JPS6096610A - Nicotinamide-adenine-dicucleotide phosphate-bound polymer - Google Patents

Nicotinamide-adenine-dicucleotide phosphate-bound polymer

Info

Publication number
JPS6096610A
JPS6096610A JP20426983A JP20426983A JPS6096610A JP S6096610 A JPS6096610 A JP S6096610A JP 20426983 A JP20426983 A JP 20426983A JP 20426983 A JP20426983 A JP 20426983A JP S6096610 A JPS6096610 A JP S6096610A
Authority
JP
Japan
Prior art keywords
carbon chain
formula
nicotinamide
adenine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20426983A
Other languages
Japanese (ja)
Other versions
JPS6353204B2 (en
Inventor
Hiroyuki Araki
宏之 荒木
Yukinae Yamazaki
幸苗 山崎
Hidekatsu Maeda
前田 英勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20426983A priority Critical patent/JPS6096610A/en
Publication of JPS6096610A publication Critical patent/JPS6096610A/en
Publication of JPS6353204B2 publication Critical patent/JPS6353204B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A polymer which allows a coenzyme to bind with a dehydrogenase in high binding yields, obtained by copolymerizing acrylamide with a nicotinamide- adenine-dinucletide phosphate derivative. CONSTITUTION:Acrylamide is radical-copolymerized with a polymerizable nicotinamide-adenine-dinucletide phosphate derivative of formula I and, optionally, an ionic group-containing polymerizable compound of formula II. In formula I , R<1> is H, or methyl, R<2> is a 5-10C carbon chain or a carbon chain interrupted by an amido or ether bond, this carbon chain may contain an oxygen-containing group, and M is an anion. In formula II, R<3> is H or methyl, R<4> is COOM, or -CONH-R<5> (wherein R<5> is a 1-5C carbon chain), or the like.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ニコチンアミド−アデニン−ジヌクレオチド
ホスフェ=!・を結合した新規な高分子物質に関するも
のである。 酵素反応にあたって補酵素としてニコチンアミド−アデ
ニン−ジヌクレオチドフォスフェート(以下単にNAD
Pと略記する)を要求する酵素を用いる酸化還元反応を
工業的に実施するためには、高あるいはホローファイバ
ーを有する反応器中に入れて、連続使用するシステムが
効果的であることが知られている。しかし、これまでに
N A +J Pをも一合した高分子物質の研刀1・開
発は、国内外において数少なく、これらのものは、デキ
ス1へラン〔1・ur。 J、Biochem、、49,511(1!474))
 、ポリエチレンイミン(Eur、J、Biocham
、、72.:10!](1977))、セファロース[
Arch、Biochem、Bj、opl+ys、 、
−168,665(197r):]などの既製の高分子
にNA叶を結合させた高分子物質である。これらの合成
法は、 NAI)Pにあらかじめ末端に官能基を有する
適当な長さの右磯ノ、(を導入後、その官能基を用いて
当詠高勺子に糸、−合させるというものである。これら
の例では、ポリエチレンイミンとの結合時に高価なカル
ボジイミ1−を使用([Eur。 J、Biochem、 、72,309(1977):
l したり、比較的安価であるが、結合の切れやずい[
3rCN法によりテキストランあるいはセファロースに
結合(Eur、J、Biochem。 、49,511(1974)、Arch、bioche
m、Biophys、、168,665(1975)コ
シているため、工業的見地からは、実用性のあるものと
は到底言い難い。また、BrCN法による場合は結合収
率は明記されていないが、相当低いものとJlli m
される。一方、ポリエチレンイミンへの結合の場合には
、比較的高い結合収率でNA叶が高分子に結合されてい
るが、その補酵素活性をみると、もとのNADPの場合
に比べて36%にとどまるという低さである。従って、
NADPを結合した高分子について、安価な試薬を用い
て簡単に合成でき、その結合は強固であり、しかも高い
補酵素活性を有する高分子の満足なものは未だに得られ
ておらず、その開発が要望されていた。本発明者らは、
このような要望に応えるべく鋭意研究を重ねた結果、本
発明を完成するに到った。 即ち、本発明は、アクリルアミドと、一般式(式中、R
1は水素又はメチル基、R2は炭素数5〜10個の炭素
鎖、又はその中間にアミド結合又はエーテル結合を有す
る炭素鎖であり、該炭素鎖には含酸素基が結合していて
もよく、旧ま陽イオンである) で表わされる重合性のニコチンアミ1−一アデニンージ
ヌクレオチドホスフエー1へ誘導体とをラジカル共重合
して得られる高分子物質が提供される。 また、本発明によ扛ば、アクリルアミドと、前記一般式
(1)で表わされる重合性のNADP誘導体と、一般式 %式%() (Rsは炭素数1〜5個の炭素鎖又は中間にアミド結合
又はエーテル結合を有する炭素鎖であり、該炭素鎖には
含酸素基が結合していてもよく、R6及びR7は水素、
メチル基又はエチル基であり、同は酸イ]加塩を形成し
ていてもよい) で表わされるイオン性基を有する重合性化合物とをラジ
カル共重合して得られる高分子物質が提供される。 本発明の前記部分す物質を繰返し構造単位によりまとめ
て示すと次の通りである。 前記式中、Qと01は正の整数であり、n及び[)は0
又は正の整数であり、1り1〜R’及び旧よ前記と同じ
意味を有する。また、この式において、Q、m、n及び
Pの比は高分子(1゛1中の各部分において不規則であ
るが、n+nとIllとIIの比は、通常、]0 : 
1 : 0から500 : 1 : 100までの範囲
であり、高分子物質の重量平均分子量は、通常、10万
以下である。 前記一般式(I)及び(11)において、R2は一般に
は炭素数5〜25を有するものが好ましく用いられ、例
えば、以下に示すようなものの使用が好ましい。 HCHz ) Q− 一□H2)m−CONH−(CH2)n −→CH2)
O−CONH(CH2)P−CONH−(CHz)q−
べG羽咋÷t −
The present invention provides nicotinamide-adenine-dinucleotide phosphene =! This relates to a new polymeric substance that combines . Nicotinamide-adenine-dinucleotide phosphate (hereinafter simply NAD) is used as a coenzyme in the enzyme reaction.
