JPS61101680A - Francis type runner - Google Patents

Francis type runner

Info

Publication number
JPS61101680A
JPS61101680A JP59221478A JP22147884A JPS61101680A JP S61101680 A JPS61101680 A JP S61101680A JP 59221478 A JP59221478 A JP 59221478A JP 22147884 A JP22147884 A JP 22147884A JP S61101680 A JPS61101680 A JP S61101680A
Authority
JP
Japan
Prior art keywords
runner
crown
band
angle
outlet angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59221478A
Other languages
Japanese (ja)
Other versions
JPH0438916B2 (en
Inventor
Yutaka Takigawa
滝川 裕
Tomotake Nagafuji
長藤 友建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59221478A priority Critical patent/JPS61101680A/en
Publication of JPS61101680A publication Critical patent/JPS61101680A/en
Publication of JPH0438916B2 publication Critical patent/JPH0438916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/125Rotors for radial flow at high-pressure side and axial flow at low-pressure side, e.g. for Francis-type turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To improve the performance of the runner upon partial-load operation without deteriorating the performance upon overload operation by a method wherein the outlet angle of a runner vane is designed so that an angular difference between the outlet angle at the side of a runner crown and the same angle at the side of a runner band satisfies a specified condition. CONSTITUTION:A plurality of runner vanes 4 is pinches between the runner crown 2, secured to a main shaft 1, and the runner band 3, opposing to the runner crown. In this case, the angular difference DELTAbeta=betac-betab between the outlet angle betac at the crown 2 side and the outlet angle betab at the band 3 side among the outlet angle beta between the outlet end of the runner vane 4 and a tangential line in the direction of rotating circumference is designed so as to satisfy a following formula; 0.08Ns+10<=DELTAbeta<=0.13Ns+12 (Ns=N.P<1/2>/H<5/4>) here, N is the rotating speed of a main machine, H is a reference head and P is the maximum output under the reference head. According to this method, betab is made slightly small to increase the relative flow speed at the band 3 side while betac is made slightly large to reduce the relative flow speed at the crown 2 side.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、フランシス水車のランナに係り、ランナ出口
角度を所定値に設定して部分負荷運転時にも高性能を発
揮することができるようにしたフランシス形ランナに関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a runner for a Francis turbine, and the runner outlet angle is set to a predetermined value so that high performance can be achieved even during partial load operation. Concerning Francis-shaped runners.

〔発明の技術的背慎とその問題点〕[Technical impropriety of inventions and their problems]

一般的なフランシス形ランナは、第1図および第2図に
示されるように、主@1に固着されたランナクラウン2
と、これにほぼ対向したランナバンド3との間に複数枚
のランナ羽根4が挾持されている。これらのランナ羽根
4は、横断面が翼形をなし、上記主軸1を中心とする円
周上に等間隔かつ放射状に配置されている。水車運転時
における流水は、隣接するランナ羽根4,4の間に形成
される流路を矢印へで示Jように中心で向って流入し流
出する。
A typical Francis-type runner has a runner crown 2 fixed to the main @1, as shown in Figures 1 and 2.
A plurality of runner blades 4 are held between the runner band 3 and the runner band 3 substantially opposite to the runner blade 4. These runner blades 4 have an airfoil-shaped cross section and are arranged radially at equal intervals on a circumference centered on the main shaft 1. During operation of the water turbine, flowing water flows in and out of the flow path formed between adjacent runner blades 4, 4 toward the center as shown by the arrow J.

この場合、上記ランナ羽根4の内端出口部が回転円周方
向接線となすいわゆる出口角度βは、水車の設計点特性
を決定する重要な因子であって、従来は、設81点にお
いて最も適切な流れと4【るように、設定されCいた。
In this case, the so-called exit angle β that the inner end exit portion of the runner blade 4 forms with the tangent to the rotational circumferential direction is an important factor that determines the design point characteristics of the water turbine. It was set up so that it would have a similar flow.

