JPS61101010A - Manufacture of cobalt containing magnetic iron oxide powder - Google Patents

Manufacture of cobalt containing magnetic iron oxide powder

Info

Publication number
JPS61101010A
JPS61101010A JP59223459A JP22345984A JPS61101010A JP S61101010 A JPS61101010 A JP S61101010A JP 59223459 A JP59223459 A JP 59223459A JP 22345984 A JP22345984 A JP 22345984A JP S61101010 A JPS61101010 A JP S61101010A
Authority
JP
Japan
Prior art keywords
iron oxide
cobalt
magnetic iron
water
containing magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59223459A
Other languages
Japanese (ja)
Other versions
JPH0521321B2 (en
Inventor
Kazuo Nakada
中田 和男
Masatake Maruo
丸尾 正剛
Kiyoshi Asano
清 浅野
Masatoshi Amano
天野 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP59223459A priority Critical patent/JPS61101010A/en
Publication of JPS61101010A publication Critical patent/JPS61101010A/en
Publication of JPH0521321B2 publication Critical patent/JPH0521321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a cobalt containing magnetic iron oxide powder improved in the characteristics by reacting to produce and to absorb specific diamine salt compound to the surfaces of cobalt containing magnetic iron oxide particles of high specific surface area by a special treating method. CONSTITUTION:Cobalt containing magnetic iron oxide particles having specific surface area of 35m<2>/g or higher of BET value are reacted with aqueous soluble compound of aqueous soluble compound of diamine and fatty acid in aqueous slurry in iron particles to absorb the reacted product on the surfaces of the iron particles. The aqueous soluble compound of diamine is represented by the general formula of R<1>NH(CH2)<n> (where R<1> is alkyl, alkenyl or aryl group having 6 or more carbons, and n is integer number of 1-10). The aqueous soluble compound of the fatty acid is represented by the general formula of R<2>COOH (where R<2> is alkyl, alkenyl or aryl having 6 or more carbons).

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、コバルト含有磁性酸化鉄粉末の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for producing cobalt-containing magnetic iron oxide powder.

(発明の技術的背景とその問題点) 磁気記録媒体は、一般に磁性粉末を樹脂結合剤中に分散
させてなる磁性塗料を、プラスチックのフィルムやシー
トの基板−にに塗布して磁性層を形成させたものである
が、磁性粉粒子が二次凝集をおこしたりして該塗料中で
十分分散されないと、充填度の大きな均一で平滑な磁性
層を形成させることはできない。磁性粉粒子の凝集によ
る磁性層の不均一化は、磁気記録媒体の磁気特性や電磁
変換特性をいちじるしく損ない易い。すなわち、角形比
や磁場配向性の低下がさけられず、さらに出力の低化、
ノイズの増大、ドロップアラFの原因となり易い。
(Technical background of the invention and its problems) Generally, magnetic recording media are made by coating a plastic film or sheet substrate with a magnetic paint made by dispersing magnetic powder in a resin binder to form a magnetic layer. However, if the magnetic powder particles are not sufficiently dispersed in the coating material due to secondary aggregation, it is not possible to form a uniform and smooth magnetic layer with a large degree of filling. Non-uniformity of the magnetic layer due to agglomeration of magnetic powder particles tends to significantly impair the magnetic properties and electromagnetic conversion properties of the magnetic recording medium. In other words, a decrease in squareness ratio and magnetic field orientation is unavoidable, and furthermore, a decrease in output,
This tends to cause an increase in noise and drop-out F.

磁性粉の分散性の改良に関しては、従来から種々の観点
から研究がなされてきており、それについて数多くの提
案がなされている。最も一般的には、種々の分散剤例え
ばレシチン、脂肪酸、脂肪酸アミド、脂肪酸エステル、
金属石ケン、高級アルコールやそのエステル、ポリエチ
レンオキサイドやその酸エステル、オルガノシリコーン
などを磁性塗料中に配合することによっておこなわれる
ことが多いが、場合によってはこれらの分散剤を磁性粉
に表面処理したものを塗料化することによっておこなわ
れたりしている。
Regarding the improvement of the dispersibility of magnetic powder, research has been carried out from various viewpoints, and many proposals have been made in this regard. Most commonly, various dispersants such as lecithin, fatty acids, fatty acid amides, fatty acid esters,
This is often done by blending metal soaps, higher alcohols and their esters, polyethylene oxides and their acid esters, organosilicones, etc. into magnetic paints, but in some cases these dispersants are used to treat the surface of magnetic powder. This is sometimes done by turning things into paint.

一方、近年磁気記録の高密度化にともなって、保磁力や
飽和磁化の大きい針状のコバルト含有磁性酸化鉄粉末の
需要が増大してきているが、゛このものは通常の磁性酸
化鉄粉末に比して、粒子間の相互作用によるいわゆる磁
気凝集を起し易く、そのために結合剤樹脂中での均一分
散が非常に難しく、その結果磁気記録媒体における所望
の特性の改善が十分奏せられない場合が少なくない。し
かして、前記磁気記録媒体の高密度化の傾向はますます
強まってきており、特に最近の8ミリビデオやマイクロ
カセットへの指向にともなって、高比表面積の微小粒子
径のコバルト含有磁性酸化鉄粉末を使用することによっ
てS/N比、出力、情報容量等の増大をはかることか試
みられている。しかしながら、該磁性酸化鉄粒子の比表
面積が例えば35m2/gを超えると表面エネルギーの
増大にともなって分散性が急激に低下し、前記所望の特
性の磁気記録媒体を形成させることが、いちじるしく困
難となることはよく知られている。このため例えば種々
の分散剤の使用による表面処理方法の改善提案がなされ
ているが、未だ十分満足すべ外改良をみるに至っておら
ず、その解決が希求されている。
On the other hand, as the density of magnetic recording has increased in recent years, the demand for acicular cobalt-containing magnetic iron oxide powder with large coercive force and saturation magnetization has increased. magnetic agglomeration due to interaction between particles, making uniform dispersion in the binder resin very difficult, and as a result, the desired characteristics of the magnetic recording medium cannot be sufficiently improved. There are quite a few. However, the trend towards higher densities in magnetic recording media is becoming stronger, and with the recent trend towards 8mm video and micro cassettes, cobalt-containing magnetic iron oxide with a high specific surface area and small particle size is becoming more and more popular. Attempts have been made to increase the S/N ratio, output, information capacity, etc. by using powder. However, when the specific surface area of the magnetic iron oxide particles exceeds, for example, 35 m2/g, the dispersibility decreases rapidly as the surface energy increases, making it extremely difficult to form a magnetic recording medium with the desired characteristics. It is well known that this will happen. For this reason, proposals have been made to improve the surface treatment method, for example by using various dispersants, but no satisfactory improvement has yet been achieved, and a solution to this problem is desired.

(発明の目的) 本発明は、高保磁力特性と優れた電磁変換特性を有する
高1i表面積磁性粉末であ・て、か−分散性、配向性、
充填性などの特性のいちじるしく改善し得るコバルト含
有磁性酸化鉄粉末の製造方法を提供することにある。
(Objective of the Invention) The present invention provides a high 1i surface area magnetic powder having high coercive force characteristics and excellent electromagnetic conversion characteristics.
The object of the present invention is to provide a method for producing cobalt-containing magnetic iron oxide powder that can significantly improve properties such as filling properties.