In order to industrially carry out redox reactions using enzymes that require enzymes (abbreviated as P), it is known that a system in which they are placed in a reactor with high or hollow fibers and used continuously is effective. ing. However, to date, there have been only a few developments in Japan and abroad of polymeric materials that also combine N A + J P, and these materials have been used for Dex 1 [1 ur]. J.Biochem, 49,511(1!474))
, polyethyleneimine (Eur, J, Biocham
,,72. :10! ] (1977)), Sepharose [
Arch, Biochem, Bj, opl+ys, ,
-168,665(197r):] is a polymeric material in which NA leaves are bonded to ready-made polymers such as -168,665(197r):]. These synthetic methods involve introducing into NAI)P an appropriate length of strands that have a functional group at the end, and then using that functional group to attach the strand to the strand. In these examples, expensive carbodiimide 1- is used when conjugating with polyethyleneimine ([Eur. J, Biochem, 72, 309 (1977):
Although it is relatively inexpensive, it may cause breakage of the bond or damage [
Binding to Textran or Sepharose by the 3rCN method (Eur, J. Biochem., 49, 511 (1974), Arch, bioche
M, Biophys, 168, 665 (1975) Since it is stiff, it is hard to say that it is practical from an industrial standpoint. In addition, although the binding yield is not specified when using the BrCN method, it is said that it is quite low.
be done. On the other hand, in the case of binding to polyethyleneimine, NA leaf is bound to the polymer with a relatively high binding yield, but its coenzyme activity is 36% higher than that of the original NADP. It remains at a low level. Therefore,
Regarding polymers that bind NADP, a satisfactory polymer that can be easily synthesized using inexpensive reagents, has strong binding, and has high coenzyme activity has not yet been obtained, and development is in progress. It was requested. The inventors
As a result of extensive research in order to meet these demands, we have completed the present invention. That is, the present invention relates to acrylamide and the general formula (wherein R
1 is hydrogen or a methyl group, R2 is a carbon chain having 5 to 10 carbon atoms, or a carbon chain having an amide bond or an ether bond in the middle, and an oxygen-containing group may be bonded to the carbon chain. A polymeric substance obtained by radical copolymerization of a polymerizable nicotinamide 1-1 adenine dinucleotide phosphor 1 represented by (formerly a cation) with a derivative is provided. Further, according to the present invention, acrylamide, a polymerizable NADP derivative represented by the general formula (1), and the general formula % formula % () (Rs is a carbon chain having 1 to 5 carbon atoms or an intermediate It is a carbon chain having an amide bond or an ether bond, and an oxygen-containing group may be bonded to the carbon chain, and R6 and R7 are hydrogen,
A polymer substance obtained by radical copolymerization with a polymerizable compound having an ionic group represented by a methyl group or an ethyl group (which may form an acid salt) is provided. The above-mentioned substances of the present invention are summarized by repeating structural units as follows. In the above formula, Q and 01 are positive integers, and n and [) are 0
or is a positive integer, and has the same meaning as 1 to R' and the above. In addition, in this formula, the ratios of Q, m, n, and P are irregular in each part of the polymer (1゛1, but the ratios of n+n, Ill, and II are usually ]0:
It ranges from 1:0 to 500:1:100, and the weight average molecular weight of the polymeric substance is usually 100,000 or less. In the general formulas (I) and (11), R2 preferably has 5 to 25 carbon atoms, and for example, the following compounds are preferably used. HCHz) Q- 1□H2)m-CONH-(CH2)n -→CH2)
O-CONH(CH2)P-CONH-(CHz)q-
Be G Hakui ÷ t −

