JPS61103330A - Method for switching optical communication line - Google Patents

Method for switching optical communication line

Info

Publication number
JPS61103330A
JPS61103330A JP59225161A JP22516184A JPS61103330A JP S61103330 A JPS61103330 A JP S61103330A JP 59225161 A JP59225161 A JP 59225161A JP 22516184 A JP22516184 A JP 22516184A JP S61103330 A JPS61103330 A JP S61103330A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
fiber core
communication line
scratch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59225161A
Other languages
Japanese (ja)
Inventor
Yoshinori Hatano
羽田野 吉紀
Katsuya Yamashita
克也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59225161A priority Critical patent/JPS61103330A/en
Publication of JPS61103330A publication Critical patent/JPS61103330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain the replacement of new/old cables without interrupting communication by providing a cut part to an optical fiber, using a photodetector to receive an irradiated light from the cut part and providing a bypass circuit. CONSTITUTION:The cut part 11 reaching the buffer layer of an old optical fiber core 10 is provided, a curved pat is formed to a position including the cut part 11 comprised of curving devices A, B and the photodetector 12 of an optical signal generator 14 is opposed to the cut part 11. Thus, a transmission signal is propagated from the cut part 11 to the old optical fiber core 10 at th curved part at the reception side via the optical signal generator 14 and an irradiated optical fiber core 18. Then the optical fiber core 10 of the old line is cut off and the optical fiber core of the new line is connected permanently by molten connection. Then the optical signal generator 14 or the like is removed, the curved part is stretched, the cut part 11 is reinforced by a reinforcement member to complete the replacement.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通信を瞬断させることなく光通信線路の切替を
行う方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for switching optical communication lines without momentarily interrupting communication.

(従来の技術) 従来、光通信線路を途中で切替するには旧ケーブル心線
を接続部で切断し、新ケーブル心線と接続して行う方法
しかなかった。
(Prior Art) Conventionally, the only way to switch an optical communication line midway was to cut the old cable core at the connection point and connect it to the new cable core.

(発明が解決しようとする問題点) 従来の方法では一時的に通信を遮断しなければならなく
切替工事を困難なものにしていた。
(Problems to be Solved by the Invention) In the conventional method, communication had to be temporarily cut off, making switching work difficult.

(発明の構成) 本発明は上記目的を達成するため、裸光ファイバの表面
を一次被覆体とバラフン層、二次被覆体で被覆した光フ
ァイバ心線で構成され、光信号が一方向に伝搬している
光通信線路の任意の区間を別の光ファイバ心線よりなる
線路とHe1pする光通信線路切替方法において、送信
側の第1の切替点よりやや送信側寄りの部位における光
ファイバ心線の外表面に二次被覆体或いはバッファ層ま
で達する傷部を設けると共に該傷部を含む部位に該傷部
が半径方向の外側になるよう弯曲させる工程と、前記傷
部からの放射光を受光素子で受光し光電変換を行いその
電気信号を増幅器、半導体レーザなどの発光素子駆動回
路及び発光素子を介して前記光通信線路と同一の信号形
態を持つ光信号を生成し、該光信号を照射用光ファイバ
心線に伝搬させる工程と、受信側の第2の切替点よりや
や受信側寄りの部位における光ファイバ心線の外表面に
二次被覆体或いはバッファ農まで達する傷部を設けると
共に該傷部を含む部位に該傷部が半径方向の外側になる
よう弯曲させる工程と、該受信側の傷部から前記照射用
光ファイバ心線をを介して前記光信号を前記光ファイバ
心線に伝搬させる工程と、前記第1及び第2の切替点で
旧線路の光ファイバ心線を切断すると共に新線路の光フ
ァイバ心線を前記各切替点間に接続する工程と、前記二
つの弯曲部をのばし傷部を補強する工程とからなること
を特徴とする。
(Structure of the Invention) In order to achieve the above object, the present invention consists of an optical fiber core wire in which the surface of a bare optical fiber is coated with a primary coating, a Barafun layer, and a secondary coating, so that optical signals propagate in one direction. In an optical communication line switching method in which an arbitrary section of an optical communication line is He1Ped with a line made of another coated optical fiber, an optical fiber coated line at a portion slightly closer to the transmitting side than the first switching point on the transmitting side is used. a step of providing a scratch that reaches the secondary coating or buffer layer on the outer surface of the substrate, and curving the area including the scratch so that the scratch is on the outside in the radial direction; and receiving radiation from the scratch. The element receives light, performs photoelectric conversion, generates an optical signal having the same signal form as the optical communication line through an amplifier, a light emitting element drive circuit such as a semiconductor laser, and a light emitting element, and irradiates the optical signal. The step of propagating the optical fiber to the optical fiber for use, and the step of providing a scratch on the outer surface of the optical fiber at a portion slightly closer to the receiving side than the second switching point on the receiving side, which reaches the secondary coating or buffer layer, and a step of curving a portion including a scratch so that the scratch is on the outside in the radial direction; and transmitting the optical signal from the scratch on the receiving side to the optical fiber through the irradiation optical fiber. a step of propagating the optical fiber; a step of cutting the optical fiber of the old line at the first and second switching points and connecting the optical fiber of the new line between the respective switching points; and a step of connecting the optical fiber of the new line between the respective switching points. The method is characterized by a step of stretching the wound and reinforcing the damaged area.