(発明の概要) 本発明者等は、上記目的を達成するべく種々研究を重ね
た結果、特定のジアミン塩化合物を、高比表面積のコバ
ルト含有磁性酸化鉄杓子表面で特定の処理方法で反応生
成させて吸着処理することによって、該磁性酸化鉄粉末
の分散性をいちしるしく改善し得、前記問題点をいづれ
も解決しうろことの知見にもとづいて本発明を完成した
。すなわち、□ 本発明は、BET値が35 +n2/
H以上の比表面積を有するコバルト含有磁性酸化鉄粒子
に対して、i酸化鉄粒子の水性スラリー中で、一般式R
1NH(CH2)nNIL (式中R1は炭素数6以−
にのアルキル基、アルケニル基またはアリール基であり
、11は1〜10の整数である)で示されるジアミンの
水溶性化合物の少なくとも1種と、一般式R2COOH
(式中R2は炭素数6以上のアルキル基、アルケニル基
またはアリール基である)で示される脂肪酸の水溶性化
合物の少なくとも1種とを反応させて、該酸化鉄粒子表
面に該反応生成物を吸着させることを特徴とするコバル
ト含有磁性酸化鉄粉末の製造方法である。
(Summary of the Invention) As a result of various studies to achieve the above object, the present inventors have discovered that a specific diamine salt compound is reacted and produced on the surface of a cobalt-containing magnetic iron oxide scoop with a high specific surface area using a specific treatment method. The present invention has been completed based on the knowledge that the dispersibility of the magnetic iron oxide powder can be significantly improved by adsorption treatment, and all of the above problems can be solved. That is, □ In the present invention, the BET value is 35 +n2/
For cobalt-containing magnetic iron oxide particles having a specific surface area of H or more, in an aqueous slurry of i iron oxide particles, the general formula R
1NH(CH2)nNIL (In the formula, R1 has 6 or more carbon atoms.
is an alkyl group, alkenyl group or aryl group, and 11 is an integer of 1 to 10); and at least one diamine water-soluble compound represented by the general formula RCOOH.
(In the formula, R2 is an alkyl group, an alkenyl group, or an aryl group having 6 or more carbon atoms) is reacted with at least one kind of water-soluble fatty acid compound, and the reaction product is applied to the surface of the iron oxide particles. This is a method for producing cobalt-containing magnetic iron oxide powder, which is characterized by adsorption.

本発明方法において、分散剤を処理するコバルト含有磁
性酸化鉄粒子としては、γ−Fe2O3、Fe、O,又
はγ−Fe2O3を部分還元して得られるようなベルト
ライド化合物などを基体粒子として使用することかで外
る。このものは、通常針状晶ないしこれと類似の形状を
有するものである。前記基体粒子表面にコバルト化合物
、またはコバルト化合物と第一鉄、マンガン、亜鉛、ク
ロム、ニッケルなどのその他の金属化合物とを被着させ
てコバルト含有磁性酸化鉄粒子とする。前記コバルト含
有化合物の被着量は、基体粒子に対する重量基準で、コ
バルトとして0.5〜30%、好ましくは1〜10%で
あり、第一鉄の場合は、1〜30%、好ましくは2〜2
0%、その池の金属の場合は0゜05〜10%である。
In the method of the present invention, as the cobalt-containing magnetic iron oxide particles treated with the dispersant, γ-Fe2O3, Fe, O, or a bertolide compound obtained by partially reducing γ-Fe2O3, etc. are used as base particles. It's off by some reason. This crystal usually has a needle-like crystal or a similar shape. Cobalt-containing magnetic iron oxide particles are obtained by depositing a cobalt compound or a cobalt compound and other metal compounds such as ferrous, manganese, zinc, chromium, and nickel on the surface of the base particles. The amount of the cobalt-containing compound applied is 0.5 to 30%, preferably 1 to 10% as cobalt, and in the case of ferrous iron, it is 1 to 30%, preferably 2. ~2
0%, and in the case of the pond metal it is 0°05-10%.

高保磁力のものを得るにはコバルト化合物と第一鉄化合
物とを組合せるのが好ましい。
In order to obtain a high coercive force, it is preferable to combine a cobalt compound and a ferrous compound.

前記コバルト含有化合物の被着方法としては、種々の方
法によっておこなうことができるが、通常、前記基体粒
子を水、アルカリ水溶液または少なくともコバルトを含
む金属塩の処理剤水溶液に分散させて、水性スラリーと
し、前記スラリーへさらにアルカリ水溶液または(およ
び)前記処理剤水溶液を一部もしくは全部を同時または
順次添加して基体中々子表面に前記金属塩の水酸化物を
沈殿させることによっておこなうことができる。前記被
着処理は、可及的に空気の混入を排除して実質的に非酸
化性雰囲気下、通常沸点以下好ましくは50℃以下で0
.1〜10時間反応させることによっておこなうことが
望ましい。なお、前記反応、系内のアルカリ濃度は通常
0.01〜3モル/θ、好ましくは0.5〜2モル/ρ
である。
The cobalt-containing compound can be deposited by various methods, but usually, the base particles are dispersed in water, an aqueous alkaline solution, or an aqueous solution of a metal salt containing at least cobalt to form an aqueous slurry. This can be carried out by adding part or all of an aqueous alkali solution or/and an aqueous treatment agent solution to the slurry simultaneously or sequentially to precipitate the hydroxide of the metal salt on the surface of the substrate core. The above-mentioned adhesion treatment is carried out under a substantially non-oxidizing atmosphere, excluding air contamination as much as possible, at a temperature below the normal boiling point, preferably below 50°C.
.. It is desirable to conduct the reaction for 1 to 10 hours. In addition, the alkali concentration in the reaction system is usually 0.01 to 3 mol/θ, preferably 0.5 to 2 mol/ρ.
It is.

本発明方法において、前記のようにして得られたコバル
ト含有磁性酸化鉄粒子に対して分散剤処理をおこなうに
は、前記コバルト含有化合物の被着処理スラリーを濾過
、水洗してアルカリ分などを除去し、得られた湿ケーキ
を、(1)水に懸濁させて水性スラリーとして供しても
、(2)密閉容器に入れ、水蒸気の存在下に60〜20
0℃で加熱処理をおこなった後、この処理ケーキを水に
懸濁させて水性スラリーとして供してもよい、なお、前
記加熱処理は非酸化性雰囲気であこなうのが好ましい。
In the method of the present invention, in order to perform a dispersant treatment on the cobalt-containing magnetic iron oxide particles obtained as described above, the adhesion treatment slurry of the cobalt-containing compound is filtered and washed with water to remove alkaline components, etc. The resulting wet cake can be either (1) suspended in water and served as an aqueous slurry, or (2) placed in a sealed container and heated for 60 to 20 minutes in the presence of water vapor.
After heat treatment at 0° C., the treated cake may be suspended in water to provide an aqueous slurry. Note that the heat treatment is preferably carried out in a non-oxidizing atmosphere.

