JPS6097669A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6097669A
JPS6097669A JP58204663A JP20466383A JPS6097669A JP S6097669 A JPS6097669 A JP S6097669A JP 58204663 A JP58204663 A JP 58204663A JP 20466383 A JP20466383 A JP 20466383A JP S6097669 A JPS6097669 A JP S6097669A
Authority
JP
Japan
Prior art keywords
region
emitter
silicon layer
resistance region
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204663A
Other languages
Japanese (ja)
Inventor
Osamu Saito
修 斉藤
Takahide Ikeda
池田 隆英
Tokuo Watanabe
篤雄 渡辺
Kiyoshi Tsukuda
佃 清
Mitsuru Hirao
充 平尾
Tatsuya Kamei
亀井 達弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58204663A priority Critical patent/JPS6097669A/en
Publication of JPS6097669A publication Critical patent/JPS6097669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To realize a higher integration and a higher-speed operation in the titled device by a method wherein, by using a continued polycrystalline and/or amorphous silicon layer having a high-resistance region and a low-resistance region, a bias resistor between the emitter and the base of a bipolar transistor is formed at the high-resistance region, while the emitter region of the bipolar transistor is formed at the low- resistance region. CONSTITUTION:A polycrystalline silicon layer 25 is coated on the whole surface of the substrate, and after that, arsenics, which are N type impurities, are performed an ion- implantation 24. One part of the polycrystalline silicon layer 25 is masked using a photo resist 26 and arsenics are performed an ion-implantation 24 in other regions of the layer 25. After the photo resist 26 was removed, a thermal treatment is performed and an emitter diffusion region 5 is formed, and moreover, the polycrystalline silicon layer 25 is removed by performing an etching using a photolisographic technique and a plasma etching technique, excluding its one part which continues onto the emitter region 5. After a P<+> type diffusion 15, which functions as the wource and drain of an MOS transistor, was formed in self-alignment by performing an ion implantation of arsenic, a PSG film 18 is formed on the surface of the substrate. Then, after an aperture for contact of an electrode was provided, an Al electrode is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路装置に係り、特にバイポーラト
ランジスタ、MOSトランジスタ等の能動素子を同一基
板上に形成した半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device in which active elements such as bipolar transistors and MOS transistors are formed on the same substrate.

〔発明の背景〕[Background of the invention]

バイポーラトランジスタとMOSトランジスタが混在す
る回路において、バイポーラトランジスタを駆動する回
路として第1図の如き回路がよく知られている。このよ
うな回路を同一基板上に作成しようとするとき、特にベ
ース・エミッタ間のバイアス調整のための抵抗R8は、
従来第2図、第3図の如く、トランジスタと電気的に分
離された領域に設けた拡散抵抗を用いていた。しかし、
この構造では、拡散抵抗の領域が大きく装置の高集積化
の妨げになっていた。
In a circuit in which bipolar transistors and MOS transistors coexist, a circuit as shown in FIG. 1 is well known as a circuit for driving a bipolar transistor. When trying to create such a circuit on the same substrate, the resistor R8 for bias adjustment between the base and emitter is especially important.
Conventionally, as shown in FIGS. 2 and 3, a diffused resistor was used which was provided in a region electrically isolated from the transistor. but,
In this structure, the area of the diffused resistance is large, which hinders high integration of the device.

ここで1はMOS)ランジスタ、2はNPN)ランジス
タ、3はバイアス用抵抗、4はベース拡散領域、5はエ
ミッタ拡散領域、6はコレクタ拡散領域、7はAt電極
、8は絶縁分離領域、9はP基板、10はN0埋込み層
、11はNウェル領域、14はN9コレクタ領域、15
はP+拡散領域、17はLOCO8酸化膜、18はPS
G膜である。
Here, 1 is a MOS) transistor, 2 is an NPN) transistor, 3 is a bias resistor, 4 is a base diffusion region, 5 is an emitter diffusion region, 6 is a collector diffusion region, 7 is an At electrode, 8 is an insulation isolation region, 9 is a P substrate, 10 is an N0 buried layer, 11 is an N well region, 14 is an N9 collector region, 15
is P+ diffusion region, 17 is LOCO8 oxide film, 18 is PS
It is a G film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、バイポーラトランジスタを同一基板上
に作成する半導体集積回路装置で、前記問題点を解消し
回路の高集積化及び高速化を実現する半導体集積回路装
置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit device in which bipolar transistors are formed on the same substrate, which solves the above-mentioned problems and achieves higher circuit integration and higher speed.

