JPS61102514A - Gyroscope device - Google Patents

Gyroscope device

Info

Publication number
JPS61102514A
JPS61102514A JP59224755A JP22475584A JPS61102514A JP S61102514 A JPS61102514 A JP S61102514A JP 59224755 A JP59224755 A JP 59224755A JP 22475584 A JP22475584 A JP 22475584A JP S61102514 A JPS61102514 A JP S61102514A
Authority
JP
Japan
Prior art keywords
tuning fork
output
phase
vibration
demodulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224755A
Other languages
Japanese (ja)
Inventor
Takeshi Hojo
武 北條
Shinichi Kawada
河田 伸一
Michio Fukano
深野 道雄
Tsurashi Yamamoto
山本 貫志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59224755A priority Critical patent/JPS61102514A/en
Priority to US06/790,527 priority patent/US4694696A/en
Publication of JPS61102514A publication Critical patent/JPS61102514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To stabilize an output and to improve precision by using the output of an oscillation detector as the reference phase of a demodulator. CONSTITUTION:A driving coil 14 is driven with an AC current from a power source 16 and both legs 11 and 11A of a tuning fork 1 oscillate. Oscillations of both legs 11 and 11A at this time are detected by oscillation detectors 18 and 18A, whose detection outputs are used as the reference phase to rectify angular oscillations of the inflection shaft 3 of the tuning fork 1 synchronously by the demodulator 21, detecting an angular speed OMEGA. The reference signal of the demodulator 21 is based upon not the phase of the power source 16, but the output phase of the detectors 18 and 18A. The generated voltages of the detectors 18 and 18A have phases of dynamical oscillation and invariably constant phase relation with angular oscillations around the inflection shaft 3 having the same dynamical oscillation phase. Therefore, even if a trasient phenomenon occurs to the dynamical system, exactly the same phase relation is born between the oscillations of the tuning fork 1 and the angular oscillations, so the output is stabilized and the precision is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ジャイロ装置、特に振動型或いは音叉型ジャ
イロ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gyro device, particularly a vibrating or tuning fork gyro device.

〔従来の技術〕[Conventional technology]

従来、この種の振動型ジャイロ装置としては、例えば第
5図に示すようなものがある。この第5図に示す従来の
ジャイロ装置では、音叉(1)を、撓み軸(3)を介し
て基台(2)に取り付ける。音叉(1)の右脚!11)
及び左脚(11^)の振動端には、強磁性体より成る駆
動体(12) 、  (12A )が図の如く装着され
ている。一方、基台(2)と一体をなす円筒状の外筺(
5)には、駆動コイル(4)があり、このコイル(4)
に電流を通じたとき生ずる磁界の中心線が、はぼ駆動体
(12) 、  (12^)の配列と一致するように、
駆動コイル(4)が位置ぎめされている。駆動コイル(
4)に交流電源(16)から電路(25)を経て交流電
流を通じると、これによって駆動コイル(4)に生じた
磁界により、駆動体(12) 、  (12A )はそ
れぞれコイル(4)内に引込まれるような電磁力をうけ
る。このとき、駆動体(12) 、  (12A)が磁
性的に互いに引合う力も重畳して生ずる。交流電流の流
れる方向が逆転しても、駆動体(12) 、  (12
A)は駆動コイル(4)内に引込まれるので、音叉(1
)は、駆動コイル(4)に流す交流電流、すなわち電源
(16)の周波数の2倍の周波数で振動する。駆動コイ
ル(4)に流す電流の周波数と振幅をほぼ一定に保つと
、音叉(1)も、はぼ一定の周波数と振幅で振動を持続
する。音叉(1)の撓み軸(3)の軸(Z−Z)のまわ
りに、角速度Ωが人力されると、音叉(1)の振動速度
V、入力角速度Ωに対応したコリオリの力FCが音叉(
1)に発生し、これにより、音叉(1)全体が軸(Z−
Z)のまわりに交番的に回転する。すなわち捩り振動が
、音叉(1)に発生し、その振幅はΩに正しく比例する
ので、これを撓み軸(3)から、振幅または応力変化を
測定して検出すると、装置全体をΩの検出器、すなわち
回転レートセンサーとして使うことができる。第5図の
従来の例では、撓み軸(3)の角振動検出器は、(17
)で概念的に示されている。角振動検出器(17)は、
撓み軸(3)の上下の偏角を直接求めるよう配置された
差動変圧器等の電磁式ピックアップや光電式ピックアッ
プ、撓み軸(3)に装着したストレインゲージや圧電素
子、さらには撓み軸(31の捩れを曲げとして感知する
よう撓み軸(3)に装着された電歪索子などが用いられ
得る。すなわち、一体構造のものの一部が基台側1  
    にあるもの等多岐に渉るので、概念的に示した
Conventionally, as this type of vibrating gyro device, there is one shown in FIG. 5, for example. In the conventional gyro device shown in FIG. 5, a tuning fork (1) is attached to a base (2) via a deflection shaft (3). The right leg of the tuning fork (1)! 11)
Drive bodies (12) and (12A) made of ferromagnetic material are attached to the vibrating end of the left leg (11^) as shown in the figure. On the other hand, a cylindrical outer casing (
5) has a drive coil (4), and this coil (4)
so that the center line of the magnetic field generated when a current is passed through coincides with the arrangement of the drive bodies (12) and (12^).
A drive coil (4) is positioned. Drive coil (
When an alternating current is passed through the electric circuit (25) from the alternating current power source (16) to 4), the magnetic field generated in the drive coil (4) causes the drive bodies (12) and (12A) to move inside the coil (4), respectively. receive an electromagnetic force that pulls them into At this time, a superimposed force is generated in which the driving bodies (12) and (12A) magnetically attract each other. Even if the direction in which the alternating current flows is reversed, the driving bodies (12), (12
A) is drawn into the drive coil (4), so the tuning fork (1
) vibrates at a frequency twice that of the alternating current flowing through the drive coil (4), that is, the frequency of the power source (16). When the frequency and amplitude of the current flowing through the drive coil (4) are kept almost constant, the tuning fork (1) also continues to vibrate at a nearly constant frequency and amplitude. When an angular velocity Ω is manually applied around the axis (Z-Z) of the deflection axis (3) of the tuning fork (1), the Coriolis force FC corresponding to the vibration velocity V of the tuning fork (1) and the input angular velocity Ω is applied to the tuning fork. (
1), which causes the entire tuning fork (1) to be aligned with the axis (Z-
rotates alternately around Z). In other words, torsional vibration occurs in the tuning fork (1), and its amplitude is exactly proportional to Ω, so if this is detected by measuring the amplitude or stress change from the deflection axis (3), the entire device can be used as an Ω detector. , that is, it can be used as a rotation rate sensor. In the conventional example of FIG. 5, the angular vibration detector of the deflection shaft (3) is (17
) is conceptually shown. The angular vibration detector (17) is
An electromagnetic pickup such as a differential transformer or a photoelectric pickup arranged to directly determine the vertical declination angle of the deflection shaft (3), a strain gauge or piezoelectric element attached to the deflection shaft (3), and even a deflection shaft ( An electrostrictive cord attached to the flexible shaft (3) or the like may be used to sense the torsion of the base 1 as a bend.
Since it covers a wide range of things, I have shown it conceptually.