さらに(3)通常の乾燥をおこなって付着水分を脱水し
た後、次いで非酸化性雰囲気下で1C)0〜300°C
で乾式熱処理をおこない、この処理粉末を水に懸濁させ
て水性スラリーとして供してもよい。
Furthermore, after (3) normal drying is performed to remove adhering moisture, the temperature is then dried at 1C)0 to 300°C in a non-oxidizing atmosphere.
The treated powder may be subjected to dry heat treatment, and the treated powder may be suspended in water to provide an aqueous slurry.

あるいは(4)前記(2)の水蒸気処理後、次いで前記
(3)の乾式加熱処理をおこなった後、水性スラリーと
して供しでもよく、いづれの方法をも適用でとる。前記
のようにして加熱処理をおこなう場合、基体粒子表面に
コバルトフェライト層をより均一に成長させることでき
、高保磁力で角形比、配向性、飽和磁束密度の一層優れ
たものを得ることができ、このものに分散剤処理を施す
ことによってコバルト含有磁性酸化鉄の有する前記特性
が記録媒体中で十分維持され、きわめて高性能の記録媒
体を形成させることがでとる。
Alternatively, (4) after the steam treatment in (2) above, and then the dry heat treatment in (3) above, it may be provided as an aqueous slurry, and either method may be used depending on the application. When the heat treatment is performed as described above, a cobalt ferrite layer can be grown more uniformly on the surface of the base particle, and a high coercive force with better squareness ratio, orientation, and saturation magnetic flux density can be obtained. By subjecting this material to a dispersant treatment, the properties of the cobalt-containing magnetic iron oxide are sufficiently maintained in the recording medium, making it possible to form an extremely high-performance recording medium.

本発明方法における分散剤処理において、該分散剤処理
を適用する磁性酸化鉄粉末は、前記のように磁性酸化鉄
の基体粒子にコバルト含有化合物を被着させたものであ
るが、比表面積がBET値で35 m2/g以上のよう
な微細粒子粉末に対してとりわけ好適である。処理に供
する一般式RINH(CH2)nNH2(R’は炭素数
6以上のアルキル基、アルケニル基またはアリール基、
旧±1〜10の整数)で示されるジアミンの水溶性化合
物としては、前記範囲の種々のものを使用し得るが、な
るべくは、アルキル基、アルケニル基またはアリール基
の炭素数か6〜20であり、また11は2〜Gの整数で
あるのが好ましい。それらの具体例としては、例えば(
1)C6H,、NH(CH2)3NH2、(2)   
C81−L、NH(CH2LNH2、(3)    C
,oH2,NH(CH2)3NH2、(4)  C,1
125NH(CIL)3Nl−12、(5)C,4H2
゜N11(CI−12)、NH2、((3)    C
zl−I29NH(C1−12)−N トI2、(7)
  C,6[(3,N1−1(CI−12LNH2、(
8)  C,、Il、NH(CH2)、NH2、(り)
   C,81L、NH(CH2)3NH,、(10)
  C,、II、、NH(、CH2)、NH2、(II
)    C2oIL、NH(CH2LNI−(2、(
+2)  C2,TL、NH(CH2)6NH2、換ト
リ、テトラ、ペンタまたはへキサメチレンジアミンの塩
酸塩、酢酸塩、乳酸塩、アンピン酸塩等を挙げることか
できる。前記ジアミンは、それらが単独であってもある
いはそれらの2種もしくはそれ以」二の混合物として使
用してもよい。また、本発明方法において、前記一般式
R2COOH(R2は炭素数6以上のアルキル基、アル
ケニル基またはアリール基)で示される脂肪酸の水溶性
化合物としては、種々のものを使用し得るが、なるべく
はアルキル基、アルケニル基またはアリール基の炭素数
が6〜20であるのが好ましい。それらの具体例としで
は、例えば、C6H1*C0OH,C,H,、C00H
SC,oH2,+C00H1C,,H23COOH,C
,3H27COOH1C+ s H31CC> OHl
C,、H,3COOH1C,7H,、、C0OH,C2
oH,、C0OH、アルカリ土類金属塩、アンモニウム
塩などを挙げることができる。
In the dispersant treatment in the method of the present invention, the magnetic iron oxide powder to which the dispersant treatment is applied is obtained by coating magnetic iron oxide base particles with a cobalt-containing compound as described above, and the specific surface area is BET. It is particularly suitable for fine-grained powders with values of 35 m2/g and above. General formula RINH(CH2)nNH2 (R' is an alkyl group having 6 or more carbon atoms, an alkenyl group or an aryl group,
As the water-soluble compound of the diamine represented by (an integer of 1 to 10), various compounds within the above range can be used, but preferably those having an alkyl group, an alkenyl group, or an aryl group having 6 to 20 carbon atoms are used. 11 is preferably an integer from 2 to G. For example, (
1) C6H,, NH(CH2)3NH2, (2)
C81-L, NH(CH2LNH2, (3) C
,oH2,NH(CH2)3NH2,(4) C,1
125NH(CIL)3Nl-12, (5)C,4H2
°N11 (CI-12), NH2, ((3) C
zl-I29NH(C1-12)-N tI2, (7)
C,6[(3,N1-1(CI-12LNH2,(
8) C,,Il,NH(CH2),NH2,(ri)
C,81L,NH(CH2)3NH,,(10)
C,,II,,NH(,CH2),NH2,(II
) C2oIL, NH(CH2LNI-(2, (
+2) C2, TL, NH(CH2)6NH2, hydrochloride, acetate, lactate, ampinate, etc. of dichlorotri, tetra, penta or hexamethylene diamine. The diamines may be used alone or as a mixture of two or more thereof. In addition, in the method of the present invention, as the water-soluble fatty acid compound represented by the general formula R2COOH (R2 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms), various compounds can be used, but preferably It is preferable that the alkyl group, alkenyl group or aryl group has 6 to 20 carbon atoms. Specific examples of these include, for example, C6H1*C0OH, C, H,, C00H
SC, oH2, +C00H1C,,H23COOH,C
,3H27COOH1C+ s H31CC> OHl
C,,H,3COOH1C,7H,,,C0OH,C2
Examples include oH, COOH, alkaline earth metal salts, and ammonium salts.

本発明方法において、前記のジアミンの水溶性化合物と
脂肪酸の水溶性化合物とを、コバルト含有磁性酸化鉄粒
子表面上で反応させて反応生成物を被覆処理するには、
先ず該酸化鉄粒子を水などの水性媒液に懸濁させて固形
濃度が通常100〜200g/ρの水性スラリーを形成
させる。
In the method of the present invention, in order to react the water-soluble diamine compound and the water-soluble fatty acid compound on the surface of cobalt-containing magnetic iron oxide particles and coat the reaction product,
First, the iron oxide particles are suspended in an aqueous medium such as water to form an aqueous slurry having a solid concentration of usually 100 to 200 g/ρ.

