
Grinding this portion has the effect of improving grinding efficiency. Further, it is possible to obtain a smooth finished surface in which the curvature of the finished surface is within a predetermined range. Furthermore, since grinding is performed until the curvature of all finished surfaces falls within a predetermined range, inspection after completion of grinding is performed simultaneously with grinding, which has the effect of reducing the effort required for inspection.

また、仕上り面の曲率は、所定の範囲内となるため、研
削毎の仕上り面のばらつきを所定の範囲に保つことがで
き、品質向上の効果がある。また、ティーチングプレイ
バック形のロボットにより上記研削方法を実施した場合
、上記の自動倣い研削と、上記の軌道生成による研削に
より、研削対称面に応じた細かいティーチングを行なう
必要がなくなり、ティーチングに要する労力を大幅に削
減できる効果がある。
Further, since the curvature of the finished surface is within a predetermined range, variations in the finished surface for each grinding can be kept within a predetermined range, which has the effect of improving quality. In addition, when the above grinding method is carried out using a teaching playback type robot, the above automatic copy grinding and the above grinding by trajectory generation eliminate the need for detailed teaching according to the grinding symmetry plane, and the labor required for teaching is reduced. It has the effect of significantly reducing

また、一般に研削対象面は研削工具2の幅よりも広い、
したがって、走査方向A及び補正方向Hの両方向に直角
な方向(第6図においては紙面に垂直な方向)にシフト
シて、上記操作を繰り返す方法をとる。以下、このシフ
トする方向をシフト方向と呼ぶ、この場合もまずシフト
前の最終軌跡を記憶しておく1次に、シフト後、表面形
状に倣って研削し、新しい軌道を生成する際に、各点で
対応するシフト前の位置からシフト方向の変化量を求め
、この変化量が設定値以下になることを付加して上記操
作を繰返す。
Additionally, the surface to be ground is generally wider than the width of the grinding tool 2.
Therefore, a method is adopted in which the above operations are repeated by shifting in a direction perpendicular to both the scanning direction A and the correction direction H (in the direction perpendicular to the paper surface in FIG. 6). Hereinafter, this direction of shifting will be referred to as the shift direction. In this case as well, the final locus before the shift is first memorized. After the shift, grinding is performed following the surface shape to generate a new trajectory. The amount of change in the shift direction is determined from the pre-shift position corresponding to the point, and the above operation is repeated with the addition that this amount of change is equal to or less than the set value.

したがって1本発明の実施例によれば、広い面積を持つ
一般的な研削対象面に対し、前記の実際的な研削対象面
の研削に対する実施例の効果と同様の効果がある。
Therefore, according to one embodiment of the present invention, for a general surface to be ground having a large area, the same effect as that of the embodiment for grinding the above-mentioned practical surface to be ground can be obtained.

但し、これまでに示した実施例により研削作業を行なう
際には、研削工具2の半径が研削対象面の取除きたい凹
凸より充分小さなものを選択すると、より効果的である
However, when carrying out the grinding work according to the embodiments shown so far, it is more effective to select a grinding tool 2 whose radius is sufficiently smaller than the irregularities to be removed on the surface to be ground.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、所定の範囲内の曲
率に納まった滑らかな仕上げ面を得ることができ、さら
に、研削の必要な部分を抽出して、その部分だけを研削
することができるので、研削効率を向上させることがで
きる。
As described above, according to the present invention, it is possible to obtain a smooth finished surface with a curvature within a predetermined range, and furthermore, it is possible to extract the part that requires grinding and grind only that part. As a result, grinding efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置の一実施例を備えたロボットの
構成図、第2図は、本発明による研削工具の倣い研削方
法を示すフローチャート図、第3図は、本発明による研
削方法の一実施例を示すフローチャート図、第4図およ
び第5図は本発明における研削工具の移動軌跡と、生成
軌道を示す説明図、第6図は本発明(こよる研削対象面
に対する研削動作を示す説明図である。 1・・・ロボット、2・・・研削工具、6・・・力・検
出器、7・・・制御装置、11・・手先部。
FIG. 1 is a block diagram of a robot equipped with an embodiment of the apparatus of the present invention, FIG. 2 is a flowchart showing a copy grinding method for a grinding tool according to the present invention, and FIG. 3 is a grinding method according to the present invention. Flowchart diagram showing one embodiment, FIGS. 4 and 5 are explanatory diagrams showing the movement locus of the grinding tool in the present invention and the generated trajectory, and FIG. 1: Robot, 2: Grinding tool, 6: Force/detector, 7: Control device, 11: Hand portion.