すなわら上記出口角度βのうち、クラウン側に最も近い
クラウン側出口角度をβC、バンド側に最も近いバンド
側出口角度をβbとしたどき、両出口角度βbとβCと
の差Δβ(Δβ=βC−βb)が第3図斜線領域A1に
入るように出口角度βの圃が定められていた。
That is, among the above exit angles β, if the crown side exit angle closest to the crown side is βC, and the band side exit angle closest to the band side is βb, then the difference Δβ between both exit angles βb and βC (Δβ= The field with the exit angle β was determined so that βC−βb) fell within the shaded area A1 in FIG.

なお、この第3図は縦軸に角度差Δβをとり、横軸に水
車比速度Nsをとったものである。
In addition, in this FIG. 3, the angular difference Δβ is plotted on the vertical axis, and the water turbine specific speed Ns is plotted on the horizontal axis.

ここで、N S = N −J l’シフト4 (m−
kw)であり、Nは主は回転数、ト1は基準落差、Pは
基準落差時の最大出力である。
Here, N S = N − J l'shift 4 (m−
(kw), where N is the rotational speed, T1 is the reference head, and P is the maximum output at the time of the reference head.

角度差Δβが上述の範囲内に収まるようにランナ羽根の
出口角度を定めると、設計点出力での水車性能は良好で
ある。しかしながら、設計点出力の60%以下の部分負
荷運転時には、ランナ下流の吸出し管に大きな旋回渦損
失が発生し、また旋回流によりローブ状の渦芯が発達し
これにより水圧脈動が増大して振動やll!音が発生す
るなど水車性能が著しく低下してしまうという欠点があ
った。
If the exit angle of the runner blade is determined so that the angle difference Δβ falls within the above-mentioned range, the water turbine performance at the design point output is good. However, during partial load operation below 60% of the design point output, a large swirling vortex loss occurs in the suction pipe downstream of the runner, and a lobe-shaped vortex core develops due to the swirling flow, which increases water pressure pulsation and causes vibration. Yall! The drawback was that the performance of the water turbine was significantly reduced, such as the generation of noise.

この欠点は近年AFC運転および小水力発電所等での部
分負荷運転の増大に伴い、看過できない問題となってき
ている。
This drawback has become a problem that cannot be overlooked in recent years as AFC operation and partial load operation in small hydroelectric power plants and the like have increased.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の点に鑑みて、部分負荷運転時の
性能をも向上させうるようにしたフランシス形ランナを
提供することにある。
In view of the above points, an object of the present invention is to provide a Francis-type runner that can improve performance even during partial load operation.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明はランナ羽根の出口
角度のうちの、クラウン側出口角度βCとバンド側出口
角度βbとの角度差Δβが次の関係、 0.08Ns+10≦Δβ≦0.13Ns+12(ここ
でN5=N−yP)H’  (m−kw)、Nは主機の
回転速度、Hは基準落差、Pは基準落差時の最大出力で
ある。)を満たすように、ランナ羽根の出口角度を定め
ることを特徴とし、バンド側出口角度βbを通常設計よ
りやや小さくすることによってバンド側の相対流速を増
大させるとともに、クラウン側出口角度βCを通常設計
よりやや大きくすることによってクラウン側の相対流速
を減少させるようにしている。
To achieve this objective, the present invention provides that the angular difference Δβ between the crown side exit angle βC and the band side exit angle βb among the exit angles of the runner blades has the following relationship: 0.08Ns+10≦Δβ≦0.13Ns+12 (Here, N5=N-yP)H' (m-kw), N is the rotation speed of the main engine, H is the reference head, and P is the maximum output at the reference head. ), and by making the band side exit angle βb slightly smaller than the normal design, the relative flow velocity on the band side is increased, and the crown side exit angle βC is the normal design. By making it slightly larger, the relative flow velocity on the crown side is reduced.

〔発明の実施例) 以下に本発明を更に詳細に説明する。[Embodiments of the invention] The present invention will be explained in more detail below.