次いでこの水性スラリーへ、前記のジアミンの水溶性化
合物と脂肪酸の水溶性化合物とを添加する。前記処理剤
の添加はそれらを順次または同時いづれでもよいが、順
次添加してそれぞれの処理剤を水性スラリーに十分混合
させながらおこなうと一層望ましい、なお前記処理は通
常、常温下で反応させることができるが、必要に応じ加
熱下で反応させてもよい。また前記反応は反応系のスラ
リーのp I(が通常6〜13、とりわけ6.5〜12
であるのが望ましく、前記ρIIが6より低くなると被
着されたコバルト化合物の溶出か起ったり、一方前記p
 H力弓3より大外くなると反応生成物の酸化鉄粒子表
面への被覆が不均一になり易く望ましくない。
Next, the water-soluble diamine compound and the water-soluble fatty acid compound described above are added to this aqueous slurry. The treatment agents may be added sequentially or simultaneously, but it is more preferable to add them sequentially and thoroughly mix each treatment agent into the aqueous slurry.The treatment is usually carried out at room temperature. However, the reaction may be carried out under heating if necessary. In addition, in the reaction, the p I of the slurry in the reaction system (usually 6 to 13, especially 6.5 to 12
It is desirable that the p
If the H force is greater than 3, the reaction product tends to coat the surface of the iron oxide particles non-uniformly, which is not desirable.

本発明方法において、コバルト含有磁性酸化鉄粒子表面
における前記反応生成物は、前記ジアミン1モルに対し
て前記脂肪酸がほぼ1〜2モルの反応によって形成され
るものであって、該酸化鉄粉子の重量基準に対して該反
応生成物か通常0.1〜10%望ましくは0.5〜5%
被覆されるのが好ましい。前記のジアミンの水溶性化合
物と脂肪酸の水溶性化合物は、前記被覆量に応じてそれ
ぞれ添加されるが、通常核酸化鉄粒子の重量基準に対し
て前者は0.2〜2%、また後者は0.3〜3%添加す
る。添加量がいづれも、前記範囲より少なぎにすぎると
所望の効果が得られず、また前記範囲より多きにすぎる
と例えばブルーミング現象を発生した1)シて磁性塗膜
の性能を低下させるなど好ましくない。前記反応処理ス
ラリーは、所定時間反応後、濾過、水洗、乾燥して処理
品を回収する。また、コバルト含有化合物の被着後、前
記したような熱処理を施すことなく、分散剤処理をおこ
なった場合は、前記の乾燥処理に引きつづいて例えば非
酸化性雰囲気中で乾式熱処理をおこなうなどの熱処理を
施すことによって磁気特性をさらに高めることもできる
。なお、本発明の分散剤処理の場合にあっては、前記の
分散剤処理後に熱処理をおこなっても、分散剤の処理効
果はなんら損なわれることはない。
In the method of the present invention, the reaction product on the surface of the cobalt-containing magnetic iron oxide particles is formed by a reaction of about 1 to 2 moles of the fatty acid with respect to 1 mole of the diamine, and Usually 0.1 to 10%, preferably 0.5 to 5% of the reaction product based on the weight of
Preferably, it is coated. The water-soluble diamine compound and the water-soluble fatty acid compound are added depending on the amount of coating, but the former is usually 0.2 to 2% based on the weight of the iron oxide particles, and the latter is usually added in an amount of 0.2 to 2% based on the weight of the iron oxide particles. Add 0.3-3%. If the amount added is too small than the above range, the desired effect cannot be obtained, and if it is too large, the performance of the magnetic coating film may be deteriorated due to the occurrence of blooming phenomenon (1). do not have. After the reaction treatment slurry has reacted for a predetermined time, it is filtered, washed with water, and dried to recover the treated product. In addition, if a dispersant treatment is performed after the cobalt-containing compound has been deposited without the heat treatment described above, subsequent to the drying treatment described above, for example, a dry heat treatment in a non-oxidizing atmosphere may be performed. The magnetic properties can also be further enhanced by heat treatment. In addition, in the case of the dispersant treatment of the present invention, even if heat treatment is performed after the above-mentioned dispersant treatment, the treatment effect of the dispersant is not impaired in any way.

