JPS61102506A - Minute dimension measuring instrument - Google Patents

Minute dimension measuring instrument

Info

Publication number
JPS61102506A
JPS61102506A JP22468584A JP22468584A JPS61102506A JP S61102506 A JPS61102506 A JP S61102506A JP 22468584 A JP22468584 A JP 22468584A JP 22468584 A JP22468584 A JP 22468584A JP S61102506 A JPS61102506 A JP S61102506A
Authority
JP
Japan
Prior art keywords
signal
differential
light distribution
light
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22468584A
Other languages
Japanese (ja)
Inventor
Koji Yoshimura
吉村 剛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22468584A priority Critical patent/JPS61102506A/en
Publication of JPS61102506A publication Critical patent/JPS61102506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure accurately the minute dimension of the gap width of a magnetic head tip, etc. by using the differential analog signal differentiating a light distribution signal by its distance. CONSTITUTION:The light of the enlarged image of the surface gap of the object to be measured is converted to a light distribution signal 32 by a photoelectric transducing unit 31 via minute slits and the light distribution signal 34 of the necessary frequency component is taken out with removing the noise contained in the signal 32 by a LPF 35 through an amplifier 33. A differential analog signal 37 is outputted to A/D convertor 39 from a differentiating circuit 36 then. The linear gage 30 for length measurement outputs to the convertor 39 the measured unit movement distance (d) as a conversion starting signal 41. The convertor 39 converts the signal 37 into a differential digital signal 38 and a conversion completion signal 42 to the signal processing unit 40 calculating the gap width. The unit 40 reads the signal 38 upon receipt of the signal 42 and memorize into the memory device inside the device 40. Due to the sampling being performed with using the gage 30, the differential analog signal 37 is that the light distribution is differentiated by distance and the minute dimension is calculated by the device 40.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はICマスクパターンの線幅の測定あるいは磁
気ヘッドチップのギャップ幅の測定などを行なう微小寸
法測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a minute dimension measuring device for measuring the line width of an IC mask pattern or the gap width of a magnetic head chip.

(従来の技術〕 従来、コンピュータに使われる磁気ヘッドチップのギャ
ップなど微小寸法の測定装置は、素材部とギャップ部の
光の反射率の差を利用し、光学顕微鏡を使って測定して
いた。その測定方法は、被測定物の拡大した像をつくり
、微小スリットと微小スリットから入射する光を光量に
応じて電気信号量に変換する光電変換素子とから成る光
電変換ユニットを、微小スリットの走査面が拡大実像面
上にあって微小スリットの長手方向が被測定物の測定対
象(例えば、ギャップと丁ればギャップの長手方向)と
平行を保ちつつギャップの長手方向に垂直な方向に走査
するように駆動し、拡大実像面上での単位長毎の光量分
布な光電変換ユニットの駆動と同期して動く測長器の出
力信号により、信号処理装置に取り込み、取り込んだ単
位長毎の光量分布データを基K、寸法測定の演算を行な
うものであった。
(Prior Art) Conventionally, devices for measuring minute dimensions such as gaps in magnetic head chips used in computers have used optical microscopes to measure the difference in light reflectance between the material and the gap. The measurement method creates an enlarged image of the object to be measured, and scans the microslit using a photoelectric conversion unit consisting of a microslit and a photoelectric conversion element that converts the light incident from the microslit into an electrical signal amount according to the amount of light. The surface is on the enlarged real image plane, and the longitudinal direction of the minute slit scans in a direction perpendicular to the longitudinal direction of the gap while keeping it parallel to the object to be measured (for example, the longitudinal direction of the gap if it is aligned with the gap). The light intensity distribution per unit length on the enlarged real image plane is captured by the output signal of the length measuring device that moves in synchronization with the drive of the photoelectric conversion unit. Based on the data, calculations were made to measure dimensions.

しかしながら、この微小寸法測定装置においては、光学
的顕微鏡、即ち可視光嶽を利用して可視光線波長よりも
一桁小の測定精度で測定を行なうため、異なりた反射率
を有する物質の境界面の検出は、光の回折、光がレンズ
を通過する時の歪曲等の影響で光量が除々に変化する、
いわゆる光量遷移層内で行なう必要があった。
However, this microdimensional measuring device uses an optical microscope, that is, a visible light beam, to perform measurements with a measurement accuracy one order of magnitude smaller than the wavelength of visible light. Detection involves gradual changes in the amount of light due to the effects of light diffraction, distortion when light passes through a lens, etc.
It was necessary to perform this within a so-called light quantity transition layer.