角振動検出器(17)の出力は、電路(19)を経てデ
モジュレータ(21)で、電源(16)の交流電圧5、
または図示のとおり電路(20)を介して電源(16)
と同期し、これと一定の位相関係を有するよう倍周波発
生器(23)で作られた電路(20A )を介した2倍
周波交流電圧と、位相関係を比較し、同期整流され、そ
の出力は電路(22)を経て出力される。一般にはΩが
方向、大きさ共一定であれば、デモジュレータ(21)
の出力は一定の直流電圧であり、Ωの方向が逆となると
、出力の直流電圧の極性が反転し、出力電圧の絶対値は
Ωの大きさに比例する。
The output of the angular vibration detector (17) is sent to the demodulator (21) via the electric line (19), where it is connected to the AC voltage 5 of the power source (16).
or the power source (16) via the electrical line (20) as shown.
The phase relationship is compared with the double frequency AC voltage via the electric circuit (20A) created by the double frequency generator (23) so as to have a certain phase relationship with this, and the output is synchronously rectified. is output via the electric line (22). Generally, if Ω is constant in both direction and magnitude, the demodulator (21)
The output of is a constant DC voltage, and when the direction of Ω is reversed, the polarity of the output DC voltage is reversed, and the absolute value of the output voltage is proportional to the magnitude of Ω.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来例においては、電源(16)の交流電圧
と、音叉(1)の力学的振動との間の位相関係が、常に
一定に保たれていないという問題がある。
In such a conventional example, there is a problem that the phase relationship between the AC voltage of the power source (16) and the mechanical vibration of the tuning fork (1) is not always kept constant.