実施例1 保磁力(He): 370 0e、軸比(L/W);1
0で比表面積(BET値); 4 (1m2/gを有す
るγ−Fe2O3の針状磁性酸化鉄微粉末の100gを
、水1ρに分散させて水性スラリーとし、該スラリーに
室温(30℃)で窒素ガスを吹込みなからl)、85モ
ル/θの硫酸コバルト水溶液63m1!と0.5〕モル
/ρの硫酸第一鉄水溶液126mρとを添加し、次いで
10モル/Qの水酸化ナトリウム水溶液169mQを添
加して、室温(30℃)で5時間攪拌して該酸化鉄粒子
表面にコバルト及び第一鉄の金属水酸化物を沈澱させて
被着処理をおこなった。この処理スラリーを濾過水洗し
た後、得られたケーキを容器に入れ、別の容器に入れた
水と共にオートクレーブ中に密閉して窒素ガスで置換し
た後、130℃で6時間飽和水蒸気の存在下で加熱処理
した。(得られたコバルト含有磁性酸化鉄粉末の比表面
積(BET値)は35 m2/ Hであった) 次いで前記加熱処理湿ケーキを水に分散させて水性スラ
リーとし、該スラリーに対して主成分が例示化合物(7
)、(8)及び(9)の混合物よりなるジアミン(デュ
オミンTニライオン・アクゾ社製)の塩酸塩水溶液(濃
度2重量%) 30Inθを添加し、室温下(30°C
)で十分攪拌した。次いでオレイン酸ナトリウム水溶液
(濃度5重重%)1f3.4ml!を添加し反応させて
、コバルト含有磁性酸化鉄粒子表面に該反応生成物を吸
着させた。なお、前記反応時のスラリーのpHは7であ
った。該反応処理スラリーは濾過、水洗した後、湿ケー
キを常法により乾燥して含水分を除去して本発明方法に
よる処理品を得た。(試料A) 実施例2 前記実施例1において、オレイン酸ナトリウム水溶液に
代えてラウリン酸す) +1ウム水溶液(濃度5重量%
)16−使用すること及び前記デュオミンTの塩酸塩水
溶液(濃度2重量%)を36J使用することのほかは、
同例の場合と同様に処理して本発明方法による処理品を
得た。(試料B)実施例3 前記実施例1において、オレイン酸ナトリウム水溶液に
代えて安息香酸ナトリウム水溶液(濃度5重量%)12
.7憤Qを使用すること及び前記デュオミンTの塩酸塩
水溶wL(濃度2重量%)を41.8mρ使用すること
のほかは、同例の場合と同様−二処理して本発明方法に
よる処理品を得た。(試料C) 実施例4 前記実施例1において、前記デュオミンTなるジアミン
の水溶性化合物に代えて、主成分が例示化合物(4)と
(5)との混合物よりなるジアミン(デュオミンC、ラ
イオン・アクゾ社製)の塩酸塩水溶液(濃度2重量%)
26.3mOを使用すること及び前記オレイン酸ナトリ
ウム水溶液(濃度5重量%)19.9m(!を使用する
ことのほかは、同例の場合と同様に処理して本発明方法
による処理品を得た。(試料D)実施例5 前記実施例1の場合と同様にしてコバルト化合物と第一
鉄化合物とを被着処理した後、その処理スラリーを濾過
、水洗して得られた湿ケーキを水に分散させて、コバル
ト含有磁性酸化鉄の水性スラリーを形成した。該スラリ
ーに対して実施例1の場合と同様にして分散剤の吸着処
理をおこなった。なお前記吸着処理時のスラリーのp■
4は10であった。次いで前記吸着処理スラリーを濾過
、水洗し、得られた湿ケーキを、実施例1の場合と同様
にして飽和水蒸気の存在下で130℃で6時間加熱処理
して本発明方法による処理品を得tこ。(試料E) 実施例6 前記実施例5Iこおいて、分散剤の吸着時のスラリーp
 I−1を12に調節したことのほかは、同例の場合と
同様にして処理して、本発明方法による処理品を得た。
Example 1 Coercive force (He): 370 0e, axial ratio (L/W): 1
Specific surface area (BET value) at 0; 4 (100 g of acicular magnetic iron oxide fine powder of γ-Fe2O3 having 1 m2/g is dispersed in 1 ρ of water to make an aqueous slurry, and the slurry is added to the slurry at room temperature (30 ° C.). 63 ml of an 85 mol/θ cobalt sulfate aqueous solution! and 126 mρ of a 0.5] mol/ρ ferrous sulfate aqueous solution, and then 169 mQ of a 10 mol/Q sodium hydroxide aqueous solution and stirred at room temperature (30°C) for 5 hours to dissolve the iron oxide. Cobalt and ferrous metal hydroxides were precipitated on the particle surface for deposition treatment. After filtering and washing the treated slurry with water, the resulting cake was placed in a container, sealed in an autoclave with water in another container, purged with nitrogen gas, and then heated at 130°C for 6 hours in the presence of saturated steam. Heat treated. (The obtained cobalt-containing magnetic iron oxide powder had a specific surface area (BET value) of 35 m2/H.) Next, the heat-treated wet cake was dispersed in water to form an aqueous slurry, and the main component was added to the slurry. Exemplified compound (7
), (8) and (9), an aqueous hydrochloride solution (concentration 2% by weight) of diamine (Duomin T manufactured by Nilion Akzo) was added, and the mixture was heated at room temperature (30°C
) and stirred thoroughly. Next, 1f3.4ml of sodium oleate aqueous solution (concentration 5% by weight)! was added and reacted to cause the reaction product to be adsorbed onto the surface of the cobalt-containing magnetic iron oxide particles. Note that the pH of the slurry during the reaction was 7. The reaction-treated slurry was filtered and washed with water, and then the wet cake was dried by a conventional method to remove water content to obtain a product treated by the method of the present invention. (Sample A) Example 2 In Example 1, a lauric acid aqueous solution (concentration of 5% by weight) was used instead of the sodium oleate aqueous solution.
) 16- and using 36 J of the Duomin T hydrochloride aqueous solution (concentration 2% by weight),
A product treated by the method of the present invention was obtained by processing in the same manner as in the same example. (Sample B) Example 3 In Example 1, a sodium benzoate aqueous solution (concentration 5% by weight) 12 was used instead of the sodium oleate aqueous solution.
.. A product treated by the method of the present invention was carried out in the same manner as in the same example, except that 7-Region Q was used and 41.8 mρ of the aqueous hydrochloride wL (concentration 2% by weight) of Duomin T was used. I got it. (Sample C) Example 4 In Example 1, instead of the water-soluble diamine compound called Duomin T, a diamine (Duomin C, Lion. Aqueous hydrochloride solution (manufactured by Akzo) (concentration 2% by weight)
A product treated by the method of the present invention was obtained in the same manner as in the same example, except that 26.3 mO was used and the sodium oleate aqueous solution (concentration 5% by weight) 19.9 m (!) was used. (Sample D) Example 5 After coating a cobalt compound and a ferrous compound in the same manner as in Example 1, the treated slurry was filtered and washed with water, and the resulting wet cake was washed with water. to form an aqueous slurry of cobalt-containing magnetic iron oxide.The slurry was subjected to a dispersant adsorption treatment in the same manner as in Example 1.The p
4 was 10. Next, the adsorption-treated slurry was filtered and washed with water, and the obtained wet cake was heat-treated at 130° C. for 6 hours in the presence of saturated steam in the same manner as in Example 1 to obtain a product treated by the method of the present invention. T-ko. (Sample E) Example 6 In Example 5I, the slurry p during adsorption of the dispersant
A product treated by the method of the present invention was obtained by processing in the same manner as in the same example except that I-1 was adjusted to 12.