これに応える従来の方法は、例えば第4図(ωに示すよ
うに異反射率物質境界巌の像4を大きく、高反射率物質
の表面像である高輝度領域5と、低反射率物質の表面像
である低輝度領域6と、これらを結ぶ光量が除々に変化
する遷移層7の3つに分け、、この遷移層7をあるスラ
イスレベル8で分割し、その交点を境界線9と仮定し、
境界線間の距離10を算出することにより求める方法で
あった。
The conventional method for dealing with this problem is to enlarge the image 4 of the boundary between materials with different reflectance as shown in FIG. It is divided into three parts: a low brightness area 6 which is a surface image, and a transition layer 7 where the amount of light connecting these areas gradually changes.This transition layer 7 is divided at a certain slice level 8, and its intersection is assumed to be a boundary line 9. death,
The method was to calculate the distance 10 between the boundary lines.

このスライスレベルは簡単なものでは、第4図(b)に
示すよ5K、予じめ設定固定化したスライスレベル11
を用いて寸法算出するものから、第4図(C)に示すよ
5に測定毎に高輝度領域平均値12と低1   輝度領
域平均値15を算出し、その差異′1に14を予じめ設
定した割合15で分割して寸法を求めるものがあった。
A simple slice level is 5K as shown in Fig. 4(b), and a preset fixed slice level of 11.
From the dimensions calculated using There was a method to calculate the dimensions by dividing it at a set ratio of 15.

(発明が解決しようとする問題点) しかしながら、従来技術であるスライスレベルを、使っ
た方法では以下のような問題点がある。
(Problems to be Solved by the Invention) However, the method using the slice level, which is a conventional technique, has the following problems.

即ち、設定固定化したスライスレベルを用いる方法では ■ 光電変換素子のドリフトによる出力値の変動。In other words, in the method using slice levels with fixed settings, ■ Fluctuations in output value due to drift of photoelectric conversion elements.

■ 光源のゆるやかな変動による光電変換素子の出力値
変動等により、スライス場所が変化し、その結果、境界
線検出に誤差が生ずる。
(2) The slice location changes due to changes in the output value of the photoelectric conversion element due to gradual changes in the light source, and as a result, errors occur in boundary line detection.

又、測定毎に高輝度領域と低輝度領域の平均値を求める
ことにより上記問題点を回避したとしても、 ■ 高輝度領域、あるいは低輝度領域中に存在するキズ
、ゴミが平均値算出に影響を与える。
Also, even if the above problems are avoided by calculating the average value of the high-brightness area and low-brightness area for each measurement, ■ Scratches and dust existing in the high-brightness area or low-brightness area will affect the calculation of the average value. give.

■ 高輝度領域、あるいは低輝度領域に平均値を求める
に充分な大きさがないほどギヤツブ巾が小となると、そ
れぞれの最大値、!小値をして高輝度領域での光量値、
低輝度領域での光量値としなければならずノイズ等の影
響を受は易い。
■ If the gear width becomes so small that the high-brightness area or low-brightness area is not large enough to calculate the average value, the maximum value of each, ! The light intensity value in the high brightness area with a small value,
The light intensity value must be set in a low luminance area and is easily affected by noise.

■ 平均値の算出においては、境界層と高輝度領域、低
輝度領域の区別をしてそわそれの領域での平均Il[を
求めなければならないが、その区別は明確に決められず
曖昧さが残る。
■ In calculating the average value, it is necessary to distinguish between the boundary layer, high brightness area, and low brightness area and calculate the average Il in the fidgety area, but the distinction cannot be clearly determined and there is ambiguity. remain.

等により、スライス場所に変化が生じて、測定精度に悪
影響を与えるという技術的問題があった。
There was a technical problem in that the slice location changed due to the above reasons, which adversely affected measurement accuracy.

(問題点を解決するための手段〕 前記問題点を解決するために、この発明は第6図に示す
ように光量分布信号1を距離微分した微分アナログ信号
2を使用して微、小寸法3の算出を行なうものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention uses a differential analog signal 2 obtained by distance-differentiating the light amount distribution signal 1 to calculate minute and small dimensions 3, as shown in FIG. The purpose of this is to calculate the following.

(作用) このようにして得た微分波形からの境界線検出は、微分
波形の波高値を問題とせずに、それが現われる位置だけ
に着目して検出することができる。
(Operation) Boundary lines can be detected from the differential waveform obtained in this manner by focusing only on the position where the differential waveform appears, without considering the peak value of the differential waveform.