〔発明の概要〕[Summary of the invention]

本発明の半導体集積回路装置の特徴は、バイポーラトラ
ンジスタとMOS)う/ジスタを同一基板上に形成する
半導体集積回路装置において、基板表面に形成した、高
抵抗領域と低抵抗領域とを有する連続した多結晶及び/
または非晶質シリコン層により、高抵抗領域でバイポー
ラトランジスタのエミッタ・ベース間のバイアス抵抗、
低抵抗領域でバイポーラトランジスタのエミッタ領域を
形成したことを特徴とする半導体集積回路装置にある。
A feature of the semiconductor integrated circuit device of the present invention is that, in a semiconductor integrated circuit device in which a bipolar transistor and a MOS transistor are formed on the same substrate, a continuous Polycrystalline and/or
Or, by using an amorphous silicon layer, the bias resistance between the emitter and base of a bipolar transistor in the high resistance region,
A semiconductor integrated circuit device is characterized in that an emitter region of a bipolar transistor is formed in a low resistance region.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係る半導体集積回路装置を一実施例により
説明する。 □ 本発明においては、第4図(a)に示す如く、先ず例え
ばP型基板9上にN型高濃度領域10を形成した上にN
型エピタキシャル層を形成し、さらにN型埋込層10上
にはNウェル11を形成する。
A semiconductor integrated circuit device according to the present invention will be explained below using one embodiment. □ In the present invention, as shown in FIG. 4(a), first, for example, an N-type high concentration region 10 is formed on a P-type substrate 9, and then
A type epitaxial layer is formed, and an N well 11 is further formed on the N type buried layer 10.

その後、LOCO8(local oxidizati
on ofsilicon)酸化膜17により、各素子
領域を分離した後MO8)ランジスタのゲート22及び
P型ベース拡散層4、N0コレクタ拡散層14、エミツ
タ窓23を形成する。
After that, LOCO8 (local oxidizati
After separating each element region with an on-of-silicon oxide film 17, MO8) the gate 22 of the transistor, the P type base diffusion layer 4, the N0 collector diffusion layer 14, and the emitter window 23 are formed.

次に第4図(b)に示す如く、ポリシリコン層25を基
板全面に2500人被着1、その後N型不純物であるひ
素を80KeVのエネルギーで5X10”crrI−”
イオン打込み24する。
Next, as shown in FIG. 4(b), a polysilicon layer 25 is deposited on the entire surface of the substrate for 2,500 times, and then arsenic, which is an N-type impurity, is added at 5X10"crrI-" with an energy of 80KeV.
Perform ion implantation 24.

次に第4図(e)に示す如く、ポリシリコン25の一部
をフォトレジスト26でマスクして他の領域にひ素を8
0KeVのエネルギーで1×1016crn−2イオン
打込み24する。
Next, as shown in FIG. 4(e), a part of the polysilicon 25 is masked with a photoresist 26, and arsenic is applied to other areas.
A 1×10 16 crn−2 ion implantation 24 is performed at an energy of 0 KeV.

次に第4図(d)に示す如く、フォトレジスト26を除
去後、1000tll’、 30分熱処理してエミッタ
拡散領域5を形成し、さらにフォトリソグラフィー技術
とプラズマエツチング技術により第4図(d)の如くエ
ミッタ領域5上と連続する一部のポリシリコン25を除
いて、ポリシリコンをエッチンク除去する。
Next, as shown in FIG. 4(d), after removing the photoresist 26, heat treatment is performed for 1000 tll' for 30 minutes to form the emitter diffusion region 5, and then photolithography and plasma etching techniques are used to form the emitter diffusion region 5 as shown in FIG. 4(d). The polysilicon is etched away except for a portion of the polysilicon 25 that is continuous with the emitter region 5 as shown in FIG.

次に第4図(e)に示す如<MOS)ランジスタのソー
スとドレインとして働らく、P9拡散領域15をひ素の
イオン打込みによりセルアラインで形成した後表面にP
SG膜18(6000A)を形成する。
Next, as shown in FIG. 4(e), P9 diffusion regions 15 are formed in cell alignment by arsenic ion implantation, which serve as the source and drain of the transistor (MOS).
SG film 18 (6000A) is formed.

次に第4図(f)に示す如く、電極のコンタクト用の窓
あけをフォトリソグラフィー技術を用いて行なった後A
t電極を形成する。
Next, as shown in FIG. 4(f), after opening a window for the electrode contact using photolithography technology,
Form a t-electrode.