振動が定常状態しあれば、理論上は両者間には一定の位
相関係が成立する筈であるが、実際には力学的外乱にさ
らされているため、力学的振動には、常に定常解の他に
過渡現象解が混在しているためであり、この過渡現象解
の位相は電源の位相と関係がないためである。このため
にデモジュレータ(21)の出力は、精度低下と好まし
くない変動とを有している。
If the vibration is in a steady state, there should theoretically be a certain phase relationship between the two, but in reality they are exposed to mechanical disturbances, so there is always a steady solution for mechanical vibration. This is because there are other transient phenomena solutions mixed in, and the phase of these transient phenomena solutions has no relation to the phase of the power supply. For this reason, the output of the demodulator (21) has reduced accuracy and undesirable fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、少なくとも1対の脚(11) 、  (11
八)を有する振動する振動子(1)と、該振動子に連続
振動を与えるための駆動装置と、上記振動子の中心をと
おり該振動子の脚と平行な入力軸<2−2)のまわりの
上記振動子の角振動を検出する装置(17)と、該角振
動を検出する装置の出力を同期整流するデモジュレータ
(21)とを有するジャイロ装置において、上記振動子
+1)にその音叉振動に対応する出力を生ずる振動検出
器(!8) 、  (18A )をもうけ、その出力を
上記デモジュレータ(21)の基準となしたことを特徴
とするジャイロ装置を提供したものである。
The present invention provides at least one pair of legs (11), (11
8) a vibrating vibrator (1), a drive device for giving continuous vibration to the vibrator, and an input shaft <2-2) passing through the center of the vibrator and parallel to the legs of the vibrator; In a gyro device having a device (17) for detecting angular vibrations of the surrounding vibrator, and a demodulator (21) for synchronously rectifying the output of the device for detecting the angular vibrations, the tuning fork is attached to the vibrator +1). The present invention provides a gyro device characterized in that it includes vibration detectors (!8) and (18A) that generate outputs corresponding to vibrations, and uses the outputs as a reference for the demodulator (21).

〔作用〕[Effect]

駆動コイル(14)等が電源(16)等よりの交流電流
により駆動され、振動子又は音叉(1)の両脚(11)
 、  (11^)を振動せしめる。この時、音叉(1
)の両脚(11) 、  (IIA)の振動を振動検出
器(18) 、  (18^)で検出し、この検出出力
を基準位相として、音叉(1)の撓み軸(3)の角振動
をデモジュレータ(21)等により同期整流し、角速度
Ωを検出する。
A drive coil (14) etc. is driven by an alternating current from a power source (16) etc., and both legs (11) of the vibrator or tuning fork (1)
, causes (11^) to vibrate. At this time, use a tuning fork (1
)'s legs (11), (IIA) are detected by vibration detectors (18), (18^), and using this detection output as the reference phase, the angular vibration of the bending shaft (3) of the tuning fork (1) is calculated. Synchronous rectification is performed using a demodulator (21), etc., and the angular velocity Ω is detected.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。第1図は、本
発明の一実施例を示す図である。
Hereinafter, the present invention will be explained based on the drawings. FIG. 1 is a diagram showing an embodiment of the present invention.

′S1図に示す本発明の実施例では、第5図の従来例の
駆動コイル(4)は除去され、新に、駆動コイル(14
)が捲かれている。第1図の例では、音叉(1)は、全
体の材質が例えば鉄系のような、強磁性体でつくられて
いる。第1図の駆動コイル(14)に電流を流すと、そ
の中心磁場は軸(Z−Z)とほぼ一致するので、第5図
の公知例の中心磁場とは、まさに直角方向である。尚、
第1図に於いて、第5図と対応する部分には同一符号を
付し、それ等の詳細な説明は省略する。
' In the embodiment of the present invention shown in Figure S1, the drive coil (4) of the conventional example in Figure 5 is removed, and a new drive coil (14) is installed.
) is turned over. In the example shown in FIG. 1, the entire tuning fork (1) is made of a ferromagnetic material such as iron. When a current is passed through the drive coil (14) shown in FIG. 1, its central magnetic field almost coincides with the axis (Z-Z), so the central magnetic field of the known example shown in FIG. 5 is exactly perpendicular. still,
In FIG. 1, parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

以下、第2図A及びBを用いて、第1図の音叉(1)の
振動する原理を説明する。
Hereinafter, the principle of vibration of the tuning fork (1) in FIG. 1 will be explained using FIGS. 2A and 2B.

第2図Aは、電源(16)より駆動コイル(14)に交
流を流した場合の成る半サイクルにおける磁界Hの状況
をあられした図で、磁界Hは第2図の紙面内で、実線矢
印の如く下から上に向かっている。このとき、音叉(1
)の右脚(11)も左脚(IIA)も共に、紙面の下側
にS極、上側にN極が誘導されて生じる。このため両脚
(11)と(IIA )とは、N極とN極、S極とS極
が互いに反撥するため、お互いに離れようとする力を生
ずる。交流が半サイクル後に逆極性になるとこの時の磁
界H′は反転して第2図Bで実線矢印で示すとおりとな
り、誘導されて生じた両脚(11) 、  (11A)
の磁極は、紙面上方がS極、下方がN極となり、やはり
両脚(11)と(IIA ’)とは、互いに反撥しあう
ことになる。このため交流−サイクルの中で、2度反撥
力を生ずるので、音叉(1)は駆動電源(16)の2倍
の周波数で振動する。
Figure 2A is a diagram showing the state of the magnetic field H during a half cycle when alternating current is applied to the drive coil (14) from the power supply (16). It goes from bottom to top like this. At this time, use a tuning fork (1
), both the right leg (11) and the left leg (IIA) are caused by the S pole being induced at the bottom of the page and the N pole at the top. For this reason, the legs (11) and (IIA) repel each other as their north poles and south poles repel each other, creating a force that tends to separate them from each other. When the alternating current reverses polarity after half a cycle, the magnetic field H' at this time reverses and becomes as shown by the solid arrow in Fig. 2B, and the two legs (11) and (11A) are induced.
The magnetic poles are the S pole at the top of the paper and the N pole at the bottom, and the legs (11) and (IIA') repel each other. Therefore, repulsion is generated twice in the AC cycle, so that the tuning fork (1) vibrates at twice the frequency of the driving power source (16).