〔グルコース−6−リン酸デヒ1(ロゲナーゼにZJする活性の測定〕[Glucose-6-phosphate dehyde 1 (measurement of ZJ activity to logonase)]

100mMのトリス(ヒドロキシメチル)アミノメタン
−塩酸緩衝液(1’l+7.2)中に、クルコース−6
−リン酸1.2m)丁、硫酸マクネンウム7.8mM及
びPA−V。 PA−V−VlもしくはIIA−V−■を結合N A 
D ))濃度として0.3mMからO、O:375mM
の濃度で含むL(性液(金星1.24m(1,)を調製
し、:)0℃に保温下、Q、6471g酵素蛋白質景の
ロ4コメストツク・メセンテロイテノ、グルコース−6
−リン酸デヒドロゲナーゼ(***ベーリンガー社製)を
含む4μ0の酵素液を添加して反応を開始させた。反応
の進行は、:10mmにおけ4光度の増加を経時的にレ
コーダーに記録させることによって追跡した。このよう
にして、結合NADPの各濃度における初速度を測定し
、これから、各高分子の酵素反応における最大速度を算
出した。 同条件下で測定したNA叶の最大速度を100%とする
とPA−V、 PA−V−Vl(71最大速度はそれぞ
れ47.47%であった。 実施例6 実施例5で示した基質液(]、、24mR)を、30°
Cに保温下、0.29μgn5素蛋白質量の酵母を起源
どするグルコース−6−リン酸デヒドロゲナーゼを含む
4μQの酵素液を添加して反応を開始させた。反応の進
行は、340nmにおける吸光度の増加によって追跡し
た。1)A−Vの最大速度はもとのNADPを100%
とすると、116%を示した。 実施例7 0.093M +−リエタノールアミン・塩酸塩−水酸
化す1−リウム緩街液(PI−18,5)中に、L−グ
ルタミン酸6.7mM及びPA−V、PA−V−VI又
はPA−V−■を結合NADPの濃度として0.3〜0
.0188mMの濃度で含ゞ♀孔性液(全量1.24m
 Q、 )を調整し、13μg酵素蛋白質量の酵母を起
源とするクルタフ−1−デヒ1−ロゲナーゼ(オリエン
タル酵1;ユ礼製)を含む4μQの酵素液を添加して反
応付開始させた。反応の進行は。 340nn+における吸光度の増加により追跡した。l
’八−VのNADPの最大速度に苅する割合は117%
に達した。 実施例8 実施例7で示したノ、(質+1* (1、24+n Q
 )を30℃に保温下、44μg酵素蛋白り′L量の牛
肝臓を起源とするグルツメ−1−デヒドロゲナーゼ(西
独ベーリンガー社製)を含む4μαの酵素液を添加して
反応を開始させた。反応の進行は:l 40 n mに
お(づる吸光度の増加により追跡した。1)Δ−■−■
のN A D l’に苅する最大速度は100%を示し
た。 特5′1庁長官殿 1、 事件の表示 昭和 58 年特γF願第 204
269 92、 発明の8拘−ニコチンアミドーアデニ
ンージヌクレAヂド小スフ上−トを結合した高分子物質 3、 補正をJる者 ′″′J1′J1イ′1.1.1訂出願人住 所 東京
都千代田区霞か関1丁目3番1円氏 名 (114) 
工業技術院長 川 1)裕 部5、 補正命令の日イ」
 自 光 6、 補正により増加づ゛る発明の数 な し1、明細
書第3頁下から第33行口の「ジヌクレオチドフォスフ
ェート」を「ジヌクレオチドホスフ1−1〜」に訂正し
まず。
Cucrose-6 in 100 mM Tris(hydroxymethyl)aminomethane-HCl buffer (1'l+7.2)
- Phosphoric acid 1.2mM), macanenium sulfate 7.8mM and PA-V. Combine PA-V-Vl or IIA-V-■ NA
D)) Concentration from 0.3mM to O, O: 375mM
L (sexual fluid (Venus 1.24 m(1,) was prepared and kept at 0℃, containing 6471 g of enzyme protein, glucose-6) at a concentration of
- The reaction was started by adding 4μ0 of an enzyme solution containing phosphate dehydrogenase (manufactured by Boehringer, West Germany). The progress of the reaction was followed by recording the increase in light intensity at :10 mm over time on a recorder. In this way, the initial velocity at each concentration of bound NADP was measured, and from this the maximum velocity in the enzymatic reaction of each polymer was calculated. When the maximum velocity of NA leaf measured under the same conditions is taken as 100%, the maximum velocity of PA-V and PA-V-Vl (71 was 47.47%, respectively. Example 6 Substrate solution shown in Example 5 (], 24mR), 30°