第5図は、前記の工程により形成されたバイポーラトラ
ンジスタと抵抗を含む素子の平面構造を示す図である。
FIG. 5 is a diagram showing a planar structure of an element including a bipolar transistor and a resistor formed by the above steps.

エミッタ領域5上から、絶縁分離領域上を通りベースコ
ンタクト領域21近くまでポリシリコン層19.20が
形成されている。さらに、このポリシリコン層19.2
0は、低抵抗(30Ω/D)の領域19と高抵抗(10
にΩ/口)の領域20にわかれていて、ベースコンタク
ト領域21と低抵抗ポリシリコン19はAt電極で接続
されている。
Polysilicon layers 19 and 20 are formed from above emitter region 5 to near base contact region 21 passing over the insulation isolation region. Furthermore, this polysilicon layer 19.2
0 is a region of low resistance (30Ω/D) and a region of high resistance (10
The base contact region 21 and the low resistance polysilicon 19 are connected by an At electrode.

このような平面構造にすることにより拡散抵抗領域(第
2図4)を用いることなく小さい面積の中に素子を形成
でき、かつ低抵抗ポリシリコン領域19からエミッタ拡
散することにより浅いエミッタが容易に形成でき第1図
の″ような回路の高集積化、高速化を達成できる。さら
にコンタクト窓の数が大幅に減ることにより、素子歩留
りも良くなる。
By adopting such a planar structure, an element can be formed in a small area without using a diffused resistance region (Fig. 2, 4), and a shallow emitter can be easily formed by diffusing the emitter from the low resistance polysilicon region 19. As a result, it is possible to achieve high integration and high speed circuits as shown in FIG.

ポリシリコン膜25を高抵抗領域19と低抵抗領域20
にわける理由は、以下の通り。
The polysilicon film 25 is divided into a high resistance region 19 and a low resistance region 20.
The reasons for this are as follows.

まず、本実施例では、ポリシリコン膜25はバイポーラ
T、のエミッタ領域の形成と、同じバイポーラTrのエ
ミッタ・ベース間のバイアス抵抗の形成に用いられる。
First, in this embodiment, the polysilicon film 25 is used to form the emitter region of the bipolar T and to form the bias resistance between the emitter and base of the same bipolar Tr.

ここで、トランジスタのエミッタ注入効率を高くするた
め、エミッタの不純物濃度は、高くする必要がある。そ
のため、エミッタ形成領域上のポリシリコンには、高ド
ーズ量のイオン打込みをし、ポリシリコン自体を低抵抗
化し、シリコン内の不純物濃度を高くする。一方、エミ
ッタ・ベース間のバイアス抵抗は数にΩ〜斂十にΩの比
較的高い抵抗が必要である。したがってエミッタ形成の
ための低抵抗化したポリシリコンでは、層抵抗値で20
〜30Ω/口となり、パイアス抵抗として使うためには
、広い面積が必要となり実用的でない。そこで、バイア
ス抵抗として用いる領域のポリシリコン膜へのイオン打
込みを少なくすることにより、高抵抗領域20を形成す
る。
Here, in order to increase the emitter injection efficiency of the transistor, it is necessary to increase the impurity concentration of the emitter. Therefore, a high dose of ions is implanted into the polysilicon on the emitter formation region to lower the resistance of the polysilicon itself and increase the impurity concentration in the silicon. On the other hand, the bias resistance between the emitter and the base requires a relatively high resistance of several ohms to several ohms. Therefore, with low-resistance polysilicon for emitter formation, the layer resistance value is 20
~30Ω/port, which is impractical as it requires a large area to be used as a bias resistor. Therefore, the high resistance region 20 is formed by reducing the amount of ion implantation into the polysilicon film in the region used as the bias resistor.