Claims (1)

【特許請求の範囲】 1、ロボットの手先先端に取付けた研削工具によって研
削対象物の表面形状を倣いながら研削作業を行なうもの
において、研削工具を研削対象物の表面を一定方向に走
査し、その走査により得られる反力を所定の範囲内に保
つように走査方向とは直角の方向にロボットの手先を補
正動作させ、同時に研削工具の移動方向を適当な走査距
離ごとに記憶し、その移動方向の変化量を求め、この変
化量があらかじめ設定した範囲内になるように、工具が
通る軌道を生成し、この生成軌道によってロボット手先
を制御して研削面を研削することを特徴とするロボット
による研削作業方法。 2、研削工具を倣い動作すなわち補正動作させながら走
査すると同時に研削面の曲率を検出し、あらかじめ設定
した範囲外の曲率の部分を抽出し、その部分があらかじ
め設定した範囲内の曲率になるまで繰返し研削すること
を特徴とする特許請求の範囲第1項記載のロボットによ
る研削作業方法。 3、適当な走査距離ごとのロボット手先位置を結ぶ線分
の傾きの変化を求めることにより、近似的に移動軌跡の
曲率を求めることを特徴とする特許請求の範囲第2項記
載のロボットによる研削作業方法。 4、研削対象面が研削工具の研削部材幅よ り広く、走査方向及び補正方向の両者と直角な方向にシ
フトして新たに研削工具を走査しながら研削する場合に
、シフト前における最終軌跡を記憶しておき、新たにシ
フト方向での変化量もしくは曲率を求め、これがある設
定した範囲内になるまで研削することを特徴とする特許
請求の範囲第1項記載ないし第3項のいずれかに記載の
ロボットによる研削作業方法。 5、ロボットの手先先端に取付けた研削工具によって研
削対象面の表面形状を倣いながら、研削作業を行うもの
において、研削工具に作用する反力を検出する反力検出
器をロボット手先部に設け、この反力検出器からの実際
の反力値が設定器からの設定反力値を越えたか否かを比
較する比較器と、この比較器からの反力の設定値オーバ
信号により研削工具と反研削面側に移動させる補正量を
算出し、この補正量をロボットに出力する第1の演算部
と、ロボットの位置情報により研削工具の移動方向の変
化量を求める第2の演算部と、この演算部からの変化量
が設定器からの設定変化量を越えたか否かを比較する比
較器と、この比較器からの変化量の設定値オーバ信号に
より研削工具の補正移動軌道を生成し、この軌道に沿っ
てロボットを制御する第3の演算部とを備えたことを特
徴とするロボットによる研削作業装置。 6、第2の演算部は研削工具の走査距離間の傾きの変化
により近似的に移動軌跡の曲率を求めることを特徴とす
る特許請求の範囲第5項記載のロボットによる研削作業
装置。
[Scope of Claims] 1. In a robot that performs grinding work while tracing the surface shape of an object to be ground with a grinding tool attached to the tip of its hand, the grinding tool scans the surface of the object to be ground in a fixed direction, and In order to keep the reaction force obtained by scanning within a predetermined range, the robot's hands are corrected in a direction perpendicular to the scanning direction, and at the same time, the moving direction of the grinding tool is memorized for each appropriate scanning distance, and the moving direction is A robot characterized in that the amount of change in is determined, the amount of change is within a preset range, a trajectory is generated for the tool to pass through, and the hand of the robot is controlled by this generated trajectory to grind the grinding surface. Grinding work method. 2. The curvature of the grinding surface is detected at the same time as the grinding tool is scanned while making a copying motion, that is, a correction motion, and the portion of curvature outside the preset range is extracted, and the process is repeated until that portion has a curvature within the preset range. A grinding work method using a robot according to claim 1, characterized in that the grinding operation is carried out by a robot. 3. Grinding by the robot according to claim 2, characterized in that the curvature of the movement trajectory is approximately determined by determining the change in the slope of the line segment connecting the robot hand positions at each appropriate scanning distance. Working method. 4. When the surface to be ground is wider than the width of the grinding member of the grinding tool and the grinding tool is shifted in a direction perpendicular to both the scanning direction and the correction direction and the grinding tool is newly scanned and ground, the final trajectory before the shift is memorized. The method according to any one of claims 1 to 3, characterized in that the amount of change or curvature in the shift direction is determined in advance, and the grinding is performed until the amount of change or curvature in the shift direction falls within a certain set range. Grinding work method using a robot. 5. In a robot that performs grinding work while tracing the surface shape of the surface to be ground with a grinding tool attached to the tip of the robot's hand, a reaction force detector is provided at the robot's hand to detect the reaction force acting on the grinding tool, A comparator that compares whether the actual reaction force value from the reaction force detector exceeds the set reaction force value from the setting device, and a reaction force set value over signal from this comparator causes the grinding tool to react. A first calculation section that calculates a correction amount to move the grinding tool toward the grinding surface side and outputs this correction amount to the robot; a second calculation section that calculates the amount of change in the moving direction of the grinding tool based on the robot's position information; A comparator compares whether the amount of change from the calculation unit exceeds the amount of change set from the setting device, and a correction movement trajectory of the grinding tool is generated based on the over set value signal of the amount of change from this comparator. A grinding work device using a robot, comprising: a third calculation unit that controls the robot along a trajectory. 6. The robot-based grinding work device according to claim 5, wherein the second calculation section approximately determines the curvature of the movement trajectory based on a change in inclination during the scanning distance of the grinding tool.
JP22202784A 1984-10-24 1984-10-24 Grinding work by robot and apparatus thereof Pending JPS61103769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22202784A JPS61103769A (en) 1984-10-24 1984-10-24 Grinding work by robot and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22202784A JPS61103769A (en) 1984-10-24 1984-10-24 Grinding work by robot and apparatus thereof

Publications (1)

Publication Number Publication Date
JPS61103769A true JPS61103769A (en) 1986-05-22

Family

ID=16775942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22202784A Pending JPS61103769A (en) 1984-10-24 1984-10-24 Grinding work by robot and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS61103769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252340A (en) * 1988-03-30 1989-10-09 Toyoda Mach Works Ltd Machining control device employing force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252340A (en) * 1988-03-30 1989-10-09 Toyoda Mach Works Ltd Machining control device employing force sensor

Similar Documents

Publication Publication Date Title
US6021361A (en) Robot control system
JP4578056B2 (en) Workpiece machining method by control system using work robot
JP4098761B2 (en) Finishing method
US5014183A (en) Method and means for path offsets memorization and recall in a manipulator
US11498209B2 (en) Robot control apparatus and robot control system
US6298279B1 (en) CAD/CAM apparatus and machining apparatus for processing position/force information
CN114769988A (en) Welding control method and system, welding equipment and storage medium
JPS61103769A (en) Grinding work by robot and apparatus thereof
CN117697558A (en) Double-layer feedback coping system and method based on image recognition and weld force control coping
JP3380028B2 (en) Profile control method of pipe surface by force control robot
JP3171450B2 (en) Robot controller
JP6977640B2 (en) Processing equipment and processing method
JP2771458B2 (en) Industrial robot deflection correction method
JPH0760641A (en) Grinding robot and welding bead end point part grinding method
JP2669274B2 (en) Robot control device
JP7360824B2 (en) Robot control device and robot control system
JPH05345255A (en) Grinding route generating device for grinding robot
JPH0651268B2 (en) Pressing force control grinding machine
CN118238154B (en) Mechanical arm control method and system for automatic feeding
JPH0651824A (en) Tool posture control method
JP2007505378A (en) Machining method of workpiece with rotary cutting tool
Thomessen et al. Automatic programming of grinding robot
JPH06190685A (en) Self-correcting working method for work
JP2001179585A (en) Curved surface finishing grinding and polishing method and device
JP2023131524A (en) Processing device