JPS6096871A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPS6096871A
JPS6096871A JP58204339A JP20433983A JPS6096871A JP S6096871 A JPS6096871 A JP S6096871A JP 58204339 A JP58204339 A JP 58204339A JP 20433983 A JP20433983 A JP 20433983A JP S6096871 A JPS6096871 A JP S6096871A
Authority
JP
Japan
Prior art keywords
pressure
valve body
valve
temperature
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58204339A
Other languages
Japanese (ja)
Other versions
JPH0446347B2 (en
Inventor
開発 重
福村 恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58204339A priority Critical patent/JPS6096871A/en
Publication of JPS6096871A publication Critical patent/JPS6096871A/en
Publication of JPH0446347B2 publication Critical patent/JPH0446347B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍サイクルの圧力バランス型膨張弁に関する
ものであって、例えば自動車用空調装置の冷凍サイクル
に用いて好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pressure-balanced expansion valve for a refrigeration cycle, and is suitable for use, for example, in a refrigeration cycle of an automobile air conditioner.

〔従来技術〕[Prior art]

従来、この種の圧力バランス型膨張弁は、実公昭58−
1.0056号公報に示されているごとく、弁体に作用
する高圧側圧力とベロース下面に作用する高圧側圧力と
が相殺されるように構成されているので、小型化できる
という利点を有している。
Conventionally, this type of pressure-balanced expansion valve
As shown in Publication No. 1.0056, it is constructed so that the high-pressure side pressure acting on the valve body and the high-pressure side pressure acting on the lower surface of the bellows cancel each other out, so it has the advantage of being compact. ing.

しかしながら、上記のごとき高圧側圧力の相殺構造を採
用しているため、弁体とその駆動部であるベローズとの
距離がどうし°ζも良りなり、その結果冷凍サイクルの
起動時、停止時等における圧力変動が外乱となって弁体
の動きが不安定となり、振動を生じ、異音を生じやすい
とう問題がある。
However, since the above-mentioned high-pressure side pressure offset structure is adopted, the distance between the valve body and the bellows, which is the driving part of the valve body, becomes better.As a result, when starting and stopping the refrigeration cycle, etc. There is a problem in that the pressure fluctuations in the valve body become disturbances, making the movement of the valve body unstable, causing vibrations and making noise.

〔発明の目的〕[Purpose of the invention]

本発明は上記点に鑑みてなされたもので、圧力バランス
型膨張弁において、弁体の動きの安定化を図ることを目
的とする。
The present invention has been made in view of the above points, and an object of the present invention is to stabilize the movement of a valve body in a pressure-balanced expansion valve.

〔発明の構成〕[Structure of the invention]

本発明では、」1記目的達成のために、高圧室と低圧室
を連通ずる弁孔の内側に位置する案内部を弁体もしくは
弁体の作動棒に備え、この案内部には前記弁孔の内面に
微小隙間を介して遊嵌合する複数の突部を形成する。
In the present invention, in order to achieve the object 1, the valve body or the actuating rod of the valve body is provided with a guide portion located inside the valve hole that communicates the high pressure chamber and the low pressure chamber, and this guide portion A plurality of protrusions are formed on the inner surface of the protrusion to loosely fit through minute gaps.