(実施例) 第1図は本発明を実現するための装置の概略構成図であ
る。図中10は光信号が一方向に伝搬している光通信線
路の光ファイバ心線で、裸光ファイバの表−を−法被覆
体とバッファ層、二次被覆体で被覆してなる。A、Bは
光ファイバ心線10の外表面に設けた傷部11を含む部
位に該傷部11が半径方向の外側になるよう弯曲させる
弯曲器    jで、詳細については後述する。12は
受光素子、13は光信号生成8114の増幅器に接続す
るり一ド線である。光信号生成器14は電気信号の増幅
器15、半導体レーザなどの発光素子駆動回路16、発
光素子17とからなり、前記傷部11からの放射光を受
光素子12で光を変換して得られた電気信号から前記光
通信線路と同一の信号形態を持つ光信号を生成し、該光
信号を照射用光ファイバ心線18に伝搬させる。19は
リード線13或いは照射用光ファイバ心I!18を弯曲
SiA、Bに接続するアダプタである。
(Example) FIG. 1 is a schematic configuration diagram of an apparatus for realizing the present invention. In the figure, reference numeral 10 denotes an optical fiber core wire of an optical communication line in which an optical signal propagates in one direction, and is made by covering the front surface of a bare optical fiber with a -coating material, a buffer layer, and a secondary coating material. A and B are bending devices j for bending a portion including a scratch 11 provided on the outer surface of the optical fiber coated wire 10 so that the scratch 11 is on the outside in the radial direction, and the details will be described later. 12 is a light receiving element, and 13 is a single line connected to an amplifier for optical signal generation 8114. The optical signal generator 14 is composed of an electric signal amplifier 15, a light emitting element drive circuit 16 such as a semiconductor laser, and a light emitting element 17, and is obtained by converting the light emitted from the scratched part 11 with the light receiving element 12. An optical signal having the same signal form as the optical communication line is generated from the electrical signal, and the optical signal is propagated to the irradiation optical fiber core wire 18. 19 is the lead wire 13 or the irradiation optical fiber core I! 18 to the curved SiA and B.

前記弯曲器Aを第3図(a)(b)及び第4図について
説明する。図中40は光ファイバ心線10をそわせるこ
とにより、該光ファイバ心線10に曲げを与える凸型部
材、41は該凸型部材40と嵌合することにより前記光
ファイバ心線10を挟持する凹型部材、42は前記凹型
部材41に設けた前記光ファイバ曲げ部に貫通ずる孔で
、該孔42には前記受光素子12及び該受光素子12に
傷部11からの放射光を集光させるレンズ系50などが
挿入されている。。前記凸型部材40と凹型部材41の
対向面の幅方向中央にはその長手方向に長くかつ光ファ
イバ10の半径に等しい断面半円のガイド溝40a、4
1aが設けられている。
The bending device A will be explained with reference to FIGS. 3(a) and 4(b). In the figure, 40 is a convex member that bends the optical fiber coated wire 10 by deflecting the optical fiber coated wire 10, and 41 is a convex member that clamps the optical fiber coated wire 10 by fitting with the convex member 40. A concave member 42 is a hole provided in the concave member 41 that passes through the bent portion of the optical fiber. A lens system 50 and the like are inserted. . At the center in the width direction of the facing surfaces of the convex member 40 and the concave member 41, there are guide grooves 40a, 4 which are long in the longitudinal direction and have a semicircular cross section equal to the radius of the optical fiber 10.
1a is provided.