(試料F)実施例7 前記実施例1において、コバルト化合物と第一鉄化合物
とを被着処理したスラリーを濾過、水洗した後、得られ
た湿ケーキを飽和水蒸気による加熱処理に代えて、窒素
ガス雰囲気中で130℃で5時間乾式加熱処理したこと
のほかは、同例の場合と同様に処理して本発明方法によ
る処理品を得た。(試料G) 実施例8 前記実施例5において、分散剤の吸着処理をおこなった
後、処理スラリーを濾過、水洗し、得られた湿ケーキを
常法により乾燥し、次いで窒素ガス雰囲気中で130℃
で5時間軸式加熱処理したことのほかは、同例の場合と
同様に処理して本発明方法による処理品を得た。(試料
i()実施例9 保磁力(He): 3400e、軸比(L/W);10
で比表面積(BET値);45m27gを有するγ−F
e2O3の剣状磁性酸化鉄微粉末の1008を、水1Q
に分散させて水性スラリーとし、該スラリーに室温(3
0°C)で窒素ガスを吸込みながら、10モル/ρの水
酸化ナトリウム水溶液169m0を添加し、次いで0.
9モル/θの硫酸第一鉄水溶液126mQを添加し、し
かる後に0.85モル/Qの硫酸コバルト水溶液63m
Qを添加して、室温(30℃)で5時間攪拌して該酸化
鉄粒子表面に第一鉄の水酸化物を沈殿させ、次いでコバ
ルトの水化物を沈殿させて被着処理した。該被着処理ス
ラリーは、濾過、水洗した後その湿ケーキを常法により
乾燥後、次いで窒素ガス雰囲気中で120℃で5時間軸
式加熱処理した。得られた前記コバルト含有化合物を被
着した磁性酸化鉄粉末(比表面積、BET値41+n”
/gであった)100gを、水10に分散させて、水性
スラリーとし、該スラリーに対して前記実施例1の場合
と同様にして、デュオミンT(ライオン・アクゾ社製)
の塩酸塩水溶液(濃度2重量%)39.6mQと、オレ
イン酸ナトリウム水溶vL(濃度2重量%)24.2m
Oとを添加して反応させて、コ/?7レト含有磁性酸化
鉄粒子表面に該反応生成物を吸着処理して、本発明方法
による処理品を得た。(試料I)実施例1O 前記実施例9において、デュオミンTなるジアミンの水
溶性化合物に代えて、例示化合物(8)オレイル・トリ
メチレン・ジアミンの塩酸塩水溶液(濃度2重量%)3
9.6mffを使用することの1具かは、同例の場合と
同様に処理して本発明方法による処理品を得た。(試料
J)実施例11 保磁力(Hc);3350e、軸比(L/W);1(1
で比表面積(BET値);5nm2/gを有するγ−F
e2O3の針状磁性酸化鉄微粉末の30 (1gを、水
IQt二分散させて水性スラリーとし、該スラリーに室
温(30℃)で窒素ガスを吹鰺込みなが呟攪拌下に10
モル/ρの水酸化ナトリウム水溶液181mρを添加し
、次いで0.90モル/ρの硫酸第一鉄水溶液139m
aを添加し、さらに0.85モル/Qの硫酸コバルト水
溶液70−を添加して、室温(30℃)で5時間攪拌し
てコバルト化合物と第一鉄化合物とを被着処理した。次
いで前記被着処理スラリーを濾過、水洗した後、該湿ケ
ーキを窒素ガス雰囲気中で125℃で4時間軸式加熱処
理した5得られた=バルト含有磁性酸化鉄粉末(比表面
積、BET値46mQ/gであった)100gを、水1
0に分散させて、水性スラリーとし、該スラリーに対し
て前記実施例1の場合と同様にしてデュオミンT(ライ
オン・アクゾ社製)の塩酸塩水溶液(濃度2重量%)7
9.0m(!を添加し、室温下で十分攪拌した。次いで
オレイン酸ナトリウム水溶液(濃度5重量%)48.4
mCを添加し、反応させてコバルト含有磁性酸化鉄粒子
の表面に該反応生成物を吸着処理して本発明方法による
処理品を得た。なお、前記吸着処理時のスラリーのpH
は7であった。(試料K)比較例1 前記実施例1において、ジアミン及び脂肪酸による分散
剤処理をおこなわないことのほかは、同例の場合と同様
に処理した。(試料L) 比較例2 前記実施例1において、分散剤の吸着処理時のスラリー
の1))−1を5としたことのほかは、同例の場合と同
様にして処理した。(試料M) 比較例3 前記実施例5において、コバルト含有化合物を被着処理
後、該処理スラリー(アルカリ濃度;OI]基1モル1
0)を濾過、水洗することなく分散剤の吸着処理をおこ
なったことのほかは、同例の場合と同様にして処理した
。(試料N)比較例4 前記実施例9において、分散剤の吸着処理時にオレイン
酸ナトリウム水溶液を添加しないことのほかは、同例の
場合と同様に処理した。(試料P) 比較例5 前記実施例9において、ジアミン及び脂′D酸の分散剤
処理に代えて、アルキルモノアミン化合物(ライオン・
アクゾ社製;アーミンCD;ヤシ油脂肪酸系アルキル置
換のモノアミン)の塩酸塩水溶液(濃度2重量%)を1
(10mO使用することのほかは、同例の場合と同様に
して処理した。(試料Q) 比較例6 前記実施例1におけるコバルト含有化合物を被着処理し
て得られた湿ケーキを飽和水蒸気の存在下で130°C
で6時間加熱処理し、該加熱処理ケーキを水に分散させ
た水性スラリーに対して、ジアミン(ライオン・アクゾ
社製;デュオミンTr)O;牛脂脂肪酸系アルキル置換
のトリメチレンツアミンのオレイン酸塩)の塩酸塩水溶
液(20重量%)を75.9mθ添加し、室温下(30
°C)で十分攪拌後、該処理スラリーを濾過、水洗し、
得られた湿ケーキを常法により乾燥した。(試料R) なお、デュオミンTDOは水不溶性であり、水性スラリ
ーとの混和がむずかしく、実質的に処理効果がみられず
、またデュオミンTDOの塩酸塩水溶液は粘稠性であり
、水性スラリーとの均一な混和が容易でなかった。
(Sample F) Example 7 In Example 1, the slurry coated with a cobalt compound and a ferrous compound was filtered and washed with water, and the resulting wet cake was heated with nitrogen instead of being heated with saturated steam. A product treated by the method of the present invention was obtained in the same manner as in the same example except that the dry heat treatment was carried out at 130° C. for 5 hours in a gas atmosphere. (Sample G) Example 8 After performing the adsorption treatment of the dispersant in Example 5, the treated slurry was filtered and washed with water. The resulting wet cake was dried by a conventional method, and then dried for 130 minutes in a nitrogen gas atmosphere. ℃
A product treated by the method of the present invention was obtained in the same manner as in the same example except that it was subjected to a 5-hour axis heat treatment. (Sample i () Example 9 Coercive force (He): 3400e, Axial ratio (L/W): 10
γ-F with specific surface area (BET value): 45m27g
1008 of sword-shaped magnetic iron oxide fine powder of e2O3 is added to 1Q of water.
to form an aqueous slurry, and add the slurry to room temperature (3
169 m0 of a 10 mol/ρ aqueous sodium hydroxide solution was added while inhaling nitrogen gas at 0°C), and then 0°C).
126 mQ of a 9 mol/θ ferrous sulfate aqueous solution was added, followed by 63 mQ of a 0.85 mol/Q cobalt sulfate aqueous solution.
Q was added and stirred at room temperature (30° C.) for 5 hours to precipitate ferrous hydroxide on the surface of the iron oxide particles, and then to precipitate cobalt hydrate for adhesion treatment. The adhesion treatment slurry was filtered and washed with water, and the wet cake was dried by a conventional method, and then subjected to shaft heat treatment at 120° C. for 5 hours in a nitrogen gas atmosphere. Magnetic iron oxide powder coated with the obtained cobalt-containing compound (specific surface area, BET value 41+n''
/g) was dispersed in 10 parts of water to make an aqueous slurry, and to this slurry, Duomin T (manufactured by Lion Akzo Co., Ltd.) was added in the same manner as in Example 1 above.
Hydrochloride aqueous solution (concentration 2% by weight) 39.6mQ and sodium oleate aqueous solution vL (concentration 2% by weight) 24.2m
By adding O and reacting, ko/? The reaction product was adsorbed onto the surface of the magnetic iron oxide particles containing 7reto to obtain a product treated by the method of the present invention. (Sample I) Example 1O In Example 9, instead of the water-soluble diamine compound called Duomin T, Exemplified Compound (8) Aqueous solution of oleyl trimethylene diamine hydrochloride (concentration 2% by weight) 3
For the case where 9.6 mff was used, a product treated by the method of the present invention was obtained by processing in the same manner as in the same example. (Sample J) Example 11 Coercive force (Hc); 3350e, axial ratio (L/W); 1 (1
γ-F with a specific surface area (BET value) of 5 nm2/g
30 (1 g) of acicular magnetic iron oxide fine powder of e2O3 was dispersed in water IQt to make an aqueous slurry, and nitrogen gas was added to the slurry at room temperature (30°C) while stirring for 10 minutes.
Add 181 mρ of an aqueous solution of sodium hydroxide at mol/ρ, followed by 139 mρ of an aqueous solution of ferrous sulfate at 0.90 mol/ρ.
A was added, and a 0.85 mol/Q cobalt sulfate aqueous solution 70- was further added, and the mixture was stirred at room temperature (30° C.) for 5 hours to coat the cobalt compound and the ferrous compound. Next, the adhesion treatment slurry was filtered and washed with water, and then the wet cake was axially heat-treated at 125°C for 4 hours in a nitrogen gas atmosphere to obtain balt-containing magnetic iron oxide powder (specific surface area, BET value 46 mQ /g) 100g, water 1
0 to form an aqueous slurry, and to the slurry, a hydrochloride aqueous solution (concentration 2% by weight) of Duomin T (manufactured by Lion Akzo) 7 was added in the same manner as in Example 1.
9.0 m (!) was added and thoroughly stirred at room temperature. Then, 48.4 m of sodium oleate aqueous solution (concentration 5% by weight) was added.
mC was added and reacted, and the reaction product was adsorbed onto the surface of cobalt-containing magnetic iron oxide particles to obtain a treated product according to the method of the present invention. In addition, the pH of the slurry during the adsorption treatment
was 7. (Sample K) Comparative Example 1 The same treatment as in Example 1 was carried out except that the dispersant treatment with diamine and fatty acid was not performed. (Sample L) Comparative Example 2 A sample was treated in the same manner as in Example 1 except that 1))-1 of the slurry during the dispersant adsorption treatment was changed to 5. (Sample M) Comparative Example 3 In Example 5, after applying the cobalt-containing compound, the treated slurry (alkali concentration; OI) group 1 mol 1
The treatment was carried out in the same manner as in the same example, except that the dispersant adsorption treatment was carried out without filtering or washing 0) with water. (Sample N) Comparative Example 4 The same treatment as in Example 9 was carried out except that the aqueous sodium oleate solution was not added during the dispersant adsorption treatment. (Sample P) Comparative Example 5 In Example 9, an alkyl monoamine compound (Lion®
Aqueous hydrochloride solution (concentration 2% by weight) of Armin CD (coconut oil fatty acid-based alkyl-substituted monoamine) manufactured by Akzo Co., Ltd.
(Processed in the same manner as in the same example except that 10 mO was used. (Sample Q) Comparative Example 6 The wet cake obtained by coating the cobalt-containing compound in Example 1 above was soaked in saturated steam. 130°C in the presence of
diamine (manufactured by Lion Akzo Co., Ltd.; Duomin Tr) O; beef tallow fatty acid-based alkyl-substituted trimethylenezamine oleate salt. ) was added to 75.9 mθ of hydrochloride aqueous solution (20% by weight), and the mixture was heated at room temperature (30
After stirring thoroughly at 10°C (°C), the treated slurry was filtered and washed with water.
The resulting wet cake was dried in a conventional manner. (Sample R) Duomin TDO is water-insoluble and difficult to mix with the aqueous slurry, resulting in virtually no treatment effect, and the hydrochloride aqueous solution of Duomin TDO is viscous and difficult to mix with the aqueous slurry. Uniform mixing was not easy.