これにより、」二記案内部の突部が弁孔の内面に沿って
移動し、弁体を確実に案内できるので、弁体の軸直角方
向への動きを規制でき、弁体の振動による異音発/:に
を防止できる。
As a result, the protrusion of the guide part (2) moves along the inner surface of the valve hole and can reliably guide the valve body, thereby restricting the movement of the valve body in the direction perpendicular to the axis, and preventing vibrations of the valve body. Pronunciation/: can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、既存の連通孔の内面をそのまま利用し
て、ごの連通孔に簡単な案内部材を組み合ゼることによ
り、弁体の振動を防止できるから、構造が非常に簡単で
あり、かつ小型に構成することができる。
According to the present invention, vibration of the valve body can be prevented by using the inner surface of the existing communication hole as it is and combining a simple guide member with the communication hole, resulting in a very simple structure. Yes, and can be configured compactly.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例によって説明する。第1
図は自動車用空調装置の冷凍サイクルに使用する圧力バ
ランス型膨張弁の構造を示すものであって、矢印Aおよ
びBは、冷媒の流れを示し、矢印へで示す方が高圧側で
、図示しない受液器の出口に接続されている。矢印Bで
示す方は低圧側で、図示しない蒸発器の冷媒人口側に接
続されている。■は弁本体部、2はこの弁本体部l内に
設けられ、上記高圧側Aと連通している高圧室、3は上
記低圧側Bと連通している低圧室であり、この高圧室2
と低圧室3は弁孔4によって連通されている。この弁孔
4の低圧室3側の開口f)fil 4 aには、弁体5
がコイルスプリング6によって押しつけられている。ス
プリング6のセノトカの調整は、調整ねじ7によって行
われる。つまり、スプリング6は調整ねじ7と弁体5と
の間で圧縮されている。一方、弁体5には、作動棒8の
一端がねじ止めによって取付けられている。この作動棒
8の他端は、りん青銅等の弾力性に富んだ金属からなる
ベローズ9に半Il+ (弓により接合されている。こ
のべrJ−ズ9の内部は、キャピラリーチューブ10に
よって図示しない蒸発器の出口バイブに取付りられてい
る感温前11に連通している。この感温筒11の内部圧
力は蒸発器の出口側の冷媒温度に応じて変化し、ベロー
ズ9は、感温筒11の内部圧力および作動棒8の伝達力
との圧力差によって伸縮される。ベローズ9のり(側に
設けられた作動空間I2は、導通孔■3によって、高圧
室2と連通している。ここで、ベーコーズ9の受圧部9
aの面積は弁体5の受圧部5aの面積と等しくしている
ため、受圧部9aと受圧部5aが高圧室2がら受ける力
は等しい。従って弁体5の開閉は、スプリング6が弁体
5を開口端4aに押しつけるように働くスプリング6の
圧力Psと低圧室3の冷媒圧力■)1.の合力(P s
 ト1) t−)と、ベローズ9を伸張さセ、作動棒8
を介して弁体5を開がゼるように(O」りべU−ズ9の
内部圧力、ずなゎら感温筒11の内部圧力p Tとの圧
力差によって行われる。
The present invention will be explained below with reference to embodiments shown in the drawings. 1st
The figure shows the structure of a pressure-balanced expansion valve used in the refrigeration cycle of an automobile air conditioner. Arrows A and B indicate the flow of refrigerant, and the side indicated by the arrow is the higher pressure side, not shown. Connected to the outlet of the liquid receiver. The side indicated by arrow B is the low pressure side and is connected to the refrigerant side of the evaporator (not shown). 2 is a high pressure chamber that is provided in the valve body l and communicates with the high pressure side A; 3 is a low pressure chamber that communicates with the low pressure side B;
The low pressure chamber 3 and the low pressure chamber 3 are communicated with each other through a valve hole 4. The opening f) fil 4 a of this valve hole 4 on the low pressure chamber 3 side has a valve body 5
is pressed by the coil spring 6. The adjustment of the spring 6 is performed by an adjustment screw 7. That is, the spring 6 is compressed between the adjusting screw 7 and the valve body 5. On the other hand, one end of an actuation rod 8 is attached to the valve body 5 with a screw. The other end of this actuating rod 8 is joined to a bellows 9 made of a highly elastic metal such as phosphor bronze by a semi-bow (not shown). The bellows 9 communicates with a temperature sensor 11 attached to the exit vibe of the evaporator.The internal pressure of this temperature sensor 11 changes depending on the refrigerant temperature on the exit side of the evaporator. It expands and contracts due to the pressure difference between the internal pressure of the cylinder 11 and the transmission force of the actuating rod 8. The actuating space I2 provided on the side of the bellows 9 communicates with the high pressure chamber 2 through the through hole 3. Here, the pressure receiving part 9 of Bako's 9
Since the area of a is made equal to the area of the pressure receiving part 5a of the valve body 5, the forces that the pressure receiving part 9a and the pressure receiving part 5a receive from the high pressure chamber 2 are equal. Therefore, the valve body 5 is opened and closed by the pressure Ps of the spring 6, which acts to press the valve body 5 against the open end 4a, and the refrigerant pressure in the low pressure chamber 3 (1). The resultant force (P s
1) t-), extend the bellows 9, and press the actuating rod 8.
This is done by the pressure difference between the internal pressure of the lever U's 9 and the internal pressure pT of the temperature sensing cylinder 11.

前記へlJ−ズ9及びキ中ピラリデユープIOはともに
キャンプ14(ニー気密に固定され、このキャップ14
は弁本体1の頭部に気密に固定されている。
The head lJ-z 9 and the center pillar duplex IO are both fixed in a camp 14 (knee airtight), and this cap 14
is airtightly fixed to the head of the valve body 1.