従来のフランシス形ランナにおいて部分負荷運転時に上
述の旋回渦損失の増大等が発生する原因を探求してみる
と、次の事実が判明した。即ち、第2図に示されるよう
にランナ羽根4の出口流れの絶対速度Vと、回転による
周速度Uと相対速度Wとから形成される出口速度三角形
は、設計点出力にあっては直角三角形となる。このため
、羽根流下後の水の旋回速度成分CUは零(VCO39
0’ =O)となる。しかし部分負荷運転時には流量の
減少にJ、す、第4図実線で示されるように相対速度W
′が上記Wより減少し、絶対速度V′と周速度Uとのな
り角αがαく90°となりV1’cosαで表される旋
回速度成分Cu’ が発生して上記旋回渦損失の増大等
が生じ、水中性能が低下することが判明した。
When we investigated the cause of the above-mentioned increase in swirling vortex loss during partial load operation in conventional Francis type runners, we discovered the following facts. That is, as shown in FIG. 2, the exit velocity triangle formed from the absolute velocity V of the exit flow of the runner blade 4, the circumferential velocity U due to rotation, and the relative velocity W is a right triangle at the design point output. becomes. Therefore, the swirling speed component CU of the water after flowing down the blade is zero (VCO39
0'=O). However, during partial load operation, the flow rate decreases and the relative velocity W decreases as shown by the solid line in Figure 4.
' decreases from the above W, and the angle α between the absolute velocity V' and the circumferential velocity U increases by α to 90°, and a swirling velocity component Cu' expressed by V1'cosα is generated, resulting in an increase in the swirling vortex loss, etc. It was found that this resulted in a decrease in underwater performance.

そこで、本発明は、第4図点線で示すように部分負荷運
転時のランナ出口相対速度WをW′のように増大させて
、角度αを90℃に近すけ絶対速度V′の旋回速度成分
Cu′を小さいものとする。
Therefore, as shown by the dotted line in FIG. 4, the present invention increases the relative speed W at the runner exit during partial load operation to W' to bring the angle α closer to 90°C, thereby increasing the turning speed component of the absolute speed V'. Let Cu′ be small.

この相対速度Wの増大のためには、バンド側出口角度β
bを設計点特性から決まる値よりも小さくすることが以
下に述べる理由により効果的である。
In order to increase this relative speed W, the band side exit angle β
It is effective to make b smaller than the value determined from the design point characteristics for the reasons described below.

即ち、第5図に示されるように、過負荷運転時には、水
流は破線のようにしてクラウン2がらバンド3までほぼ
一様に分布して流れるが、しかし、部分負荷運転時には
水流は流量の減少と遠心力作用によって実線のようにバ
ンド側に集中した流れとなる。したが1て、このバンド
側の出口角度βbを小さくすることにより、相対速度W
を効果的に増大する。
That is, as shown in Fig. 5, during overload operation, the water flow is distributed almost uniformly from the crown 2 to the band 3 as shown by the broken line, but during partial load operation, the water flow decreases in flow rate. Due to the action of centrifugal force, the flow becomes concentrated on the band side as shown by the solid line. Therefore, by reducing the exit angle βb on the band side, the relative speed W
effectively increase.

すなわち、第6図は部分負荷時におけるバンド側出口部
の速度三角形を示し、実線は従来からの通常設計による
もの、破線は本発明によるものをそれぞれ表している。
That is, FIG. 6 shows the velocity triangle of the band side outlet section under partial load, with the solid line representing the conventional design and the broken line representing the invention.

本図から明らかなように、バンド測用[1角度βbをβ
b′の、」、うに小さくりれば、相対速度W1はW1′
まで増大して絶対速度■ はv ′となり、その旋回速
度成分CLJ 1はCu ′まで減少される。
As is clear from this figure, the band measurement [1 angle βb is β
If b' becomes smaller, the relative velocity W1 becomes W1'
The absolute velocity (2) increases to v', and its turning velocity component CLJ1 is reduced to Cu'.

ところが、バンド側出口角度βbのみを小さくすると、
逆に過負荷運転時の性能が低下してしまう。すなわち、
第7図は過負荷運転時にお【)るバンド側出口部の速度
三角形を示し、バンド側出口角度βbをβb′のように
小さり1゛れば、相対速度W2はW2′まで増大して絶
対速度v2はv ′となり、その旋回速度成分Cu2は
、CU  ’ まで増大される。
However, if only the band side exit angle βb is reduced,
On the other hand, performance during overload operation deteriorates. That is,
Fig. 7 shows the velocity triangle of the band side outlet during overload operation.If the band side outlet angle βb is reduced by 1゜ like βb', the relative speed W2 increases to W2'. The absolute velocity v2 becomes v', and its turning velocity component Cu2 is increased to CU'.