比較例7 前記実施例11において、ジアミン及び脂肪酸による分
散剤処理をおこなわないことのほかは、回倒の場合と同
様にして処理した。(試料S) 比較例8 前記比較例1において、コバルト含有磁性酸化鉄粉末(
試料1= )に対して、ジアミン(ライオン・アクゾ社
製;デュオミンTDO)を、後記磁性塗料の調製時に磁
性酸化鉄粉末100重量部に対して2重量部添加して塗
料化した。 ・前記の実施例及び比較例で得られた各試
料について、下記の割合で配合し、サンドグラインダー
で混練して磁性塗料を調製した。
Comparative Example 7 The same process as in Example 11 was carried out except that the dispersant treatment with diamine and fatty acid was not performed. (Sample S) Comparative Example 8 In Comparative Example 1, cobalt-containing magnetic iron oxide powder (
Sample 1 = ) was made into a paint by adding 2 parts by weight of diamine (manufactured by Lion Akzo Co., Ltd.; Duomin TDO) to 100 parts by weight of magnetic iron oxide powder during the preparation of the magnetic paint described below. - Each sample obtained in the above Examples and Comparative Examples was blended in the following proportions and kneaded with a sand grinder to prepare a magnetic paint.

(1)磁性酸化鉄粉末        100重量部(
2)ビニル樹脂(塩化ビニル:酢酸ビニル共重合体)2
1 〃 (3)ウレタン樹脂           5 〃(4
) メチルエチルケトン      123 〃(5)
 トルエン            123 〃(6)
 シクロヘキサン           4 〃前記の
ように調製された各磁性塗料をポリエステルフィルム上
に塗布し、配向処理した後乾燥して約6μ厚の磁性塗膜
を有する磁気記録媒体を作成した。この記録体について
常法により磁気特性として保磁力(Hc )、残留磁束
密度(Br)、角形比(Br/8m)及び配向比(OR
)を、電磁変換特性として入力−20dBに対する40
0Hz出力を、それぞれ測定した。その結果を次表に示
す。
(1) Magnetic iron oxide powder 100 parts by weight (
2) Vinyl resin (vinyl chloride: vinyl acetate copolymer) 2
1 (3) Urethane resin 5 (4
) Methyl ethyl ketone 123 〃(5)
Toluene 123〃(6)
Cyclohexane 4 Each of the magnetic paints prepared as described above was applied onto a polyester film, subjected to orientation treatment, and then dried to produce a magnetic recording medium having a magnetic coating film approximately 6 μm thick. The magnetic properties of this recording body were determined by conventional methods such as coercive force (Hc), residual magnetic flux density (Br), squareness ratio (Br/8m), and orientation ratio (OR).
) is the electromagnetic conversion characteristic of 40 for input -20 dB.
0Hz output was measured in each case. The results are shown in the table below.

//  2  B  B72  1.491  1,7
77  0.84 2.06  +2.3//  3 
 C6801,4741,7520,842,08+2
.’3//  4  D670  1,441  1,
713  0.84 2.15+2.3//  5  
E  674  1.449  1.715   o、
s52.17  +2.4/l  6  F  703
  1.4]、0  1;679  0.84 2.0
5  +1.9/l  7  G  675  1,4
71  1,735  0,85 2.18  +2.
4//  8  H6801,474’1,7520.
84 2.08  +2.3//  9 4 624.
 1,528  1.902  0.80 1.95 
 +2.4n  10  J  630  1,532
  1,903  0.81 1.97  +2.4/
I   2   M  515 //  3’  N  708  1,318  1.
664’  0.79 1.76  +0.8//  
4  P  643  1,460  1,843o、
79 1.81  +1.9//  5  Q  63
9  1,429  1,818  0.79 1.8
0  +1.9//  6  R6731,4101,
7+4  0.82 1.90  +2.0#  7 
8 630  1,365  1.7’87  0.7
6 1.68  +2!、Ott  8 − 619 
 1.347  1,758  0.77 1.84’
  +1.7なお、比較例2の場合には、Hcが分散剤
の処理前のものに比し大巾に低下をきたしたため、その
他の測定はおこなわなかった。
// 2 B B72 1.491 1,7
77 0.84 2.06 +2.3// 3
C6801,4741,7520,842,08+2
.. '3// 4 D670 1,441 1,
713 0.84 2.15+2.3// 5
E 674 1.449 1.715 o,
s52.17 +2.4/l 6 F 703
1.4], 0 1; 679 0.84 2.0
5 +1.9/l 7 G 675 1,4
71 1,735 0,85 2.18 +2.
4//8 H6801,474'1,7520.
84 2.08 +2.3// 9 4 624.
1,528 1.902 0.80 1.95
+2.4n 10 J 630 1,532
1,903 0.81 1.97 +2.4/
I 2 M 515 // 3' N 708 1,318 1.
664' 0.79 1.76 +0.8//
4 P 643 1,460 1,843o,
79 1.81 +1.9// 5 Q 63
9 1,429 1,818 0.79 1.8
0 +1.9// 6 R6731,4101,
7+4 0.82 1.90 +2.0# 7
8 630 1,365 1.7'87 0.7
6 1.68 +2! , Ott 8-619
1.347 1,758 0.77 1.84'
+1.7 Note that in the case of Comparative Example 2, Hc was significantly lower than that before treatment with the dispersant, so no other measurements were performed.