一方、前記した弁体5の上部、ずなわち弁孔4の内側に
位置する部分には、案内部5bが一体に形成されている
。この案内部5bは、本例では、第2図、第3図に示す
ように、四角形状に形成されており、その四隅の突部5
Cを弁孔4の内周面に沿った円弧形状に形成し、この突
部5Cと弁孔4の内周面との間には10〜20μ程度の
微小隙間を設けて、突内部5bが弁孔4に対して遊嵌合
するようになっている。弁体5は黄銅のごとき耐食性に
優れた金属を切削加工して、図示形状に形成されている
On the other hand, a guide portion 5b is integrally formed in the upper portion of the valve body 5, that is, in a portion located inside the valve hole 4. In this example, the guide portion 5b is formed into a rectangular shape, as shown in FIGS. 2 and 3, and has protrusions 5 at its four corners.
C is formed in an arc shape along the inner circumferential surface of the valve hole 4, and a minute gap of about 10 to 20 μ is provided between the protrusion 5C and the inner circumferential surface of the valve hole 4, so that the protrusion 5b It is adapted to loosely fit into the valve hole 4. The valve body 5 is formed into the illustrated shape by cutting a metal with excellent corrosion resistance, such as brass.

次に、上記構成における本実施例の作動について説明す
る。まず、冷凍サイクルの圧縮R(図示せず)が作動す
る前は、低圧室3の冷媒圧力Pしは、感温筒ll内部の
圧力、ずなわちベローズ9内部の圧力P、より大きい。
Next, the operation of this embodiment with the above configuration will be explained. First, before the compression R (not shown) of the refrigeration cycle is activated, the refrigerant pressure P in the low pressure chamber 3 is higher than the pressure inside the temperature sensing cylinder 11, that is, the pressure P inside the bellows 9.

従って、スプリング6が弁体5を開口端4aに押しつけ
る圧力をPsとすると、この場合 P L 十P s > l) 1 という関係式が成り立つから、弁体5は弁孔4を閉じて
いる。
Therefore, if the pressure with which the spring 6 presses the valve body 5 against the open end 4a is Ps, in this case the relational expression P L + P s > l) 1 holds true, so the valve body 5 closes the valve hole 4 .

次に、圧縮機が作動すると、低圧室3の冷媒圧力PLは
、急激に低下し始める。ここで、スプリング6の圧力P
 sは、通常の膨張弁に比して十分小さいから、低圧室
3の冷媒圧力PLがベローズ9の内部圧力1)「より若
干低下した時点で、P L 十P s < P 1 となり、弁体5は弁孔4を開く。このとき、弁孔4と弁
体5の間の隙間が絞り通路となる。従って、低圧室3の
圧力PLが大きく低下する前に、弁孔4は開通されて冷
媒が蒸発器内に流入する。ここで、案内部5bにおい”
Cは突部5c相互の4箇所の隙間が冷媒流路となる。圧
縮機が作動開始して、若干の時間が経過すると、低圧室
3の冷媒圧力PLおよびべ1」−ズ9の内部圧力p T
が安定し、弁体5は一定の開度を保つ。
Next, when the compressor operates, the refrigerant pressure PL in the low pressure chamber 3 begins to decrease rapidly. Here, the pressure P of the spring 6
Since s is sufficiently small compared to a normal expansion valve, when the refrigerant pressure PL in the low pressure chamber 3 becomes slightly lower than the internal pressure 1) in the bellows 9, P L + P s < P 1 and the valve body 5 opens the valve hole 4. At this time, the gap between the valve hole 4 and the valve body 5 becomes a throttle passage. Therefore, the valve hole 4 is opened before the pressure PL in the low pressure chamber 3 decreases significantly. The refrigerant flows into the evaporator.
In C, four gaps between the protrusions 5c serve as refrigerant flow paths. After the compressor starts operating and some time has passed, the refrigerant pressure PL in the low pressure chamber 3 and the internal pressure p T in the chamber 9
is stabilized, and the valve body 5 maintains a constant opening degree.

ここで、冷房負荷が大きくなると、つまり蒸発器5の吸
入空気温度が高くなると、冷媒は早く蒸発し、蒸発器出
口におけるガス冷媒の温度が高くなる。したがって、感
温筒11の温度および圧力Prが高<なり、ベローズ9
は伸張する。このべ1コーズ9の変位は、作動棒8に伝
わり、弁体5の開度を大きくして弁孔4から蒸発器に流
入する冷媒の量を多くする。
Here, when the cooling load increases, that is, when the temperature of the intake air of the evaporator 5 increases, the refrigerant evaporates quickly, and the temperature of the gas refrigerant at the evaporator outlet increases. Therefore, the temperature and pressure Pr of the temperature sensing cylinder 11 become high, and the bellows 9
expands. This displacement of the bell cause 9 is transmitted to the actuating rod 8, which increases the opening degree of the valve body 5 and increases the amount of refrigerant flowing into the evaporator from the valve hole 4.