そこで、この過負荷運転時の性能低下をできるだけ抑え
るために、過負荷運転時には、上述のように水流は、ク
ラウン側からバンド側までほぼ一様に流れることに着目
してクラウン側出口角度βCを設計点特性から決まる値
よりも大きく定める。すなわら、第8図は過負荷時にお
けるクラウン側出口部の速度三角形を示し、実線は通常
設計によるもの、破線は本発明によるものをそれぞれ表
している。本図のように、クラウン側出口角度βCをβ
C′のように大きくすれば相対速度W3はW 3 ’ 
まで増大して絶対速度v3はv3′となりその旋回速度
成分CU3はCU3′まで減少される。
Therefore, in order to suppress the performance deterioration during overload operation as much as possible, the crown side outlet angle βC is determined by focusing on the fact that the water flow almost uniformly from the crown side to the band side during overload operation as described above. Set the value to be larger than the value determined from the design point characteristics. That is, FIG. 8 shows the velocity triangle of the crown side outlet section at the time of overload, where the solid line represents the conventional design and the broken line represents the one according to the present invention. As shown in this figure, the crown side exit angle βC is
If it is increased like C', the relative velocity W3 becomes W3'
The absolute speed v3 becomes v3', and its turning speed component CU3 is reduced to CU3'.

一方、第9図に示すように、部分負荷時のクラウン側出
口部におりる旋回速度成分CU4は、CU ′まで増大
させられることとなる。しかし上述のように、部分負荷
時には、クラウン側の流量が大幅に減少することから、
上記旋回速度成分の増大による性能劣化分は極めて小さ
い。
On the other hand, as shown in FIG. 9, the swinging speed component CU4 at the crown side exit portion under partial load is increased to CU'. However, as mentioned above, at partial load, the flow rate on the crown side decreases significantly;
The amount of performance deterioration due to the increase in the turning speed component is extremely small.

また、上述のようにクラウン側出口角度βCとバンド側
出口角度βbとを定めた結果、山角度の差Δβ(Δβ−
βC−βb)は、従来に比して大きくなる。そこで、こ
の角度差Δβがどの程度大きくなると、換言すれば、こ
の角度差Δβと水車比速度NSとがいかなる関係にあれ
ば、過負荷運転時の性能低下を抑えながら、部分運転時
の性能   □を改善できるかについて種々実験を試み
た。この結果、角度差Δβが第3図の実線より上方の破
線領域A2に存在すれば、過負荷運転時の性能低下を抑
えつつ、部分負荷運転時性能を改善するこ件が判明した
。これを具体的に数式で表わすと下式になる。
Furthermore, as a result of determining the crown side exit angle βC and the band side exit angle βb as described above, the difference in peak angle Δβ (Δβ−
βC−βb) is larger than that in the conventional case. Therefore, how large does this angular difference Δβ become? In other words, what kind of relationship exists between this angular difference Δβ and the water turbine specific speed NS? We tried various experiments to see if it could be improved. As a result, it has been found that if the angular difference Δβ exists in the broken line region A2 above the solid line in FIG. 3, the performance during partial load operation can be improved while suppressing the performance degradation during overload operation. This can be specifically expressed numerically as shown below.

0、 08Ns+10  ≦ Δ β ≦ 0. 13
Ns  −112このように定めたときの中止速度水車
の効果を第10図に示り一0第10図中、縦軸は最大効
率η0を基準とした相対効率η/ηOCあり、横軸は最
大効率点出力POを基準とした出力比P/Poである。
0, 08Ns+10 ≦ Δ β ≦ 0. 13
Ns -112 The effect of the stopped speed water turbine when determined in this way is shown in Figure 10. In Figure 10, the vertical axis is the relative efficiency η/ηOC based on the maximum efficiency η0, and the horizontal axis is the maximum efficiency. This is the output ratio P/Po based on the efficiency point output PO.