こ\で第1図の本発明の実施例における角振動検出系に
ついて説明する。第1図においては、新たに音叉(1)
の振動を直接測定する振動検出器(18) 。
The angular vibration detection system in the embodiment of the present invention shown in FIG. 1 will now be explained. In Figure 1, a new tuning fork (1) is added.
Vibration detector (18) that directly measures the vibration of.

(18八)が、音叉(11のそれぞれの脚(11) 、
  (IIA)にもうけられている、この例では、振動
検出器(1B) 、  (18A)の総合出力が、電路
(20A )を解してデモジュレータ(21)に基準位
相信号として与えられているよう、概念的に画かれてい
る。
(188) is a tuning fork (each leg of 11 (11),
In this example, the combined output of the vibration detectors (1B) and (18A) is given to the demodulator (21) as a reference phase signal through the electric circuit (20A). It's conceptually depicted.

すなわち、本実施例の要点の一つは、デモジュレータ(
21)の基準信号が、電源(16)の位相を基準にして
おらず振動検出器(1B) 、  (18A)の出力の
位相を基準にしていることである。こうすることにより
、第5図の従来例に示したような電源(16)に位相基
準を求めることについての、−切の欠点が解決する。な
ぜならば振動検出器(1B) 。
In other words, one of the points of this embodiment is that the demodulator (
The reference signal 21) is not based on the phase of the power supply (16) but on the phase of the output of the vibration detectors (1B) and (18A). By doing this, the disadvantage of -off in determining the phase reference in the power supply (16) as shown in the conventional example of FIG. 5 is solved. Because of the vibration detector (1B).

(18A)の発生電圧は、力学的振動の位相をもってい
るので、これと同じく力学系振動である撓み軸(3)の
まわりの角振動とは常に一定の位相関係があるため、力
学系が過渡現象を生じたときも、全く同じ位相関係が、
音叉(1)の振動と角振動との間に成立するからであ名
。振動検出器(1B) 、  (18A)は、音叉(1
)に直接装着した電歪素子やストレインゲージでよいが
、基台(2)との間の電磁ピックアップ、光電ピックア
ップ等の使用をさまたげるものではない。また振動検出
器(1B) 、  (18A)の出力は、シリースにし
て用いてもバラにして用いてもよいだけでなく、振動検
出器(18) 、  (18A)のうち、どちらか一方
のみの使用でもさしつかえない。また、第1図の場合、
第5図の倍周波発生器(23)が不要となるメリットも
ある。
Since the generated voltage (18A) has the phase of mechanical vibration, there is always a constant phase relationship with the angular vibration around the deflection axis (3), which is also a dynamic system vibration, so the dynamic system is transient. Even when a phenomenon occurs, the exact same phase relationship is
It is so named because it is established between the vibration of the tuning fork (1) and the angular vibration. The vibration detector (1B), (18A) is a tuning fork (1
) may be used, but this does not preclude the use of electromagnetic pickups, photoelectric pickups, etc. between the base (2) and the base (2). In addition, the output of the vibration detectors (1B) and (18A) can be used not only in series or separately, but also in the output of only one of the vibration detectors (18) and (18A). It is okay to use it. Also, in the case of Figure 1,
There is also the advantage that the frequency doubler generator (23) shown in FIG. 5 is not required.

第3図は、本発明の他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.

また、同図の音叉(1)は簡単のため、強磁性体製とす
る。この例では、駆動コイル(14) 、  <14A
)が図の如く、音叉(1)の1対の脚(11) 、  
(IIA)の下方に、それぞれに対し非接触に配置され
ている。断面で示されている駆動コイル(14) 、 
 (14A)は、同図では直列につながれており、例え
ば駆動コイル(14)に流した電流により、同図中で脚
(11)内に実線矢印で示したような磁束を生ずるもの
とすれば、駆動コイル(14A)では同じく脚(IIA
 )内に実線矢印のような磁束を生ずるよう駆動コイル
(14A)の極性を定めるものとする。
Further, the tuning fork (1) in the figure is made of ferromagnetic material for simplicity. In this example, the drive coil (14), <14A
) is a pair of legs (11) of a tuning fork (1), as shown in the figure.
They are arranged below (IIA) without contacting each other. a drive coil (14) shown in cross section;
(14A) are connected in series in the same figure, and for example, if the current passed through the drive coil (14) produces a magnetic flux as shown by the solid line arrow in the leg (11) in the figure. , in the drive coil (14A), the leg (IIA
) The polarity of the drive coil (14A) shall be determined so as to generate a magnetic flux as shown by the solid line arrow.