また、凹型部材41の長手方向両側にはその下面(対向
面)に小径の孔を開口した縦方向に長い空洞41bが設
けられ、該空洞41bには凸型部材40の艮手方向貢側
に植立した支柱40bが′hi記開口を介して挿入され
ている。、43は支柱40bの係合用突起40Cと前記
開口の外周縁部との間に装入したコイルバネで、常時凸
型部材40と凹型部材41の対向面を当接する方向に力
を加えている。
Further, on both sides of the concave member 41 in the longitudinal direction, a longitudinally long cavity 41b having a small-diameter hole opened in the lower surface (opposing surface) is provided, and the cavity 41b is provided on the opposite side of the convex member 40 in the hand direction. The erected support column 40b is inserted through the opening. , 43 is a coil spring inserted between the engagement protrusion 40C of the support column 40b and the outer peripheral edge of the opening, and constantly applies force in the direction of abutting the facing surfaces of the convex member 40 and the concave member 41.

これを動作するには、まず凸型部材40と凹型部材41
0対向面を離し予め光ファイバ心ai。
To operate this, first the convex member 40 and the concave member 41
0. Separate the opposing surfaces and connect the optical fiber core ai in advance.

に(111をつけて対向面の間からガイド溝40a。(Attach 111 to the guide groove 40a from between the opposing surfaces.)

418間にはさみ込む。この際、傷11が孔42と対向
するようq5する。これにより、光ファイバ心!f;A
10に容易に曲げ形状を加え、かつ受光素子12に放射
光を効率よく集光できる。
Insert between 418. At this time, the scratch 11 is placed q5 so as to face the hole 42. This makes fiber optic heart! f;A
A bent shape can be easily added to the light receiving element 10, and emitted light can be efficiently focused on the light receiving element 12.

第5図は前記弯曲器Bの構成を示す第4図と同様の図で
、照射用光ファイバ心線18の光信号を傷部11から光
ファイバ心線10に伝搬さ諒るしンズ系60を設けた他
は弯曲器Aと同様の構成となっている。
FIG. 5 is a diagram similar to FIG. 4 showing the configuration of the bending device B, in which the optical signal of the irradiation optical fiber coated wire 18 is propagated from the scratched part 11 to the optical fiber coated wire 10. It has the same configuration as curved device A except that it is provided with.

次に第2図を参照して本発明の切替手順を説明する。図
中20は送信側に位置する第1の切替点、21は受信側
に位置する第2の切替点、22は新光ファイバ心線、2
3は傷部11を切替え後に補強する補強部材を示す。な
お矢印は光信号の流れを示す。第2図(a)は切替ルー
トを示す。切替を行うには第2図(b)のように第1の
切替点20のやや送信側寄りの部位と第2の切替え点2
1の受信側寄りの部位における口先ファイバ心線10の
外表面に二次被覆体のみ、或いはバッファ層まで達する
傷部11を設け、弯曲器A、Bにより第1図に示すよう
に該傷部11を含む部位に弯曲部を形成し、送信側の彎
曲部の傷部11に光信号生成器14の受光素子12を、
受信側の弯曲部の傷部11に照射用光ファイバ心線18
の先端を対″)′□     向させる。この操作によ
り伝送信号は光信号生成器14、照射光ファイバ心線1
8を介して受信側の弯曲部の傷部11から口先ファイバ
心線10に伝搬される。このため旧線路の光ファイバ心
線10を切断しても伝送信号に影響を与えない。次に第
2図(C)のように旧線路の光ファイバ心線10を切替
点20.21で切断し、新線路の光ファイバ心線22と
融着接続などで永久接続する。次に第2図(d)のよう
に光信号生成器14等を撤去し弯曲部をのばし傷部11
を補強部材23で補強して切替を終了する。
Next, the switching procedure of the present invention will be explained with reference to FIG. In the figure, 20 is the first switching point located on the transmitting side, 21 is the second switching point located on the receiving side, 22 is the new optical fiber core, 2
3 indicates a reinforcing member that reinforces the damaged portion 11 after switching. Note that arrows indicate the flow of optical signals. FIG. 2(a) shows the switching route. To perform switching, as shown in FIG.
A flaw 11 is provided on the outer surface of the tip fiber core 10 at a portion closer to the receiving side of 1, and extends only to the secondary coating or to the buffer layer. A curved portion is formed at a portion including 11, and the light receiving element 12 of the optical signal generator 14 is attached to the scratched portion 11 of the curved portion on the transmitting side.
Optical fiber core wire 18 for irradiation is attached to the damaged part 11 of the curved part on the receiving side.
``)'
8, the signal is propagated from the wound portion 11 of the curved portion on the receiving side to the tip fiber core wire 10. Therefore, even if the optical fiber core 10 of the old line is cut, the transmission signal will not be affected. Next, as shown in FIG. 2(C), the optical fiber core 10 of the old line is cut at the switching point 20.21 and permanently connected to the optical fiber core 22 of the new line by fusion splicing or the like. Next, as shown in FIG.
is reinforced with the reinforcing member 23 and the switching is completed.

なお、光通信線路が両方向通信線路の場合、彎曲部をざ
らに各切替点近傍に各々一つづつ加え、上述と逆方向に
も側方入射、側方出射を行うことにより、両方向通信線
路においても無瞬断の切替が可能となる。
In addition, if the optical communication line is a bidirectional communication line, by roughly adding one curved part near each switching point and performing lateral input and output in the opposite direction to the above, it is possible to create a bidirectional communication line. Switching without momentary interruption is also possible.

次に具体的に実験値、計算値を用い本発明の有効性を示
す。まず、結合損失の定義を説明する。
Next, the effectiveness of the present invention will be specifically demonstrated using experimental values and calculated values. First, the definition of coupling loss will be explained.

第2図(b)において伝搬パワをPl、曲げによって放
射され受光素子12で受光されたパワをPaと?。
In FIG. 2(b), the propagation power is Pl, and the power emitted by bending and received by the light receiving element 12 is Pa? .

したとき、゛結合損失は1oIoa−7で定義でる。Then, the coupling loss can be defined as 1oIoa-7.

ファイバに傷をつけ5mmφの曲げを与えたとき結合損
失は10dBm((lがない場合30〜4063m)が
得られている。第2図(b)において照射用光ファイバ
心線のパワをへ、コアに伝搬したパワをPaとしたとき
(旧心線10を切替点20゜21で切断した状態)入射
結合損失は1010Qげを与えたとき入射結合損失は3
7dB(IIがない場合55dB以上)が得られている
。光信号生成器14の最低受光レベルは一40dBm程
度(32Mb i t/sec以下のデジタルPCM通
信線路の最低受光レベルと同等)であるので、Pは(受
光素子12での結合損失10dBmのため)−30dB
m以上の光パワが必要である。光信号生成器14の光パ
ワ出力を実用的な値として10dBmとすると第2図(
b)のPz(旧心線10を切替点20.21で切断した
ときの値)は−27dBm (10dBm−37dBm
’(入射結合損失))が得られPCM通信線路の最低受
光レベル−40dBmを考えると切替点以下の許容線路
損失は13dBとなる。
When the fiber is scratched and bent by 5 mmφ, a coupling loss of 10 dBm (30 to 4063 m without l) is obtained. In Fig. 2 (b), the power of the irradiation optical fiber is changed to When the power propagated to the core is Pa (with the old core wire 10 cut at the switching point 20°21), the incident coupling loss is 1010 When a Q angle is applied, the incident coupling loss is 3
7 dB (55 dB or more without II) was obtained. Since the minimum light reception level of the optical signal generator 14 is about -40 dBm (equivalent to the minimum light reception level of a digital PCM communication line of 32 Mbit/sec or less), P is (due to the coupling loss of 10 dBm in the light receiving element 12). -30dB
An optical power of more than m is required. If the optical power output of the optical signal generator 14 is set to 10 dBm as a practical value, then Fig. 2 (
b) Pz (value when old core wire 10 is cut at switching point 20.21) is -27 dBm (10 dBm - 37 dBm
' (incidence coupling loss)) is obtained, and considering the minimum light reception level of -40 dBm of the PCM communication line, the allowable line loss below the switching point is 13 dB.