実線が、本発明によるランナの効率特性を示し、破線が
従来のランナ効率特性を示り゛。この実線と破線を比べ
ると、本発明のランナは、P/PO≦0.8の運転範囲
において従来のものとC,tは同等効率であり、P/P
o<0.8の部分負荷運転範囲では、従来ランプに比べ
、かなり性能が改り;−されていることが分る。
The solid line shows the efficiency characteristics of the runner according to the present invention, and the broken line shows the efficiency characteristics of the conventional runner. Comparing the solid line and the broken line, the runner of the present invention has the same efficiency in C and t as the conventional runner in the operating range of P/PO≦0.8, and P/P
It can be seen that in the partial load operating range of o<0.8, the performance is considerably improved compared to the conventional lamp.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、ラン
ナ出口角度の角度差Δβが0.08NS+10≦△β≦
0.13Ns+、12を充足するようにランナ出口角度
を定めるようにしたから、過負荷運転時の性能をほとん
ど低下させることなく、部分負荷運転時の性能を向上で
き、また、振動や騒音の発生も抑制できる。
As is clear from the above description, according to the present invention, the angle difference Δβ of the runner exit angle is 0.08NS+10≦△β≦
Since the runner exit angle is determined to satisfy 0.13Ns+, 12, the performance during partial load operation can be improved with almost no deterioration in performance during overload operation, and the generation of vibration and noise. can also be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフランシス形ランナを示?1′断面図、
第2図は第1図の■ ■線に沿った円周方向断面図、第
3図は従来のフランシス形ランナと本発明によるフラン
シス形ランナについて、ランナ出口角度と水車比速度と
の関係を示す線図、第4図はランナ出口速度三角形を示
す図、第5図はランナ内のフローパターンを示1図、第
6図、第7図、第8図および第9図はバンド側およびク
ラウン側の各出口速度三角形を示す図、第10図は本発
明と従来のフランシス形ランナの効率を比較するグラフ
である。 1・・・水車主軸、2・・・ランナクラウン、3・・・
ランナバンド、4・・・ランナ羽根。 b 1 図 燃 2 図 Ns[m−KWI 飄IO圀 肥 4 口 も 5 図
Figure 1 shows a conventional Francis type runner? 1′ sectional view,
Figure 2 is a circumferential cross-sectional view taken along the line ■■ in Figure 1, and Figure 3 shows the relationship between the runner exit angle and the water turbine specific speed for a conventional Francis-type runner and a Francis-type runner according to the present invention. Figure 4 shows the runner exit velocity triangle; Figure 5 shows the flow pattern in the runner; Figures 1, 6, 7, 8 and 9 show the band side and crown side. FIG. 10 is a graph comparing the efficiency of the present invention and a conventional Francis type runner. 1...Waterwheel main shaft, 2...Runner crown, 3...
Runner band, 4... runner blade. b 1 Zumen 2 Figure Ns [m-KWI 飄IO Kunihi 4 Kuchimo 5 Figure

Claims (1)

【特許請求の範囲】 ランナクラウンとランナバンドとの間に複数枚のランナ
羽根を挾持するようにしたフランシス形ランナにおいて
;ランナ羽根の出口端が回転円周方向接線となす出口角
度βのうち、ランナクラウン側に最も近いクラウン側出
口角度βcとランナバンド側に最も近いバンド側出口角
度βbとの角度差Δβ=βc−βbが 0.08Ns+10≦Δβ≦0.13Ns+12(Ns
=N・√P/H^4、Nは主機回転速度、Hは基準落差
、Pは基準落差時の最大出力。)なる関係を満すように
ランナ羽根の出口角度を定めるようにしたことを特徴と
するフランシス形ランナ。
[Claims] In a Francis-type runner in which a plurality of runner blades are sandwiched between a runner crown and a runner band; of the exit angle β that the exit end of the runner blade makes with the tangent in the circumferential direction of rotation, The angle difference between the crown side exit angle βc closest to the runner crown side and the band side exit angle βb closest to the runner band side is 0.08Ns+10≦Δβ≦0.13Ns+12(Ns
=N・√P/H^4, N is the main engine rotation speed, H is the standard head, and P is the maximum output at the standard head. ) A Francis-type runner characterized in that the exit angle of the runner blade is determined so as to satisfy the following relationship.
JP59221478A 1984-10-22 1984-10-22 Francis type runner Granted JPS61101680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221478A JPS61101680A (en) 1984-10-22 1984-10-22 Francis type runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221478A JPS61101680A (en) 1984-10-22 1984-10-22 Francis type runner