図示せずも駆動コイル(14) 、  (14A )は
音叉(1)とは無接触に、基台(2)または外筺(5)
(第1図参照)に固定される。
Although not shown, the drive coils (14) and (14A) are connected to the base (2) or the outer casing (5) without contacting the tuning fork (1).
(See Figure 1).

以上説明したような第3図の構造においては、駆動コイ
ル(14) 、  (14^)に電源(16)より交流
電流を通ずるとき、その交流の成る半サイクルで、実線
矢印のごとき磁束を生じたとすると、脚(11) 、 
 (IIA )は脚(IIA )がN極、脚(11)が
S極となり互いに引きあう磁気力をうけ、このため脚(
11) 、  (IIA)はその間隔が狭くなるように
運動させられる。このときの磁極を、■、■であられし
である。交流電流が逆転し、磁束が点線矢印で示すよう
に生ずると、脚(11) 、  (IIA)に生ずる磁
極も反転し、・:8ンで示したN極がflat(11)
に、く幹で示したS極が脚(11,A)に生じる。しか
しながら、磁気力は、やはり異極同志の引力である。こ
のため、交流の1サイクルの間に、音叉(1)は2度内
側へ運動する。したがって音叉(11の振動数は、駆動
交流の周波数の2倍となる。
In the structure shown in Fig. 3 as explained above, when an alternating current is passed from the power source (16) to the drive coils (14), (14^), a magnetic flux as shown by the solid line arrow is generated in a half cycle of the alternating current. Assuming that the leg (11),
(IIA) has the N pole on the leg (IIA) and the S pole on the leg (11), which are subject to magnetic forces that attract each other.
11) , (IIA) are moved so that their spacing becomes narrower. The magnetic poles at this time are shown as ■ and ■. When the alternating current is reversed and magnetic flux is generated as shown by the dotted arrow, the magnetic poles generated in the legs (11) and (IIA) are also reversed, and the N pole indicated by .:8 becomes flat (11).
In this case, the south pole, indicated by the stem, occurs at the leg (11, A). However, magnetic force is still the attraction of opposite polarities. Therefore, during one cycle of alternating current, the tuning fork (1) moves inward twice. Therefore, the frequency of the tuning fork (11) is twice the frequency of the driving alternating current.

以上の第1図及び第3図の説明において、Miのため音
叉(1)は強磁性体でできているものとじて来たが、音
叉(11は非磁性体で、棒状強磁性体が装着されている
ような構造のものでも、実用上はさしつかえない。
In the explanation of Figs. 1 and 3 above, the tuning fork (1) has been assumed to be made of ferromagnetic material because of Mi, but the tuning fork (11) is made of non-magnetic material, and a rod-shaped ferromagnetic material is attached. Even if the structure is as shown, there is no problem in practical use.

第3図の実施例では、こうして音叉(1)の駆動原理は
、第1図のものと異っているが、角振動検出系は、第1
図の実施例と全く同一であり、デモジュレータ(21)
の入力信号は角振動検出器(17)で検出されており、
その基準電圧は、音叉(1)の脚部の振動検出器(18
A)より得ている。これにより、第1図で説明したとお
り、第5図の従来の例のもつ欠点、すなわちデモジュレ
ータ(21)の出力の位相同期不良に起因する出力の変
動や、精度低下を排除することができ、動作の安定した
振動ジャイロとして使用することができる。
In the embodiment of FIG. 3, the driving principle of the tuning fork (1) is thus different from that of FIG. 1, but the angular vibration detection system is
Exactly the same as the embodiment shown, the demodulator (21)
The input signal of is detected by the angular vibration detector (17),
The reference voltage is determined by the vibration detector (18) on the leg of the tuning fork (1).
A). As explained in FIG. 1, this makes it possible to eliminate the drawbacks of the conventional example shown in FIG. , can be used as a vibration gyro with stable operation.

以上、第1及び第3図の実施例における、音叉(1)の
振動検出器(18)、(18A )は、振動の変位量を
検知する電歪素子、ストレインゲージ、光検出器などの
利用のみでなく、磁界とコイルとのような速度センサー
であってもさしつかえない。また、音叉(1)の振動駆
動方法は、本発明では主として電磁コイル式で説明した
が、電歪素子に電圧をかけるなど同一目的を果たしうる
他の手段であってもよいことは言う迄もない。
As described above, the vibration detectors (18) and (18A) of the tuning fork (1) in the embodiments shown in FIGS. In addition to the sensor, a speed sensor such as a magnetic field and a coil may also be used. Further, in the present invention, the vibration driving method of the tuning fork (1) is mainly explained using an electromagnetic coil type, but it goes without saying that other means that can achieve the same purpose, such as applying a voltage to an electrostrictive element, may be used. do not have.