また、反対に冷房負荷が小さくなると、感温筒jl内の
圧力が低下し、弁体5の開度を小さくなる。
On the other hand, when the cooling load decreases, the pressure inside the temperature sensing tube jl decreases, and the opening degree of the valve body 5 decreases.

ところで、弁体5が上記のごとくべlff−ズ9の伸縮
により作動棒8を介して変位する際、弁体5に設けた案
内部5bが弁孔4の内周面に沿って移動するので、弁体
5の支持系の剛性が高まり、しかも案内部5bと弁孔4
人口との乾性・粘性摩擦が加わることにより、弁体5の
軸直角方向への動きが確実に防止され、弁体5の振動に
起因する異音の発生を防止できる。
By the way, when the valve body 5 is displaced via the actuating rod 8 due to the expansion and contraction of the bell 9 as described above, the guide portion 5b provided on the valve body 5 moves along the inner peripheral surface of the valve hole 4. , the rigidity of the support system for the valve body 5 is increased, and the guide portion 5b and the valve hole 4 are
By applying dry and viscous friction with the human body, movement of the valve body 5 in the direction perpendicular to the axis is reliably prevented, and generation of abnormal noise due to vibration of the valve body 5 can be prevented.

なお、上述の実施例では、弁体5の案内部5bを四角形
状としたが、弁体5の形状はこれに限定されるものでは
なく、例えば三角形状等でもよく、また円筒状の外周面
に等間隔で突部5Cを形成1゛るようにしてもよく、そ
の他種々の形状もこ変I多可能であり、要は弁孔4の内
面に微小隙間で遊合1−る複数の突部5Cを有する形状
であ旧f、どのような形状であってもよい。
In the above-described embodiment, the guide portion 5b of the valve body 5 has a rectangular shape, but the shape of the valve body 5 is not limited to this, and may be triangular, for example, or may have a cylindrical outer peripheral surface. The protrusions 5C may be formed at equal intervals on the inner surface of the valve hole 4, and various other shapes are also possible. It may have any shape, even if it has a shape of 5C.

また、案内部5bの部分を摩擦抵抗の小さく、)jN動
性の良好な樹脂等により弁体5と別体で形成′1−るよ
うにし一ζもよい。この場合、案内部5b+よ弁体5で
なく、作動棒8に固定するようにしてもよい。
Alternatively, the guide portion 5b may be formed separately from the valve body 5 by a resin having low frictional resistance and good mobility. In this case, the guide portion 5b+ may be fixed to the actuating rod 8 instead of the valve body 5.

また、圧力応動部材としては、ベローズ8の代わりにダ
・イヤフラム等を用いることもできる。
Further, as the pressure responsive member, a diaphragm or the like may be used instead of the bellows 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明膨張弁の一実施例を示す縦断面図、第2
図は第1図に示す41体の平面図、第31菌は第2図の
縦断面図である。 2・・・高圧室、3・・・低圧室、4・・・弁孔、5・
・・弁イ本。 5b・・・案内部 5c・・・突部、6・・・スプリン
グ゛、8・・・作動棒、9・・・ベロ・−ズ(圧力応動
部材)、11・・・感温筒、12・・・作動空間、13
・・・導通孔。 代理人弁理士 岡 部 隆
Fig. 1 is a longitudinal cross-sectional view showing one embodiment of the expansion valve of the present invention;
The figure is a plan view of 41 cells shown in FIG. 1, and the 31st bacterium is a longitudinal cross-sectional view of FIG. 2. 2...High pressure chamber, 3...Low pressure chamber, 4...Valve hole, 5...
... Beni book. 5b... Guide portion 5c... Protrusion, 6... Spring, 8... Operating rod, 9... Bellows (pressure responsive member), 11... Temperature sensitive tube, 12 ... Working space, 13
... Conduction hole. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクルの高温商工の液冷媒を絞り通路を介して急
激に膨張さ・Uて、低温、低圧の霧状の冷媒にする膨張
弁において、前記冷凍サイクルの高温高圧の液冷媒が流
入する高圧室と、蒸発器の冷媒入口に接続される低圧室
と、この低圧室を前記高圧室に連通ずる弁孔と、この弁
孔との間に前記絞り通路を形成し、前記絞り通路の開度
を調整する弁体と、この弁体に、前記弁孔を閉じる方向
の力を作用さ・Uるように配置されたスプリングと、前
記蒸発器1目」の冷媒温度に感応した圧力を生じる感温
筒と、この感温筒内の圧力を受ける圧力応動部材と、I
)11記高圧室に連通し、前記圧力応動部材に前記感温
筒内圧力と反対方向の圧力を作用する作動空間と、前記
圧力応動部材と前記弁体との間の力の伝達を行・)作動
棒とを具備し、さらに前記弁孔の内側に位置する案内部
を前記弁体もしくは前記作動棒に備え、この案内部には
前記弁孔の内面に微小隙間を介して遊嵌合する複数の突
部を形成することを特徴とする膨張弁。
A high pressure chamber into which the high temperature and high pressure liquid refrigerant of the refrigeration cycle flows, in an expansion valve that rapidly expands the high temperature liquid refrigerant of the refrigeration cycle through a throttle passage and turns it into a low temperature, low pressure mist refrigerant. and a low pressure chamber connected to the refrigerant inlet of the evaporator, a valve hole that communicates the low pressure chamber with the high pressure chamber, and the throttle passage formed between the valve hole, and the opening degree of the throttle passage is controlled. a valve body to be adjusted; a spring arranged to apply a force in the direction of closing the valve hole to the valve body; and a temperature sensor that generates a pressure responsive to the temperature of the refrigerant in the first evaporator. a cylinder, a pressure-responsive member that receives pressure within the temperature-sensitive cylinder, and an I
) 11. An operating space that communicates with the high pressure chamber and applies pressure in the opposite direction to the temperature-sensitive cylinder internal pressure to the pressure responsive member, and transmits force between the pressure responsive member and the valve body. ) an actuating rod, and the valve body or the actuating rod further includes a guide portion located inside the valve hole, and the guide portion is loosely fitted to the inner surface of the valve hole through a small gap. An expansion valve characterized by forming a plurality of protrusions.
JP58204339A 1983-10-31 1983-10-31 Expansion valve Granted JPS6096871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204339A JPS6096871A (en) 1983-10-31 1983-10-31 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204339A JPS6096871A (en) 1983-10-31 1983-10-31 Expansion valve