Publications (2)

Publication Number Publication Date
JPS61101680A true JPS61101680A (en) 1986-05-20
JPH0438916B2 JPH0438916B2 (en) 1992-06-25

Family

ID=16767337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221478A Granted JPS61101680A (en) 1984-10-22 1984-10-22 Francis type runner

Country Status (1)

Country Link
JP (1) JPS61101680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661425A1 (en) * 1993-12-24 1995-07-05 PACIFIC MACHINERY &amp; ENGINEERING CO., LTD. Turbo pump and supply system with a pump
CN1049476C (en) * 1993-12-24 2000-02-16 太平洋机工株式会社 Blade used in fluid mechanism and fluid mechanism using same
FR2844560A1 (en) * 2002-09-13 2004-03-19 Alstom Switzerland Ltd Francis wheel for hydraulic machine has blade angle between linear velocity and median line at trailing edge of 20 - 25 deg.
JP2006258095A (en) * 2005-02-17 2006-09-28 Kubota Corp Water turbine, water turbine power generating device and method for operating water turbine power generating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661425A1 (en) * 1993-12-24 1995-07-05 PACIFIC MACHINERY &amp; ENGINEERING CO., LTD. Turbo pump and supply system with a pump
CN1049476C (en) * 1993-12-24 2000-02-16 太平洋机工株式会社 Blade used in fluid mechanism and fluid mechanism using same
FR2844560A1 (en) * 2002-09-13 2004-03-19 Alstom Switzerland Ltd Francis wheel for hydraulic machine has blade angle between linear velocity and median line at trailing edge of 20 - 25 deg.
WO2004025116A1 (en) * 2002-09-13 2004-03-25 Alstom Technology Ltd. Francis wheel and hydraulic machine comprising one such wheel
US7220106B2 (en) 2002-09-13 2007-05-22 Alstom Technology Ltd. Francis wheel and hydraulic machine comprising one such wheel
CN100338356C (en) * 2002-09-13 2007-09-19 阿尔斯通技术有限公司 Francis wheel and hydraulic machine therewith
JP2006258095A (en) * 2005-02-17 2006-09-28 Kubota Corp Water turbine, water turbine power generating device and method for operating water turbine power generating device

Also Published As

Publication number Publication date
JPH0438916B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JP3462870B2 (en) Impeller for radial turbine
US9181957B2 (en) Hydraulic machine
KR20000012075A (en) High efficiency blade configuration for steam turbine
JP4163062B2 (en) Splitter runner and hydraulic machine
JP3898311B2 (en) Water wheel or pump water wheel
US7195459B2 (en) Francis turbine
JPS61101680A (en) Francis type runner
JPS5941024B2 (en) Francis type runner
JP3600449B2 (en) Impeller
JP2837207B2 (en) Guide vanes for axial fans
JPH10318117A (en) Impeller of fluid machine
JP4751165B2 (en) Francis pump turbine
JPH01318790A (en) Flashing vane of multistage pump
JP3688342B2 (en) Pump turbine runner
JP3040601B2 (en) Radial turbine blade
JP2993164B2 (en) Axial flow type fluid machine
JPS60182363A (en) Francis type runner
JPS60182361A (en) Guide vane for waterwheel
JPH11173104A (en) Turbine rotor blade
JP2004156587A (en) Hydraulic turbine
JP2001234843A (en) Water turbine moving blade
WO2023238541A1 (en) Multistage centrifugal compressor
JP2003314425A (en) Pump turbine with splitter runner
JP2007032458A (en) Francis water turbine
JP2001317303A (en) Steam turbine