従って前記問題点である ■ 光電変換素子のドリフト ■ 光源のゆるやかな変動 ■ 高輝度領域、あるいは低輝度領域の平均値を求める
時の境界層との区別の曖昧さ ■ 高輝度領域、あるいは低輝度領域の平均値算出に必
要な領域不足 iにより生ずる誤差をなくすることができる。更に1、
境界層外側のゴミ9キズによる光量分布の変動は微分す
ることにより自動的に相殺されるため■ 高輝度領域或
は低輝度領域に存在するキズ。
Therefore, the above-mentioned problems: ■ Drift of the photoelectric conversion element ■ Gradual fluctuation of the light source ■ Ambiguity in distinguishing between the boundary layer and the boundary layer when calculating the average value of a high brightness region or a low brightness region ■ High brightness region or low brightness It is possible to eliminate errors caused by insufficient area i required for calculating the area average value. 1 more,
Dust outside the boundary layer 9 Fluctuations in the light intensity distribution due to scratches are automatically canceled out by differentiation. ■ Scratches that exist in high or low brightness areas.

ゴミの影響 が解消でき、精度を向上させることができるのである。Impact of trash can be resolved and accuracy can be improved.

(実施例) 以下一実施例に基づき本発明を説明する。(Example) The present invention will be explained below based on one example.

第2図は光学系の概略図を示したものである。FIG. 2 shows a schematic diagram of the optical system.

顕微鏡ステージ16上の被測定物170表面のギャップ
18は、対物レンズ19によって実像20になる。
The gap 18 on the surface of the object to be measured 170 on the microscope stage 16 is turned into a real image 20 by the objective lens 19 .

実像20は、さらに測定用結像レンズ21によって、そ
の総合倍率が、対物レンズ19の倍率×測定用結像レン
ズ21の倍率で表わされる拡大実像22となる。拡大実
像22は測定用結像レンズ21より上方位置26にでき
る。
The real image 20 is further turned into an enlarged real image 22 by the measurement imaging lens 21, the total magnification of which is expressed by the magnification of the objective lens 19×the magnification of the measurement imaging lens 21. The enlarged real image 22 is formed at a position 26 above the measurement imaging lens 21.

このようにしてできる拡大実像面22上には、微小スリ
ット24を有するスリット円板25を設ける。
A slit disk 25 having minute slits 24 is provided on the enlarged real image plane 22 thus created.

そして、スリット円板25上のスリット24の断面は、
拡大実像面22内を走査するよ5にする。またスリット
24の長さ方向26は、拡大実像面22上のギャップ長
手方向27と平行を保つように、スリット円板25は微
小スリット24から入射する光量を電気信号に変換する
光量変換素子28に固定されている。スリット円板25
と光電変換素子28から成る光1変換ユニットは、拡大
実像面22上のギャップ長手方向27に垂直かつ光軸り
を通る29方向に往復動できろように設定されている。
The cross section of the slit 24 on the slit disk 25 is
5 to scan the inside of the enlarged real image plane 22. In addition, the slit disk 25 is connected to a light amount conversion element 28 that converts the amount of light incident from the minute slit 24 into an electric signal so that the length direction 26 of the slit 24 is kept parallel to the gap longitudinal direction 27 on the enlarged real image plane 22. Fixed. Slit disk 25
The light 1 conversion unit consisting of the photoelectric conversion element 28 is set to be able to reciprocate in 29 directions perpendicular to the longitudinal direction 27 of the gap on the enlarged real image plane 22 and along the optical axis.

また、拡大実像面22上の単位長(例えば11Ltn)
毎の光量のサンプリングのタイミングを割り出す測長用
リニヤゲージ30が光電変換ユニットと同期して動くよ
う設定されている。
Also, the unit length on the enlarged real image plane 22 (for example, 11Ltn)
A length measuring linear gauge 30 that determines the sampling timing of each light amount is set to move in synchronization with the photoelectric conversion unit.

第1図は、本発明を実施するための電気系の概略図を示
したものである。
FIG. 1 shows a schematic diagram of an electrical system for implementing the present invention.

光電変換ユニット31には、そこから出てくる光量分布
信号32を増幅する増幅器33が接続されている。増幅
器33には信号に含まれるノイズを除去して必要とする
周波数成分の光量分布信号34だけを出力するローパス
フィルター35が、ロニバ誠フィルター35には時間微
分を行なう微分回路56が微分回路36には微分アナロ
グ信号37を微分ディジタル信号S8に変換するアナロ
グディジタル変換器39が、アナログディジタル変換器
39には、微分ディジタル信号38を読み取り、ギャッ
プ幅の算出を行なう信号処理装置40が接続されている
An amplifier 33 is connected to the photoelectric conversion unit 31 to amplify the light intensity distribution signal 32 output therefrom. The amplifier 33 includes a low-pass filter 35 that removes noise contained in the signal and outputs only the light amount distribution signal 34 of the required frequency component, and the Roniba Makoto filter 35 includes a differentiating circuit 56 that performs time differentiation. An analog-to-digital converter 39 converts the differential analog signal 37 into a differential digital signal S8, and a signal processing device 40 is connected to the analog-to-digital converter 39 to read the differential digital signal 38 and calculate the gap width. .