第4図は同一出願人の特願昭58−45234号のジャ
イロ装置の音叉(1)の駆動系に自励発振系を適用した
装置に、本発明を応用した例の実施例である。
FIG. 4 shows an embodiment in which the present invention is applied to a device in which a self-excited oscillation system is applied to the drive system of a tuning fork (1) of a gyro device, which is disclosed in Japanese Patent Application No. 58-45234 filed by the same applicant.

同図において、平板状の基台(2)上に、その上面と略
々垂直となる如く、短冊状バイモルフから成る入力角速
度Ωを検出するための薄板状の検出用圧電素子(30)
を取付ける。尚、この際、必要に応じて、取付部(3O
A)を用いてもよい、この本発明の例では、音叉(1)
を、一対の大なる質量を有する振動質量部(11−1)
 、  (11−IA)と、これ等の夫々に連結した撓
み部(1−2) 、  (1−2^)と、両撓み部(1
−2) 、  (1−2A)の各遊端を連結する基部(
1−3)とより構成する。ここで基部(1−3)の上面
に、L字状取付部(1−4)の一方の脚(1−4a)が
略々垂直上方に伸びる如く固定し、他方の脚(1−4b
)が両撓み部(1−2) 、  (1−2A)と略々平
行に伸びる如くなすと共に、基部(1−3)の下面にカ
ウンターウェイト部(1−5)を取り付ける。
In the same figure, a thin plate-shaped detection piezoelectric element (30) for detecting an input angular velocity Ω, which is made of a strip-shaped bimorph, is placed on a flat plate-shaped base (2) so as to be substantially perpendicular to its upper surface.
Install. At this time, if necessary, attach the mounting part (3O
A) may be used, in this example of the invention a tuning fork (1)
, a vibrating mass part (11-1) having a pair of large masses
, (11-IA), flexure parts (1-2), (1-2^) connected to these respectively, and both flexure parts (1-IA).
-2), the base (1-2A) connecting each free end (
1-3). Here, one leg (1-4a) of the L-shaped attachment part (1-4) is fixed to the upper surface of the base (1-3) so as to extend approximately vertically upward, and the other leg (1-4b
) are made to extend substantially parallel to both the flexible parts (1-2) and (1-2A), and a counterweight part (1-5) is attached to the lower surface of the base part (1-3).

上述の如く構成した音叉(1)を、次の如く、薄板状の
振動検出用圧電素子(30)に固定する。即ち、音叉+
1)の両撓み部(1−2) 、  (1−2A)間の隙
間(田に、薄板状のバイモルフ型圧電素子(30)の幅
方向(B)が延在する如く、圧電素子(30)の上端に
、L字状取付部(1−4)の脚(1−4b)を固定する
。かくすれば、音叉(1)は、その振動面(音叉面)が
、第4図に示す如く、水平に配置された基台(2)の板
面と略々平行、即ち圧電素子(30)の長手方向(X 
−X)と直交する如く、圧電素子(30)に取付けられ
る。#I、この場合、両撓み部(1−2)。
The tuning fork (1) configured as described above is fixed to a thin plate-shaped vibration detection piezoelectric element (30) as follows. That is, tuning fork +
1), the piezoelectric element (30 ), fix the leg (1-4b) of the L-shaped mounting part (1-4).In this way, the tuning fork (1) will have its vibration surface (tuning fork surface) as shown in FIG. , approximately parallel to the plate surface of the horizontally arranged base (2), that is, the longitudinal direction (X
-X) is attached to the piezoelectric element (30). #I, in this case both flexures (1-2).

(1−2A)間の隙間(aは、圧電素子(30)が振動
し、音叉(1)の振動面が傾斜しても、圧電素子(30
)と両撓み部(1−2) 、  (1−2A)が接触し
ないような値に設定されていると共に、音叉(1)の振
動質量部(11−1) 、  (11−IA)及びカウ
ンターウェイト部(1−5)等が、基台(2)の上面に
接触しないように、圧電素子(30)の基台(2)上の
商さは設定されている。
(1-2A) The gap (a) between the piezoelectric elements (30) vibrates and even if the vibration surface of the tuning fork (1) is tilted,
) and both flexure parts (1-2), (1-2A) are set to a value such that they do not come into contact with each other, and the vibrating mass part (11-1), (11-IA) of the tuning fork (1) and the counter The quotient of the piezoelectric element (30) on the base (2) is set so that the weight portion (1-5) and the like do not come into contact with the upper surface of the base (2).

音叉(1)の振動検出器(18) 、  (18A )
の出力は、駆動増幅器(35)を介して、音叉(1)の
2個の撓み部(1−2) 、  (1−2A)に取付け
られた例えば圧電素子層の駆動素子(14) 、  (
4A)  (一方は図示せず)に人力され、音叉(1)
の振動質量部(11−1) 。
Tuning fork (1) vibration detector (18), (18A)
The output of is transmitted via a drive amplifier (35) to the drive elements (14), for example, piezoelectric layer, which are attached to the two flexures (1-2), (1-2A) of the tuning fork (1).
4A) (one is not shown) manually, and the tuning fork (1)
vibratory mass part (11-1).

(11−1^)の振動振幅を一定に保持する。The vibration amplitude of (11-1^) is held constant.

一方、上記振動検出器(1B) 、  (18A)の出
力は、デモジュレータ(21)の基準位相としても用い
られ、第1及び第3図の例の角振動検出器(17)に対
応するバイモルフ型の圧電素子(30)の出力。
On the other hand, the outputs of the vibration detectors (1B) and (18A) are also used as the reference phase of the demodulator (21), and the outputs of the vibration detectors (1B) and (18A) are also used as the reference phase of the demodulator (21), and are used as bimorphs corresponding to the angular vibration detector (17) in the examples of FIGS. The output of the piezoelectric element (30) of the mold.

と同期整流することにより角速度出力が電路(22)を
経て出力される。
By performing synchronous rectification with , an angular velocity output is output via the electric line (22).

〔発明の効果〕〔Effect of the invention〕

以上のべたごとく、本発明によれば、次のごときメリッ
トがある。
As described above, the present invention has the following advantages.

(11デモジュレータ(21)入力の角振動信号と、そ
の基準電圧が常に正しい力学的位相関係を保つため、出
力の安定した、高精度の振動ジャイロ装置を得ることが
できる。
(11) Since the angular vibration signal input to the demodulator (21) and its reference voltage always maintain a correct mechanical phase relationship, a highly accurate vibrating gyro device with stable output can be obtained.

(2)  音叉(1)の駆動電源(16)をデモジュレ
ータ(21)の基準電源として使用しないため、音叉(
1)の駆動方式鵜任意のものでよい。すなわち自助式で
も他励式でも全く同様に用いることができ、高精度化に
卓効がある。
(2) Since the driving power supply (16) of the tuning fork (1) is not used as the reference power supply of the demodulator (21), the tuning fork (
1) Any drive method may be used. In other words, it can be used in the same way whether it is a self-help type or a separately excited type, and is extremely effective in increasing precision.

(3)駆動電源(16)の周波数の2倍の周波数で音叉
(1)が振動するシステムにおいては、従来手法では必
要となる2倍周波発生装置が不要となる。
(3) In a system in which the tuning fork (1) vibrates at twice the frequency of the drive power source (16), the double frequency generator required in the conventional method is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のジャイロ装置の一例の一部を断面とす
る路線図、第2図A及びBは第1図の例の振動原理の説
明に供する路線図、第3図は本発明の他の実施例の主要
部の路線図、第4図は本発明の更に他の実施例の主要部
の斜視図、第5図は従来のジャイロ装置の一例の一部を
断面とする路線図である。 図に於て、(1)は音叉、(11) 、  (IIA)
はその脚、(11−1) 、  (11−1^)はその
振動質量部、(1−2) 、  (1−2A)はその撓
み部、(2)は基台、(3)は撓々軸、(5)は外筺、
(14)は駆動コイル、(16)は電源、(17)は角
振動検出器、(18) 、  (1B^)は振動検出器
、(21)はデモジュレータ、(30)は圧電素子、(
Z−Z”)は入力軸、(Ω)は入力角速度を夫々示す。 手Uご看1i J、E−1二   (方式)昭和60年
 3月28日 特1:゛1°庁長官  志 賀   学   殿昭和5
9年 特 許 願 第224755号3、補市をする者 事件との関係   特許出願人 住 所 東京都大田区南蒲田2丁目16番46号名゛称
(338)株式会社 東 京 計 器代表取締役 廣 
野 信 衛 4、代理人 7− ′(・μ5
FIG. 1 is a route diagram showing a partial cross section of an example of the gyro device of the present invention, FIGS. 2A and B are route diagrams for explaining the vibration principle of the example of FIG. 1, and FIG. FIG. 4 is a perspective view of the main parts of still another embodiment of the present invention, and FIG. 5 is a route diagram showing a part of an example of a conventional gyro device in cross section. be. In the figure, (1) is a tuning fork, (11), (IIA)
are its legs, (11-1) and (11-1^) are its vibrating mass parts, (1-2) and (1-2A) are its flexible parts, (2) is the base, and (3) is its flexible part. Each axis, (5) is the outer casing,
(14) is a drive coil, (16) is a power supply, (17) is an angular vibration detector, (18), (1B^) is a vibration detector, (21) is a demodulator, (30) is a piezoelectric element, (
Z-Z'') indicates the input axis, and (Ω) indicates the input angular velocity. Hand U Note 1i J, E-12 (Method) March 28, 1985 Special 1:゛1° Agency Director Shiga Gakuden Showa 5
9th year Patent Application No. 224755 3, Relationship with the Case of Person Who Performs Assistant City Patent Applicant Address 2-16-46 Minami Kamata, Ota-ku, Tokyo Name (338) Representative Director of Tokyo Keiki Co., Ltd. Hiroshi
Nobue 4, agent 7-'(・μ5

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1対の脚を有する振動する音叉状振動子と、
該振動子に連続振動を与えるための駆動装置と、上記振
動子の中心をとおり該振動子の脚と平行な入力軸のまわ
りの上記振動子の角振動を検出する装置と、該角振動を
検出する装置の出力を同期整流するデモジュレータとを
有するジャイロ装置において、上記振動子にその音叉振
動に対応する出力を生ずる振動検出装置をもうけ、その
出力を上記デモジュレータの基準となしたことを特徴と
するジャイロ装置。
a vibrating tuning-fork vibrator having at least one pair of legs;
a drive device for applying continuous vibration to the vibrator; a device for detecting angular vibration of the vibrator around an input axis passing through the center of the vibrator and parallel to the legs of the vibrator; In a gyro device having a demodulator that synchronously rectifies the output of the detection device, the vibrator is provided with a vibration detection device that generates an output corresponding to the vibration of the tuning fork, and the output is used as a reference for the demodulator. Features a gyro device.
JP59224755A 1984-10-25 1984-10-25 Gyroscope device Pending JPS61102514A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59224755A JPS61102514A (en) 1984-10-25 1984-10-25 Gyroscope device
US06/790,527 US4694696A (en) 1984-10-25 1985-10-23 Vibration-type gyro apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224755A JPS61102514A (en) 1984-10-25 1984-10-25 Gyroscope device

Publications (1)

Publication Number Publication Date
JPS61102514A true JPS61102514A (en) 1986-05-21

Family

ID=16818726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224755A Pending JPS61102514A (en) 1984-10-25 1984-10-25 Gyroscope device

Country Status (1)

Country Link
JP (1) JPS61102514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338110A (en) * 1986-08-02 1988-02-18 Tokyo Keiki Co Ltd Gyro device
JPH06249666A (en) * 1993-03-01 1994-09-09 Shimada Phys & Chem Ind Co Ltd Vibrating gyro
WO1994023272A1 (en) * 1993-03-30 1994-10-13 Kazuhiro Okada Multishaft angular velocity sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842681A (en) * 1973-07-19 1974-10-22 Sperry Rand Corp Angular rate sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842681A (en) * 1973-07-19 1974-10-22 Sperry Rand Corp Angular rate sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338110A (en) * 1986-08-02 1988-02-18 Tokyo Keiki Co Ltd Gyro device
JPH06249666A (en) * 1993-03-01 1994-09-09 Shimada Phys & Chem Ind Co Ltd Vibrating gyro
WO1994023272A1 (en) * 1993-03-30 1994-10-13 Kazuhiro Okada Multishaft angular velocity sensor

Similar Documents

Publication Publication Date Title
US5594169A (en) Optically sensed wire gyroscope apparatus and system, and methods for manufacture and cursor control
GB2208181A (en) Double-loop coriolis type mass flowmeter
US6164140A (en) Solid state transducer for Coriolis flowmeter
JPS61102514A (en) Gyroscope device
JPS61164109A (en) Vibration type angular velocity meter
RU181082U1 (en) GYROSCOPE-ACCELROMETER WITH ELECTROSTATIC ROTOR SUSPENSION
JPS61102512A (en) Gyroscope device
JPS61102513A (en) Gyroscope device
JPH11351878A (en) Vibration type angular velocity sensor
JPS61283827A (en) Mass flowmeter
RU2222780C1 (en) Sensitive element of micromechanical gyroscope
US3538774A (en) Vibrating string reference apparatus
JPH0257247B2 (en)
JPH05142090A (en) Vibration detector
JP2004340792A (en) Angular velocity sensor and angular velocity detection apparatus
JP2869514B2 (en) 1-axis angular velocity / acceleration sensor
JP2801842B2 (en) Coriolis flow meter
JPS6459006A (en) Vibration gyroscope
JPH1151733A (en) Vibration type measuring device
JPH04203927A (en) Angular velocity sensor
JP2000329560A (en) Angular velocity sensor and its detection circuit
JPH11311519A (en) Rotating gyro
JP2951460B2 (en) Coriolis mass flowmeter
JPH07134053A (en) Coriolis mass flowmeter
JPH05157605A (en) Coriolis mass flowmeter