The reaction was initiated by adding 4 μQ of an enzyme solution containing yeast-derived glucose-6-phosphate dehydrogenase with a 0.29 μgn pentagonal protein amount to C while keeping it warm. The progress of the reaction was followed by the increase in absorbance at 340 nm. 1) The maximum speed of A-V is 100% of the original NADP
Therefore, it showed 116%. Example 7 6.7 mM of L-glutamic acid and PA-V, PA-V-VI or PA-V-■ as the concentration of bound NADP from 0.3 to 0.
.. Porous liquid containing ♀♀ at a concentration of 0.188mM (total volume 1.24mM)
Q, ) was adjusted and reaction was started by adding 4 μQ of an enzyme solution containing 13 μg of enzyme protein of Kurtaf-1-dehy-1-logenase (Oriental Koko 1; manufactured by Yurei) originating from yeast. . What is the progress of the reaction? Tracked by increase in absorbance at 340nn+. l
'8-V NADP maximum speed rate is 117%
reached. Example 8 As shown in Example 7, (quality + 1 * (1, 24 + n Q
) was kept at 30 DEG C., and a 4 .mu..alpha. enzyme solution containing 44 .mu.g of enzyme protein and Glutume-1-dehydrogenase (manufactured by Boehringer, West Germany) originating from bovine liver was added to initiate the reaction. The progress of the reaction was followed by the increase in absorbance at 40 nm.
The maximum speed of cutting to N A D l' was 100%. Commissioner of the Patent Act 5'1 Agency 1, Indication of the case 1981 Patent γF Application No. 204
269 92, Clause 8 of the Invention - Polymer Substance Combining Nicotinamide Adenine-Dinucleate Small Sulfate 3, Person Who Makes Amendment'''J1'J1I'1.1.1 Revised Applicant address: 1-3-1 Kasumikaseki, Chiyoda-ku, Tokyo Name (114)
Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe 5, Date of amended order
Jiko 6. Number of inventions increasing due to amendments None 1. "Dinucleotide phosphate" at the beginning of line 33 from the bottom of page 3 of the specification was corrected to "dinucleotide phosphate 1-1~".