また測長用IJニヤゲージ30は測定した単位移動距離
dを変換開始信号41としてアナログディジタル変換器
39に出力するようになっている。アナログディジタル
変換器59は、変換開始信号41を受けとると、先に入
力している微分アナログ信号37を微分ディジタル信号
38に変換し信号処理装置40に微分ディジタル信号5
8と変換完了信号42を受は渡す。信号処理装置40は
この変換完了信号42を受ける毎に、微分ディジタル信
号58を読み取り信号処理装置40に内蔵された記憶装
置に記憶する。
Further, the length measuring IJ near gauge 30 outputs the measured unit movement distance d to the analog-digital converter 39 as a conversion start signal 41. When the analog-to-digital converter 59 receives the conversion start signal 41, it converts the previously input differential analog signal 37 into a differential digital signal 38, and sends the differential digital signal 5 to the signal processing device 40.
8 and a conversion completion signal 42. Every time the signal processing device 40 receives this conversion completion signal 42, it reads the differential digital signal 58 and stores it in a storage device built into the signal processing device 40.

第3図はこのようにして得られた光量分布信号1と微分
アナログ信号2の相関関係を表わしたものである。ここ
で微分回路は時間微分を行Tx、 5ものであるが、測
長用り′ニヤゲージ30を使ったサンプリングを行なっ
ているため、微分アナログ信号2は光量分布を距離微分
したものとなっている。
FIG. 3 shows the correlation between the light intensity distribution signal 1 and the differential analog signal 2 obtained in this manner. Here, the differentiating circuit performs time differentiation in rows Tx, 5, but since sampling is performed using a near gauge 30 for length measurement, the differential analog signal 2 is obtained by differentiating the light intensity distribution over distance. .

同図に示すように例えば低反射率物質の両側が高反射率
物質であるギャップにおける微分アナログ信号の形状は
光量分布が高輝度領域から低輝度領域に遷移する領域で
は谷形状人となり逆に低輝度領域から高輝度領域に遷移
する領域では山形状Bとなる。このようなギャップにお
ける寸法算出は谷の深さ或は山の高さは問題外であり、
谷底の現われる場所或は山頂の現われる場所にだけ着目
することによって行なうことができる。
As shown in the figure, for example, the shape of the differential analog signal in a gap where both sides of a low reflectance material are high reflectance materials is a valley shape in the region where the light intensity distribution transitions from a high brightness region to a low brightness region, and vice versa. A region transitioning from a brightness region to a high brightness region has a mountain shape B. When calculating dimensions in such a gap, the depth of the valley or the height of the peak is out of the question;
This can be done by focusing only on locations where valley bottoms or mountain peaks appear.

例えば、それぞれの場所は谷或は山の二次曲線近似を行
なえば次のようにして求めることができる。
For example, each location can be found as follows by approximating a valley or mountain to a quadratic curve.

部ち微分アナログ信号の距離分布なP(X)とすれば二
次曲線近似した微分アナログ信号はP(1) = ax
” +bx+c となる。従って谷底或は山頂はその傾きが零となる場所
であるから、 即ち、 2ax−)−b=0 従って谷底或は山頂の現われる場所は次式により求めら
れる。
If the distance distribution of a partially differentiated analog signal is P(X), then the differential analog signal approximated by a quadratic curve is P(1) = ax
” +bx+c. Therefore, since the bottom of the valley or the top of the mountain is a place where the slope is zero, that is, 2ax-)-b=0 Therefore, the place where the bottom of the valley or the top of the mountain appears can be found by the following equation.

(発明の効果) 以上説明した本発明は次の効果を有して℃・る。(Effect of the invention) The present invention described above has the following effects.

1)ゴミ、キズ、!気系検出器のドリフト等の影響を受
けないので測定精度が向上、安定する。
1) Trash, scratches! Measurement accuracy is improved and stabilized because it is not affected by the drift of the gas system detector.

2)微分アナログ信号の二次近似計算i31主であるた
め寸法算出時間が短くなる。
2) Since the second-order approximation calculation i31 of the differential analog signal is mainly performed, the dimension calculation time is shortened.