このようにシリコン表面のポリシリコン膜に高抵抗領域
19と低抵抗領域20を作ることにより、バイポーラト
ランジスタのエミッタとエミッタ・ベース間のバイアス
抵抗を同時にかつ小面積テ形成できる。
By forming the high resistance region 19 and the low resistance region 20 in the polysilicon film on the silicon surface in this manner, the emitter of the bipolar transistor and the bias resistance between the emitter and base can be formed simultaneously and in a small area.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば高集積化及び高速化を実
現できる半導体集積回路装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a semiconductor integrated circuit device that can realize high integration and high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を適用する半導体集積回路、第2図は
、従来法による平面構造を示す図、第3図は、従来法に
よる素子の縦断面図、第4図は、本発明の一実施例を示
す図、第5図は、本発明による平面構造図である。 1・・・MOS)ランジスタ、2・・・NPNバイポー
ラトランジスタ、19・・・低抵抗ポリシリコン、20
第 4 図 第1頁の続き [相]発 明 者 平 −尾 充 日立市幸町3所内 [相]発 明 者 亀 井 達 弥 日立市幸町3所内
FIG. 1 shows a semiconductor integrated circuit to which the present invention is applied, FIG. 2 shows a planar structure according to a conventional method, FIG. 3 is a vertical cross-sectional view of a device according to a conventional method, and FIG. FIG. 5, which shows one embodiment, is a plan view of the structure according to the present invention. 1...MOS) transistor, 2...NPN bipolar transistor, 19...low resistance polysilicon, 20
Figure 4 Continuation of page 1 [Phase] Inventor: Mitsuru Hira-o Inside Saiwai-cho 3, Hitachi City [Phase] Inventor: Tatsuya Kamei Inside Saiwai-cho 3, Hitachi City

Claims (1)

【特許請求の範囲】[Claims] 1、バイポーラトランジスタを基板上に形成する半導体
集積回路装置において、基板表面に形成した、高抵抗領
域と低抵抗領域とを有する連続した多結晶及び/または
非晶質シリコン層により、高抵抗領域でバイポーラトラ
ンジスタのエミッタ・ベース間のバイアス抵抗、低抵抗
領域でバイポーラトランジスタのエミッタ領域を形成し
たことを特徴とする半導体集積回路装置。
1. In a semiconductor integrated circuit device in which a bipolar transistor is formed on a substrate, a continuous polycrystalline and/or amorphous silicon layer having a high-resistance region and a low-resistance region is formed on the surface of the substrate. A semiconductor integrated circuit device characterized in that the emitter region of the bipolar transistor is formed in a bias resistance between the emitter and base of the bipolar transistor, and a low resistance region.
JP58204663A 1983-11-02 1983-11-02 Semiconductor integrated circuit device Pending JPS6097669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204663A JPS6097669A (en) 1983-11-02 1983-11-02 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204663A JPS6097669A (en) 1983-11-02 1983-11-02 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6097669A true JPS6097669A (en) 1985-05-31

Family

ID=16494218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204663A Pending JPS6097669A (en) 1983-11-02 1983-11-02 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6097669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459856A (en) * 1987-08-31 1989-03-07 Nec Corp Manufacture of integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338992A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Manufacture of semiconductor device
JPS5519871A (en) * 1978-07-28 1980-02-12 Mitsubishi Electric Corp Transistor
JPS55156360A (en) * 1979-05-21 1980-12-05 Exxon Research Engineering Co Integrated high speed semiconductor power switching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338992A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Manufacture of semiconductor device
JPS5519871A (en) * 1978-07-28 1980-02-12 Mitsubishi Electric Corp Transistor
JPS55156360A (en) * 1979-05-21 1980-12-05 Exxon Research Engineering Co Integrated high speed semiconductor power switching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459856A (en) * 1987-08-31 1989-03-07 Nec Corp Manufacture of integrated circuit

Similar Documents

Publication Publication Date Title
KR880006781A (en) Semiconductor integrated circuit and manufacturing method
US5019523A (en) Process for making polysilicon contacts to IC mesas
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH0557741B2 (en)
US4819055A (en) Semiconductor device having a PN junction formed on an insulator film
JPH09232458A (en) Bicmos device and its manufacture
JPH04291952A (en) Semiconductor device
JPS6097669A (en) Semiconductor integrated circuit device
JP2604727B2 (en) Method for manufacturing semiconductor device
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
JP2890509B2 (en) Method for manufacturing semiconductor device
JPH07106337A (en) Semiconductor device and manufacture thereof
JP3400234B2 (en) Semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JP2507055B2 (en) Method for manufacturing semiconductor integrated circuit
JP2503677B2 (en) Method for manufacturing thyristor transistor
KR910009740B1 (en) Manufacturing method of self-aligned bipolar transistor using oxide film
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH02241057A (en) Manufacture of semiconductor integrated circuit
JPH05218437A (en) Vertical mos field-effect transistor
JPH09275154A (en) Semiconductor device and its manufacturing method
JPS6152575B2 (en)
JPH03159167A (en) Manufacture of semiconductor integrated circuit
JPH01157565A (en) Manufacture of bi-mos integrated circuit device
JPH04159721A (en) Semiconductor device