Claims (1)

【特許請求の範囲】[Claims] (1)アクリルアミドと、一般式 (式中、R1は水素又はメチル基、R2は炭素数5〜1
0個の炭素鎖、又はその中間にナミド結合又はエーテル
結合を有する炭素鎖であり、該炭素鎖には含酸素基が結
合していてもよく、Nは陽イオンである) で表わされる重合性のニコチンアミド−アデニン(式中
、R1は水素又はメチル基、■(2は炭素数5〜10個
の炭素鎖、又はその中間にアミド結合又はエーテル結合
を有する炭素鎖であり、該炭素鎖には含酸素基が結合し
ていてもよく、門は陽イオンで、ある) で表わされる重合性のニコチンアミ1−一アデニンージ
ヌクレオチドホスフエーI−誘心体と、一般式 (1 %式% (式中、R3は水素又はメチル基、R4は−COOM 
(は炭素数1〜5個の炭素鎖又は中間にアミド結合又は
エーテル結合を有する炭素鎖であり、該炭素鎖には含酸
素基が結合してもよく、R6及びR7は水素、メチル基
又はエチル基であり、同−又は異っを形成していてもよ
い) で表わされるイオン性基を有する重合性化合物とをラジ
カル共重合して得られる高分子物質。
(1) Acrylamide and the general formula (in the formula, R1 is hydrogen or a methyl group, R2 has 5 to 1 carbon atoms)
0 carbon chain, or a carbon chain having a namide bond or an ether bond in the middle, an oxygen-containing group may be bonded to the carbon chain, and N is a cation. nicotinamide-adenine (in the formula, R1 is hydrogen or a methyl group, may be bonded with an oxygen-containing group, and the gate is a cation, and is a polymerizable nicotinamide 1-1 adenine dinucleotide phosphor I-dicenter represented by the general formula (1% formula % (wherein R3 is hydrogen or a methyl group, R4 is -COOM
( is a carbon chain having 1 to 5 carbon atoms or a carbon chain having an amide bond or an ether bond in the middle; an oxygen-containing group may be bonded to the carbon chain; R6 and R7 are hydrogen, a methyl group, or A polymeric substance obtained by radical copolymerization with a polymerizable compound having an ionic group represented by:
JP20426983A 1983-10-31 1983-10-31 Nicotinamide-adenine-dicucleotide phosphate-bound polymer Granted JPS6096610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20426983A JPS6096610A (en) 1983-10-31 1983-10-31 Nicotinamide-adenine-dicucleotide phosphate-bound polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20426983A JPS6096610A (en) 1983-10-31 1983-10-31 Nicotinamide-adenine-dicucleotide phosphate-bound polymer

Publications (2)

Publication Number Publication Date
JPS6096610A true JPS6096610A (en) 1985-05-30
JPS6353204B2 JPS6353204B2 (en) 1988-10-21

Family

ID=16487672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20426983A Granted JPS6096610A (en) 1983-10-31 1983-10-31 Nicotinamide-adenine-dicucleotide phosphate-bound polymer

Country Status (1)

Country Link
JP (1) JPS6096610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002929A1 (en) * 1984-11-08 1986-05-22 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
WO1994029331A1 (en) * 1993-06-11 1994-12-22 Sloan-Kettering Institute For Cancer Research Nicotinamide ribonucleotide isosters, isosteric nad analogues. their syntheses and use in treatments of alcoholism and neoplastic diseases
US7220854B1 (en) 1982-06-23 2007-05-22 Enzo Life Sciences, Inc. C/O Enzo Biochem, Inc. Sugar moiety labeled nucleotide, and an oligo- or polynucleotide, and other compositions comprising such sugar moiety labeled nucleotides
US8097405B1 (en) 1982-06-23 2012-01-17 Enzo Biochem, Inc. Nucleic acid sequencing processes using non-radioactive detectable modified or labeled nucleotides or nucleotide analogs, and other processes for nucleic acid detection and chromosomal characterization using such non-radioactive detectable modified or labeled nucleotides or nucleotide analogs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167813U (en) * 1988-05-09 1989-11-27