6)微分アナログ信号の波高値は寸法算出に使用してい
ないので、測定精度は顕微鏡合焦精度に大きく依存し・
ない。
6) Since the peak value of the differential analog signal is not used for dimension calculation, the measurement accuracy largely depends on the microscope focusing accuracy.
do not have.

4)微分アナログ信号の波高値を使用すれば、顕微鏡の
合焦精度の検出に応用が可能である。
4) If the peak value of the differential analog signal is used, it can be applied to detecting the focusing accuracy of a microscope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気系ブロツン図、第2図は本発明に
おける光学系概略図、第5図は微小寸法測定圧使用する
微分アナログ信号の概略図、第4図は従来の微小寸法測
定の算出性説明図である。
Fig. 1 is a schematic diagram of the electrical system of the present invention, Fig. 2 is a schematic diagram of the optical system of the present invention, Fig. 5 is a schematic diagram of a differential analog signal used for micro dimension measurement pressure, and Fig. 4 is a conventional micro dimension measurement method. FIG.

Claims (1)

【特許請求の範囲】[Claims] 被測定物に形成された微小なギャップを光学顕微鏡によ
り拡大し、その拡大像面上をスリットと該スリットから
の入射光を光電変換する光電変換素子とからなる光電変
換ユニットを走査させて得られる光量分布からギャップ
の寸法を測定する微小寸法測定装置において、光電変換
ユニットを走査させて得られる光量分布の時間微分作成
手段と光電変換ユニットの走査と同期して走行する測定
手段使って先の時間微分を距離微分に変換する手段によ
り、距離微分アナログ信号を使ってギャップの寸法を求
める手段を有することを特徴とする微小寸法測定装置。
It is obtained by magnifying a minute gap formed in the object to be measured using an optical microscope, and scanning the magnified image plane with a photoelectric conversion unit consisting of a slit and a photoelectric conversion element that photoelectrically converts the incident light from the slit. In a micro-dimensional measuring device that measures the gap dimension from the light intensity distribution, a means for creating a time differential of the light intensity distribution obtained by scanning a photoelectric conversion unit and a measuring means that runs in synchronization with the scanning of the photoelectric conversion unit are used to measure the previous time. 1. A minute dimension measuring device comprising means for determining the dimension of a gap using a distance differential analog signal by means of converting a differential into a distance differential.
JP22468584A 1984-10-25 1984-10-25 Minute dimension measuring instrument Pending JPS61102506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22468584A JPS61102506A (en) 1984-10-25 1984-10-25 Minute dimension measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22468584A JPS61102506A (en) 1984-10-25 1984-10-25 Minute dimension measuring instrument

Publications (1)

Publication Number Publication Date
JPS61102506A true JPS61102506A (en) 1986-05-21

Family

ID=16817618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22468584A Pending JPS61102506A (en) 1984-10-25 1984-10-25 Minute dimension measuring instrument

Country Status (1)

Country Link
JP (1) JPS61102506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427969A2 (en) * 1989-11-14 1991-05-22 Leica AG Pulse time of flight measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427969A2 (en) * 1989-11-14 1991-05-22 Leica AG Pulse time of flight measurement device

Similar Documents

Publication Publication Date Title
Hamilton et al. Three-dimensional surface measurement using the confocal scanning microscope
US4743771A (en) Z-axis height measurement system
US5546189A (en) Triangulation-based 3D imaging and processing method and system
US3941484A (en) Non-contact dimensional measurement technique
US20020125449A1 (en) Surface defect tester
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
JPH0285905A (en) Positioning and length-measuring method of body and device using said method
US4920273A (en) Z-axis measurement system
JPS6324115A (en) Method and device for measuring flotating quantity of magnetic head
US4659936A (en) Line width measuring device and method
JPH11132748A (en) Multi-focal point concurrent detecting device, stereoscopic shape detecting device, external appearance inspecting device, and its method
US4194127A (en) Process and device for checking substrate wafers
GB2147097A (en) Micro-dimensional measurement apparatus
JPS61102506A (en) Minute dimension measuring instrument
JP5061049B2 (en) Fine shape measuring device
US4601581A (en) Method and apparatus of determining the true edge length of a body
JPS61202107A (en) Minute dimension measurement
EP0159800B1 (en) Micro-dimensional measurement apparatus
JPS63160036A (en) Defect display device
JP2810121B2 (en) Optical disc stamper inspection device
JPS63159737A (en) Defect observing device
CN117190870A (en) Interferometry device and method combining monochromatic light and white light
JPH0373803B2 (en)
JPS61225604A (en) Dimension measurement apparatus
JPS62237307A (en) Dimension measuring instrument