以上述べたようにPIの光パワが一30dBm以上でか
つ切替点以下の線路損失が13dB以下の場合に本切替
方法が適用できる。また、光信号生成器11の光パワ出
力を上げるとさらに適用範囲が広がる。
As described above, this switching method can be applied when the optical power of the PI is 130 dBm or more and the line loss below the switching point is 13 dB or less. Furthermore, increasing the optical power output of the optical signal generator 11 further expands the range of application.

(発明の効果) 以上説明したように本発明によれば裸光ファイバの表面
を一次被覆体とバッフ1層、二次被覆体で被覆した光フ
ァイバ心線で構成され、光信号が一方向に伝搬している
光通信線路の任意の区間を別の光ファイバ心線よりなる
線路と置換する光通信線路切替方法において、送信側の
第1の切替点よりやや送信側寄りの部位における光ファ
イバ心線の外表面に二次被覆体或いはバッファ層まで達
する傷部を設けると共に該傷部を含む部位に該傷部が半
径方向の外側になるよう弯曲させる工程と、前記傷部か
らの放射光を受光素子で受光し光電変換を行いその電気
信号を増幅器、半導体レーザなどの発光素子用駆動回路
及び発光素子を介して前記光通信線路と同一の信号形態
を持つ光信号を生成し、該光信号を照射用光ファイバ心
線に伝搬させる工程と、受信側の第2の切替点よりやや
受信側寄りの部位における光ファイバ心線の外表面に二
次被覆体或いはバッファ層まで達する傷部を設けると共
に該傷部を含む部位に該傷部が半径方向の外側になるよ
う弯曲させる工程と、該受信側の傷部から前記照射用光
ファイバ心線をを介して前記光信号を前記光ファイバ心
線に伝搬させる工程と、前記第1及び第2の切替点で旧
線路の光ファイバ心線を切断すると共に新線路の光ファ
イバ心線を前記各tI7J替点間に接続する工程と、前
記二つの弯曲部をのばし傷部を補強する工程とからなる
から、光通信線路の切替を無瞬断で行うことができる利
点がある。
(Effects of the Invention) As explained above, according to the present invention, an optical fiber core is formed by coating the surface of a bare optical fiber with a primary coating, one layer of buff, and a secondary coating, and optical signals are transmitted in one direction. In an optical communication line switching method in which an arbitrary section of a propagating optical communication line is replaced with a line made of another optical fiber core, an optical fiber core at a portion slightly closer to the transmitting side than the first switching point on the transmitting side is used. A step of providing a scratch that reaches the secondary coating or buffer layer on the outer surface of the wire, and curving the area including the scratch so that the scratch is on the outside in the radial direction, and emitting light from the scratch. The light is received by a light receiving element, photoelectrically converted, and the electrical signal is passed through an amplifier, a drive circuit for a light emitting element such as a semiconductor laser, and a light emitting element to generate an optical signal having the same signal form as the optical communication line. a step of propagating the light into the irradiating optical fiber, and creating a scar that reaches the secondary coating or buffer layer on the outer surface of the optical fiber at a portion slightly closer to the receiving side than the second switching point on the receiving side. At the same time, a step of bending a portion including the scratched portion so that the scratched portion is on the outside in the radial direction, and a step of transmitting the optical signal from the receiving side scratched portion to the optical fiber core through the irradiation optical fiber core. a step of cutting the optical fiber core of the old line at the first and second switching points and connecting the optical fiber core of the new line between the respective tI7J switching points; This method has the advantage that the optical communication line can be switched without momentary interruption because it consists of the steps of stretching out two curved parts and reinforcing the damaged part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実現するための装置の概略構成図、第
2図(a)〜(d)は切替手順を示す説明図、第3図(
a)(b)は彎曲器の斜視図、第4図及び第5図は弯曲
器の中央縦断面図である。 10・・・旧線路の光ファイバ心線、A、B・・・弯曲
器、11・・・傷部、12・・・受光素子、13・・・
リード線、14・・・光信号生成器、15・・・増幅器
、16・・・発光素子用駆動回路、17・・・発光素子
、18・・・照射用光ファイバ心線、20・・・第1の
切替点、21・・・第2の切替点、22・・・新線路の
光ファイバ心線、23・・・補強部材
FIG. 1 is a schematic configuration diagram of an apparatus for realizing the present invention, FIGS. 2(a) to (d) are explanatory diagrams showing the switching procedure, and FIG.
a) and (b) are perspective views of the bending device, and FIGS. 4 and 5 are central longitudinal sectional views of the bending device. DESCRIPTION OF SYMBOLS 10... Optical fiber core wire of old line, A, B... Curved device, 11... Damaged part, 12... Light receiving element, 13...
Lead wire, 14... Optical signal generator, 15... Amplifier, 16... Light emitting element drive circuit, 17... Light emitting element, 18... Optical fiber core wire for irradiation, 20... First switching point, 21... Second switching point, 22... Optical fiber core wire of new line, 23... Reinforcement member

Claims (1)

【特許請求の範囲】[Claims] 裸光ファイバの表面を一次被覆体とバッファ層、二次被
覆体で被覆した光ファイバ心線で構成され、光信号が一
方向に伝搬している光通信線路の任意の区間を別の光フ
ァイバ心線よりなる線路と置換する光通信線路切替方法
において、送信側の第1の切替点よりやや送信側寄りの
部位における光ファイバ心線の外表面に二次被覆体或い
はバッファ層まで達する傷部を設けると共に該傷部を含
む部位に該傷部が半径方向の外側になるよう弯曲させる
工程と、前記傷部からの放射光を受光素子で受光し光電
変換を行いその電気信号を増幅器、半導体レーザなどの
発光素子用駆動回路及び発光素子を介して前記光通信線
路と同一の信号形態を持つ光信号を生成し、該光信号を
照射用光ファイバ心線に伝搬させる工程と、受信側の第
2の切替点よりやや受信側寄りの部位における光ファイ
バ心線の外表面に二次被覆体或いはバッファ層まで達す
る傷部を設けると共に該傷部を含む部位に該傷部が半径
方向の外側になるよう弯曲させる工程と、該受信側の傷
部から前記照射用光ファイバ心線をを介して前記光信号
を前記光ファイバ心線に伝搬させる工程と、前記第1及
び第2の切替点で旧線路の光ファイバ心線を切断すると
共に新線路の光ファイバ心線を前記各切替点間に接続す
る工程と、前記二つの弯曲部をのばし傷部を補強する工
程とからなることを特徴とする光通信線路切替方法。
An optical communication line consisting of an optical fiber coated with a primary coating, a buffer layer, and a secondary coating on the surface of a bare optical fiber, in which optical signals propagate in one direction, can be connected to another optical fiber. In an optical communication line switching method for replacing a line made of a cored wire, a scratch that reaches the secondary coating or buffer layer on the outer surface of the optical fiber core at a location slightly closer to the transmitting side than the first switching point on the transmitting side. and curving the area including the scratch so that the scratch is on the outside in the radial direction, and receiving the emitted light from the scratch with a light receiving element, photoelectrically converting the light, and transmitting the electrical signal to an amplifier, a semiconductor, etc. A process of generating an optical signal having the same signal form as the optical communication line through a drive circuit for a light emitting element such as a laser and the light emitting element, and propagating the optical signal to the optical fiber for irradiation; A flaw extending to the secondary coating or buffer layer is provided on the outer surface of the optical fiber at a portion slightly closer to the receiving side than the second switching point, and the flaw extends radially outward at the portion including the flaw. a step of propagating the optical signal from the receiving side wound portion to the optical fiber core through the irradiation optical fiber core, and the first and second switching points. The method is characterized by comprising the steps of cutting the optical fiber core of the old line at the same time as connecting the optical fiber core of the new line between the respective switching points, and the step of stretching out the two curved parts and reinforcing the damaged part. Optical communication line switching method.
JP59225161A 1984-10-26 1984-10-26 Method for switching optical communication line Pending JPS61103330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225161A JPS61103330A (en) 1984-10-26 1984-10-26 Method for switching optical communication line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225161A JPS61103330A (en) 1984-10-26 1984-10-26 Method for switching optical communication line

Publications (1)

Publication Number Publication Date
JPS61103330A true JPS61103330A (en) 1986-05-21

Family

ID=16824897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225161A Pending JPS61103330A (en) 1984-10-26 1984-10-26 Method for switching optical communication line

Country Status (1)

Country Link
JP (1) JPS61103330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281825A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
WO1996004704A1 (en) * 1994-07-29 1996-02-15 Nikodenki Kogyo Co., Ltd. Work without stopping signal transmission and connector
JP2007137486A (en) * 2005-11-21 2007-06-07 Furukawa Mfg Co Ltd Packaging bag having crease removing element and its manufacturing apparatus
JP2015129898A (en) * 2014-01-09 2015-07-16 住友電気工業株式会社 Optical fiber changeover method and optical fiber changeover device
JP2015231160A (en) * 2014-06-05 2015-12-21 日本電信電話株式会社 Optical communication line switching device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281825A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
WO1996004704A1 (en) * 1994-07-29 1996-02-15 Nikodenki Kogyo Co., Ltd. Work without stopping signal transmission and connector
JP2007137486A (en) * 2005-11-21 2007-06-07 Furukawa Mfg Co Ltd Packaging bag having crease removing element and its manufacturing apparatus
JP2015129898A (en) * 2014-01-09 2015-07-16 住友電気工業株式会社 Optical fiber changeover method and optical fiber changeover device
JP2015231160A (en) * 2014-06-05 2015-12-21 日本電信電話株式会社 Optical communication line switching device and method

Similar Documents

Publication Publication Date Title
JP4769120B2 (en) Optical communication system and access network provided with the same
US4900114A (en) Technique for reducing fibre joint loss
JPS5921530B2 (en) Plastic clad type, optical fiber connection method
JPS6112242B2 (en)
EP0137720A3 (en) Technique for repairing and joining small diameter optical fiber cables
AU3887300A (en) Optical networking assembly
JP7310906B2 (en) Optical branch circuit fabrication method and optical branch circuit fabrication device
US4431261A (en) Fiber optic splitter
JPS61103330A (en) Method for switching optical communication line
US5625728A (en) Method of coupling a multi-core optical fiber to a plurality of single-core optical fibers
JP5345459B2 (en) Local signal light input / output method and local signal light input / output device
JP3224106B2 (en) Optical fiber for laser input
JPH0470607A (en) Method and device for fusion splicing connection between optical waveguide and optical fiber
JPS6343111A (en) Optical fiber branching device
JPH03269505A (en) Optical fiber connector
JPH01227108A (en) Optical branching circuit
ITMI961910A1 (en) OPTICAL COUPLER ABLE TO PREVENT UNWANTED LIGHT EMISSION IN CORRESPONDENCE OF END OF INCIDENCE
JP3159013B2 (en) Optical fiber coupler and manufacturing method thereof
JPH02113212A (en) Waveguide type optical module
JPH01246512A (en) Bending head for accessing optical fiber circuit
JP2991286B2 (en) Connector type core diameter conversion optical combiner
JP3106932B2 (en) Optical splitter
JPS62215209A (en) Optical fiber tap circuit
JP2961691B2 (en) Module for branching optical fiber tape with built-in 4-core wire and method of manufacturing the same
JP3158998B2 (en) Optical branch coupler