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220854B1 (en) 1982-06-23 2007-05-22 Enzo Life Sciences, Inc. C/O Enzo Biochem, Inc. Sugar moiety labeled nucleotide, and an oligo- or polynucleotide, and other compositions comprising such sugar moiety labeled nucleotides
US8097405B1 (en) 1982-06-23 2012-01-17 Enzo Biochem, Inc. Nucleic acid sequencing processes using non-radioactive detectable modified or labeled nucleotides or nucleotide analogs, and other processes for nucleic acid detection and chromosomal characterization using such non-radioactive detectable modified or labeled nucleotides or nucleotide analogs
WO1986002929A1 (en) * 1984-11-08 1986-05-22 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4828979A (en) * 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
WO1994029331A1 (en) * 1993-06-11 1994-12-22 Sloan-Kettering Institute For Cancer Research Nicotinamide ribonucleotide isosters, isosteric nad analogues. their syntheses and use in treatments of alcoholism and neoplastic diseases
US5569650A (en) * 1993-06-11 1996-10-29 Sloan-Kettering Institute For Cancer Research C-nucleoside isosters of analogs thereof and pharmaceutical compositions
US5658890A (en) * 1993-06-11 1997-08-19 Sloan-Kettering Institute For Cancer Research C-nucleoside isostere of nicotinamide adenine dinucleotide, analogs thereof and use as anti-cancer agent
US5700786A (en) * 1993-06-11 1997-12-23 Sloan-Kettering Institute For Cancer Research Analogues of adenosine 5'diphosphate and pharmaceutical compositions thereof

Also Published As

Publication number Publication date
JPS6353204B2 (en) 1988-10-21

Similar Documents

Publication Publication Date Title
Beeckmans et al. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate‐malate shuttle: a study involving fumarase, malate dehydrogenase, citrate synthase and aspartate aminotransferase
Fisher [3] l-Glutamate dehydrogenase from bovine liver
Abelson et al. Synthesis of the aspartic and glutamic families of amino acids in Escherichia coli
Kuehn et al. Ribulose-1, 5-diphosphate carboxylase from hydrogenomonas eutropha and hydrogenomonas facilis. I. purification, metallic ion requirements, inhibition, and kinetic constants
Falcoz‐Kelly et al. The Methionine‐Repressible Homoserine Dehydrogenase and Aspartokinase Activities of Escherichia coli K12: Preparation of the Homogeneous Protein Catalyzing the Two Activities. Molecular Weight of the Native Enzyme and of its Subunits
JPS6096610A (en) Nicotinamide-adenine-dicucleotide phosphate-bound polymer
Haselkorn et al. The Rhodobacter capsulatus genome
Biellmann et al. Mechanism of the alcohol dehydrogenases from yeast and horse liver
Soda et al. Crystalline L-leucine dehydrogenase
May et al. Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans
Schiele et al. Investigations of the Structure of 3‐Methylcrotonyl‐CoA Carboxylase from Achromobacter
Hamada et al. Properties and subunit structure of pig heart pyruvate dehydrogenase
Goldberg [70] Lactate dehydrogenase-X from mouse testes and spermatozoa
Yoshimoto et al. Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonus putida
Szewczyk et al. Purification by affinity chromatography of the dicarboxylate carrier from bovine heart mitochondria
Alvarez-Ossorio et al. Purification and characterization of nitrate reductase from the halophile archaebacterium Haloferax mediterranei
Baxi et al. Characterization of the HeLa Cell DNA Polymerase. alpha.-Associated Ap4A Binding Protein by Photoaffinity Labeling
JPS61152286A (en) Dna fragment carrying genetic information to produce cephalosporin c acylase
Anraku et al. Transport of Sugars and Amino Acids in Bacteria: VII. Characterization of the Reaction of Restoration of Active Transport Mediated by Binding Protein
Shibuya et al. Studies on stringent control in a cell-free system: regulation by guanosine-5'-diphosphate-3'-diphosphate of the synthesis of elongation factor Tu
Tsai et al. Guanine nucleotide dependent formation of a complex between choleragen (cholera toxin) A subunit and bovine brain ADP-ribosylation factor
Cilento Pyridine coenzymes. III. Model reactions of the transhydrogenase systems
Lee et al. Purification and characterization of bovine brain γ-aminobutyraldehyde dehydrogenase
JPH0892294A (en) Human activated protein c derivative
Standring et al. Photoaffinity labeling of lactate dehydrogenase by the carbene derived from the 3-diazirino analog of nicotinamide adenine dinucleotide