上表の結果から明らかなように、本発明方法によって得
られるコバルト含有磁性酸化鉄粉末は、比較例の場合に
比して分散性が向−卜し、その結果Br、 Br/8m
、 ORの磁気特性、4001−h出力の電磁変換特性
のいずれもが改善され、高密度記録媒体を作成させる上
でbわめて好適なものである二とがわかる。また本発明
方法によって得られるコバルト含有磁性酸化鉄粉末は、
該分散剤が強固に吸着しているため塗料化時に分散剤を
添加した場合に比べてブルーミング、磁性粉の粉落ち(
磁気ヘッドの目づまり)などがほとんどみられないもの
であった。
As is clear from the results in the above table, the cobalt-containing magnetic iron oxide powder obtained by the method of the present invention has improved dispersibility compared to the comparative example, and as a result, Br, Br/8m
It can be seen that both the magnetic properties of the OR and the electromagnetic conversion properties of the 4001-h output are improved, making it extremely suitable for producing high-density recording media. In addition, the cobalt-containing magnetic iron oxide powder obtained by the method of the present invention is
Because the dispersant is strongly adsorbed, blooming and falling of magnetic powder (
Clogging of the magnetic head) was hardly observed.

(発明の効果) 以」−の説明から明らかな通り、本発明方法は、凝集性
の強い比表面積の人外な微粒子のコバルト含有磁性酸化
鉄を、水性懸濁液中で、ジアミンの水溶性化合物と脂肪
酸の水溶性化合物との反応で得られたジアミン塩分散剤
を該粒子表面に反応吸着させるため分散剤を強固に担持
させることかで軽該粒子の凝集性をbわめて効果的に改
質することがで終るものである。
(Effects of the Invention) As is clear from the explanation below, the method of the present invention allows cobalt-containing magnetic iron oxide, which has a strong cohesive property and an inhuman specific surface area, to be mixed with water-soluble diamine in an aqueous suspension. The diamine salt dispersant obtained by the reaction of a compound with a water-soluble fatty acid compound is reacted and adsorbed onto the surface of the particles, and by strongly supporting the dispersant, the agglomeration of the light particles is extremely effectively reduced. It ends with reforming.

本発明方法によって得られるコバルト含有磁性酸化鉄粉
末を用いて磁気記録媒体を作成すると、記録媒体の結合
剤樹脂との濡れがよく均一な分散性がもたらされるため
に配向性よく高充填性磁性層を形I&させることかで外
、磁気特性および電磁変換特性がいちじるしく改善され
た高密度記録媒体とすることができる。
When a magnetic recording medium is made using the cobalt-containing magnetic iron oxide powder obtained by the method of the present invention, a highly packed magnetic layer with good orientation is obtained because it has good wettability with the binder resin of the recording medium and provides uniform dispersion. In addition, by forming I&, a high-density recording medium with significantly improved magnetic properties and electromagnetic conversion properties can be obtained.

さらに本発明方法は、磁性酸化鉄のコバルト含有化合物
の被着処理後の水性スラリーを、熱処理してコバルト含
有化合物の被着層を変成処理する前後で任意におこなう
ことができ、工程の煩雑化をともなうことなく、また熱
処理時の凝集を効果的に回避し得るものである。
Furthermore, in the method of the present invention, the aqueous slurry after the coating treatment of the cobalt-containing compound of the magnetic iron oxide can be heat-treated before or after the modification treatment of the coating layer of the cobalt-containing compound, which reduces the complexity of the process. In addition, agglomeration during heat treatment can be effectively avoided.

特許出願人  石原産業株式会社 一23完−Patent applicant: Ishihara Sangyo Co., Ltd. 123 completed-

Claims (1)

【特許請求の範囲】[Claims] BET値が35m^2/g以上の比表面積を有するコバ
ルト含有磁性酸化鉄粒子に対して、該酸化鉄粒子の水性
スラリー中で、一般式R^1NH(CH_2)nNH_
2(式中R^1は炭素数6以上のアルキル基、アルケニ
ル基またはアリール基であり、nは1〜10の整数であ
る)で示されるジアミンの水溶性化合物の少なくとも1
種と、一般式R^2COOH(式中R^2は炭素数6以
上のアルキル基、アルケニル基またはアリール基である
)で示される脂肪酸の水溶性化合物の少なくとも1種と
を反応させて、該酸化鉄粒子表面に該反応生成物を吸着
させることを特徴とするコバルト含有磁性酸化鉄粉末の
製造方法。
For cobalt-containing magnetic iron oxide particles having a specific surface area with a BET value of 35 m^2/g or more, in an aqueous slurry of the iron oxide particles, the general formula R^1NH(CH_2)nNH_
At least one water-soluble diamine compound represented by 2 (wherein R^1 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms, and n is an integer of 1 to 10)
The species is reacted with at least one water-soluble fatty acid compound represented by the general formula R^2COOH (wherein R^2 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms), A method for producing cobalt-containing magnetic iron oxide powder, which comprises adsorbing the reaction product onto the surface of iron oxide particles.
JP59223459A 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder Granted JPS61101010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223459A JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223459A JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Publications (2)

Publication Number Publication Date
JPS61101010A true JPS61101010A (en) 1986-05-19
JPH0521321B2 JPH0521321B2 (en) 1993-03-24

Family

ID=16798477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223459A Granted JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JPS61101010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482278B1 (en) * 2002-10-21 2005-04-14 한국과학기술연구원 Iron oxide nanoparticles and synthesizing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020150124A1 (en) 2019-01-15 2020-07-23 Boston Scientific Scimed, Inc. Alignment method and tools

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157216A (en) * 1979-05-28 1980-12-06 Hitachi Maxell Ltd Manufacture of magnetic powder for magnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157216A (en) * 1979-05-28 1980-12-06 Hitachi Maxell Ltd Manufacture of magnetic powder for magnetic recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482278B1 (en) * 2002-10-21 2005-04-14 한국과학기술연구원 Iron oxide nanoparticles and synthesizing method thereof

Also Published As

Publication number Publication date
JPH0521321B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
NL8006280A (en) MAGNETIC RECORD MEDIUM AND METHOD FOR PRODUCING THE SAME
JPS61101010A (en) Manufacture of cobalt containing magnetic iron oxide powder
JPS5923505A (en) Magnetic powder
JPS6149251B2 (en)
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS6132259B2 (en)
JPS60141624A (en) Manufacture of acicular magnetic iron oxide containing cobalt
JPS59103310A (en) Manufacture of cobalt-containing magnetic iron oxide
JPS60196905A (en) Manufacture of cobalt denatured ferrite magnetic powder
JPH01298106A (en) Manufacture of ferromagnetic iron powder
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6123305A (en) Magnetic material and manufacture thereof
JPS6163921A (en) Magnetic powder and its production
JP2612461B2 (en) Plate-like maghemite particle powder and method for producing the same
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron
JP2588875B2 (en) Spindle-shaped magnetic iron powder
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0425686B2 (en)
JPH0147522B2 (en)
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPH0230563B2 (en)