Publications (2)

Publication Number Publication Date
JPS6096871A true JPS6096871A (en) 1985-05-30
JPH0446347B2 JPH0446347B2 (en) 1992-07-29

Family

ID=16488860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204339A Granted JPS6096871A (en) 1983-10-31 1983-10-31 Expansion valve

Country Status (1)

Country Link
JP (1) JPS6096871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226846A (en) * 2004-02-10 2005-08-25 Daikin Ind Ltd Expansion valve and refrigeration unit
JP2016184256A (en) * 2015-03-26 2016-10-20 愛三工業株式会社 Pressure control valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414027A (en) * 1977-06-30 1979-02-01 Amtrol Inc Method of controlling water pressure in piping and water pressure booster and control valve used for same
JPS5810056U (en) * 1981-07-13 1983-01-22 理学電機株式会社 X-ray diffractometer slit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414027A (en) * 1977-06-30 1979-02-01 Amtrol Inc Method of controlling water pressure in piping and water pressure booster and control valve used for same
JPS5810056U (en) * 1981-07-13 1983-01-22 理学電機株式会社 X-ray diffractometer slit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226846A (en) * 2004-02-10 2005-08-25 Daikin Ind Ltd Expansion valve and refrigeration unit
JP2016184256A (en) * 2015-03-26 2016-10-20 愛三工業株式会社 Pressure control valve

Also Published As

Publication number Publication date
JPH0446347B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US4542852A (en) Vibration damping device for thermostatic expansion valves
JP4142290B2 (en) Expansion valve
JP2002054860A (en) Thermostatic expansion valve
JPS6096871A (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
KR20030074134A (en) Expansion valve and a case for the same
JP3481036B2 (en) Expansion valve
JP3943843B2 (en) Soundproof cover for expansion valve
JPH0798390A (en) Thermo-element and thermostat
JP3987983B2 (en) Thermal expansion valve
JPH0861810A (en) Refrigerant control valve
JP2003065634A (en) Expansion valve
JPH0426854Y2 (en)
JPH0478390A (en) Evaporating pressure regulating valve for cooling device
JPS59173669A (en) Expansion valve
JP2689615B2 (en) Stirling refrigerator
JPH0654187B2 (en) Expansion valve with negative pressure prevention mechanism
JPS63270981A (en) Evaporating pressure control valve
JPH0637216Y2 (en) Temperature compensation type stay damper
JP2001248751A (en) Solenoid valve
JPH10205926A (en) Expansion valve
JP2001091107A (en) Expansion valve
JP2001091108A (en) Expansion valve
JPH0554972U (en) Expansion valve
JP2001124441A (en) Expansion valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees