JPS6095839A - Electron tube and its manufacture - Google Patents

Electron tube and its manufacture

Info

Publication number
JPS6095839A
JPS6095839A JP20256583A JP20256583A JPS6095839A JP S6095839 A JPS6095839 A JP S6095839A JP 20256583 A JP20256583 A JP 20256583A JP 20256583 A JP20256583 A JP 20256583A JP S6095839 A JPS6095839 A JP S6095839A
Authority
JP
Japan
Prior art keywords
temperature
evaporation source
evaporation
photocathode
electron tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20256583A
Other languages
Japanese (ja)
Inventor
Takashi Noji
隆司 野地
Hiroshi Katagawa
片川 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20256583A priority Critical patent/JPS6095839A/en
Publication of JPS6095839A publication Critical patent/JPS6095839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To make the vacuum evaporation of semi-metal material more stable and obtain and electron tube with a photoelectric surface with high sensitivity by providing the temperature measurement of the semi-metal evaporation inside the electron tube. CONSTITUTION:In the vicinity of a semi-metal evaporation source 1, an infrared snsor 16, for example, a semiconductor element that uses the photoconductive effect and whose resistance value is reduced when the infrared rays from a heated evaporation source are incident, is provided at a position where the vacuum evaporated film of antimony 3 is not applied and is connected to a measuring instrument 17. Since the temperature of the evaporation source measured using such a sensor 16 can be also externally detected by the melted state oe antimony 3, the evaporation source temperature can be predicted and controlled so that the above temperature may not rise up to a temperature at which the eutectic mixture of the antimony 3 and a boat 2 is produced in the first place, and the Sb vacuum evaporation speed when a photoelectric surface is formed can almost constantly be controlled to a desired value based on those data related to the preset experimentally measured evaporation source temperature and the calibrated Sb vacuum evaporation speed, in the second place, by interlocking said temperature with the evaporation source power supply 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は□光電面を有する電子η例えばX線螢光増倍
管およびその製造方法に係り特にその光電面形成技術に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron η having a photocathode, such as an X-ray fluorescence multiplier, and a method for manufacturing the same, and particularly to a technique for forming the photocathode.

〔発明の技術的背景〕[Technical background of the invention]

X線螢光増倍管のように光′畝面を有する電子管の光電
面は光電子を放出する薄膜で形成され、セシウム(Cs
)、ナトリウム(Na)、カリウム(K)のような蒸気
圧の高いアルカリ金属材料と、アンチモン(sb) 、
ビスマス(Bj) 、テルル(Te)のような半金属H
別との反応化合物により摺られる。この反応化合物は各
々、真空中での蒸着によって薄膜を形成し、該薄11ζ
;1相互の反応により生成されるものである。しかして
、この光電面形成方法はアルカリ金属蒸発と半金属蒸発
を交互に繰り返しその光電電流の伸長度によって光電面
の最適な膜厚と組成を得る方法あるいは一定量の半金属
を蒸着して予めその++;、S厚を決めておき、その半
金属膜にアルカリ金属ス(ζ気を反応させて所望の光電
面を形成する方法等がある。
The photocathode of an electron tube, which has a light ridge like an X-ray fluorescence multiplier, is made of a thin film that emits photoelectrons.
), alkali metal materials with high vapor pressure such as sodium (Na), potassium (K), and antimony (sb),
Metalloids such as bismuth (Bj) and tellurium (Te)
Printed by a reaction compound with another. The reactants each form a thin film by vapor deposition in vacuum, the thin 11ζ
; 1 is produced by mutual reaction. Therefore, this method of forming a photocathode involves alternately repeating alkali metal evaporation and semimetal evaporation to obtain the optimal film thickness and composition of the photocathode depending on the degree of elongation of the photoelectric current, or by depositing a certain amount of semimetal in advance. There is a method of forming a desired photocathode by predetermining the thickness of S, and reacting an alkali metal (ζ) with the semimetal film.

このような光電面形成法において、半金属膜の膜厚は光
電面の感度に影響を与える因子として重要であり、光電
子放出能の最大値を与える膜厚範囲に制御しなけれはな
らない。
In such a method of forming a photocathode, the thickness of the semimetal film is an important factor that affects the sensitivity of the photocathode, and must be controlled within a thickness range that provides the maximum photoelectron emission ability.

このため、従来その;膜厚測定法には、X線管螢光増倍
管の例では、ガラス真空外囲器の一部、例えば光電面形
成部の外囲器側壁に光透過窓を設け、該光透過@C二付
着する半金属膜に対応する光透過率変化を光電管等で検
出し、この検出ril:を半金属膜厚に換算して被光電
面形成面上の半金属膜を制御する方法が採られている。
For this reason, in conventional film thickness measurement methods, in the case of X-ray tubes and fluorescent multiplier tubes, a light-transmitting window is provided in a part of the glass vacuum envelope, for example, on the side wall of the envelope in the photocathode forming part. , the change in light transmittance corresponding to the attached semi-metal film is detected by a phototube, etc., and this detected ril: is converted into the semi-metal film thickness to calculate the semi-metal film on the surface where the photoelectrode is formed. A method of control is being adopted.

また仲の膜厚測定法としては真空外囲器内にホトダイオ
ードを配設し、その光入射窓に付着する半金属の膜厚に
対応するホトダイオードへの光入射量の低下により、所
望の膜厚値を得る方法がある。
In addition, as a method for measuring film thickness, a photodiode is placed inside a vacuum envelope, and the amount of light incident on the photodiode is reduced in accordance with the thickness of the metalloid attached to the light entrance window, so that the desired film thickness value can be obtained. There is a way to get it.

しかしこれらの半金属膜厚制御法はいずれも光電面形成
面に着目した方法であって、光電面が形成される過程を
X線螢光増倍管の入力面上の光電面の光゛屯電流の変化
を検出しながら光電面を形成するか、あるいは前述の光
透過率の変化によって光電面を形成している。このよう
な方法は光Nm材ネ・)の半金属の膜厚制御には有効で
あるが光電面形成が真空蒸着であってその蒸発速度が薄
膜の半金属の物性にも大きな影響を与え、ひいては光電
面の感度の高低にも影響を及ぼすので上記のような従来
の方法では充分な製造上の影響要因を掌握して光電面を
形成しているとは云えない。
However, all of these semimetal film thickness control methods focus on the surface on which the photocathode is formed, and the process of forming the photocathode is based on the amount of light on the photocathode on the input surface of an X-ray fluorescence multiplier tube. A photocathode is formed while detecting a change in current, or a photocathode is formed by detecting a change in light transmittance as described above. Although such a method is effective for controlling the film thickness of the semimetal of the optical Nm material, the photocathode is formed by vacuum evaporation, and the evaporation rate has a great effect on the physical properties of the thin film of the semimetal. This also affects the sensitivity of the photocathode, so it cannot be said that the conventional methods described above are capable of forming a photocathode with sufficient control over the factors that influence production.

以下、第1図ないし第4図を参照して従来の光電面形成
方法について説明する。第1図および第2図に示す如く
、半金属蒸発源1は金属製の板材からなるボート2にア
ンチモン3を融着同化させて成□す、X線螢光゛増倍管
の真空外囲器4内に光電面形成面である入力面5が望め
る位置に配設されている。蒸発源1は第1図および第2
図に示した如く結線され、蒸発用電源6によって蒸発源
1への通電々流の制御によってアンチモン3を蒸発させ
る。蒸、発源1の温度制御はこの電流値によって知るの
みであって、結線の不安定さが電流導入端子7及び蒸発
源1の支持構体で発生するので同一電流値に対して、再
現性よく蒸発源温度を一定にすることは極めて困難であ
る。
Hereinafter, a conventional method for forming a photocathode will be described with reference to FIGS. 1 to 4. As shown in FIGS. 1 and 2, a semimetal evaporation source 1 is a vacuum envelope of an X-ray fluorescence multiplier tube, which is formed by fusing and assimilating antimony 3 to a boat 2 made of a metal plate. An input surface 5, which is a photocathode forming surface, is arranged in the container 4 at a position where it can be seen. Evaporation source 1 is shown in Figures 1 and 2.
Wires are connected as shown in the figure, and antimony 3 is evaporated by controlling current flow to the evaporation source 1 using an evaporation power source 6. Temperature control of the evaporation source 1 is only known by this current value, and since instability of the wiring occurs at the current introduction terminal 7 and the support structure of the evaporation source 1, it is possible to control the temperature of the evaporation source 1 with good reproducibility for the same current value. It is extremely difficult to keep the evaporation source temperature constant.

従って、アンチモンの蒸発速度を安定して知ることがで
きないので光電面形成に与える影響も充分に把押して製
造することが難しい。
Therefore, since the evaporation rate of antimony cannot be stably known, it is difficult to manufacture the antimony while fully understanding its influence on the formation of the photocathode.

ところで蒸発源1は金属製例−えば鉄、ニッケル、クロ
ムを主成分とするステンレス製のボート2を通電加熱す
ることによって融着されたアンチモン3を蒸発させるも
のである。こ:の時、ボート材料と溶融アンチモンとの
間で固液反応が行なわれ、温度が高い時には上記4成分
系の化合物又は共融混合物が生成されアンチモン蒸着後
固溶体となる。
By the way, the evaporation source 1 evaporates the fused antimony 3 by heating a boat 2 made of metal, for example, stainless steel whose main components are iron, nickel, and chromium. At this time, a solid-liquid reaction takes place between the boat material and molten antimony, and when the temperature is high, the above-mentioned four-component compound or eutectic mixture is produced and becomes a solid solution after antimony vapor deposition.

その組成は上界した温度により微妙に異なり例えば5b
−Nl 、5b−Fe、8b−CIの各2成分系の既知
の状態図に示されるとおりである。(、Con5tit
ution ofBlnartAlloys、、Mat
ellurgy and Matelluglcal 
Engineer−ing 5eries、 Meta
ls Reference Book etc、 )こ
こには−例として8b−Nlの状態図を第3図に示す。
Its composition differs slightly depending on the temperature, for example 5b
-Nl, 5b-Fe, and 8b-CI, as shown in known phase diagrams of two-component systems. (,Con5tit
tion ofBlnartAlloys,,Mat
ellurgy and matelrugcal
Engineer-ing 5eries, Meta
ls Reference Book, etc.) Herein - As an example, a phase diagram of 8b-Nl is shown in FIG.

また真、空中でsbを蒸着したあとの蒸発源を8b融着
表面からIBI”MA分析により元素分析をした結果は
第4図(R) 、 (b)の如くであり、第4図(a)
の場合sb主成分の中にFe、Nl、Crが存在するこ
とが確認され明らかにこの時の溶融温度が高いことが証
明された。
In addition, the results of elemental analysis of the evaporation source after evaporating sb in vacuum and air by IBI''MA analysis from the 8b fusion surface are shown in Figures 4 (R) and (b), and Figure 4 (a). )
In the case of sb, it was confirmed that Fe, Nl, and Cr were present in the main components, and it was clearly proven that the melting temperature at this time was high.

望ましい状聾は第4図(b)の場合であり、8b以外の
元≦シ;けほとんど同定されず、蒸発源1がより低温で
あったことがわかる。
A desirable state of deafness is the case shown in FIG. 4(b), in which almost no elements other than 8b were identified, indicating that the evaporation source 1 was at a lower temperature.

、、このような2種類のアンチモン蒸発源の蒸着終了、
後を観察するど明らかにその形態は異なりアンチモン単
独の第4図(blの場合は緻密で均一な再結晶したsb
針状晶となってボートに固若しているのに対し、第4図
(alの4成分系では各々の成分の共融可能な温度領域
にと昇したため、この加熱温度によって若干屓なるが、
Sb゛土成分成分状物とそれを取り囲む他の3成分の比
率の高い針状固化物となる場合や417M分が完全に共
融した乱れた針状集合体となる場合がある。この共融し
た5bla発源は蒸着終了後には極めて脆化した物質の
粉末状を呈しでおリポート2より容易に脱落しやすい。
,,Completion of evaporation of these two types of antimony evaporation sources,
When observed later, it is clear that the form is different from that of antimony (Fig.
On the other hand, in the four-component system shown in Figure 4 (al), the temperature rises to the temperature range where each component can be eutectic, so the heating temperature causes some scaling. ,
There are cases where the result is a needle-like solidified product with a high ratio of the Sb soil component and the other three components surrounding it, or a disordered needle-like aggregate in which the 417M component is completely eutectic. This eutectic 5bla source appears in the form of an extremely brittle powder after the completion of vapor deposition, and is more likely to fall off than in Report 2.

このように蒸d時の温度が高いと不必要な生成物が蒸発
源に形成され、これらは光電面形成終了後のX線螢光増
倍管への振動や衝撃(二よって脱落してしまい光電面形
成された入力面5」二や出力面上に付着して光像の黒点
となり画面品位を損ねる。
If the temperature during evaporation is high in this way, unnecessary products are formed in the evaporation source, and these products may fall off due to vibrations or shocks (2) to the X-ray fluorescence multiplier tube after photocathode formation is completed. It adheres to the input surface 5'' and the output surface on which the photocathode is formed, forming black spots on the optical image and impairing the screen quality.

また高′覗圧印加13周辺に静電付着すると突起物とな
るので陽極電圧25〜30tvの1ij4電圧特性の低
下原因の1つにもなる。
Further, if it is electrostatically deposited around the high' viewing pressure application 13, it becomes a protrusion, which is one of the causes of the deterioration of the 1ij4 voltage characteristics at an anode voltage of 25 to 30 tv.

光′鑞面の形成工程は、X線螢光増倍管の製造のほぼ最
終工程にあるため、このように半金属蒸発源からの微小
なも゛内ゴミを管外へ除去する手段は難しい。また、こ
のゴミの発生予測は難しく診断及び画質上の間趨となり
やすかった。
Since the process of forming the optical solder surface is almost the final step in the production of X-ray fluorescence multiplier tubes, it is difficult to remove minute dust from the metalloid evaporation source to the outside of the tube. . Furthermore, it is difficult to predict the occurrence of this dust, which tends to lead to problems in diagnosis and image quality.

〔発明の目的〕[Purpose of the invention]

この発明は電子管の特に光電面の製造方法において、そ
の電子管の管内に半金属蒸発源の温度計測用センサーを
配設することにより、従来の、不安定な半金属材ネ1の
蒸着をより安定なものにして高感度な光電面を有する電
子管を提供すると共に電子管の高性能かつ安定生産と品
質低下の発生原因を根絶する製造方法を提供するもので
ある。
This invention provides a method for manufacturing an electron tube, particularly a photocathode, by arranging a sensor for measuring the temperature of a semimetal evaporation source inside the electron tube, thereby making the vapor deposition of an unstable semimetal material 1 more stable. The object of the present invention is to provide an electron tube having a photocathode with high sensitivity, and also to provide a manufacturing method that enables high-performance and stable production of electron tubes and eradicates the causes of quality deterioration.

、〔発明の概要〕 本発明は真空外囲器内部に半金属およびアルカリ:金属
等の化合物からなる光rハ面を有する電子管において、
半金属蒸発源の温度を検出する側渦センサを具備するこ
とを特徴とする電子管さらには真空外囲器内部に半金属
およびアルカリ金属等の化n物からなる光電面をイ1す
る7(L(τ:の製造方法において、半金属薄膜および
アルカリ全屈薄膜の・反応化合物によって充電面を形成
する1′、程のうち、半金属薄膜用蒸発源近傍に配設さ
れた側渦センサにより半金属の蒸発源温度を検知し、該
r7a JUを所定温度以下にて蒸発温度を制御し得る
半金属蒸着工程を具備することを特徴とする電子管の製
造方法にあ・す、半金属の蒸発源を所定の温度に保ち半
金属蒸着の制御に役立てかつ共融物が形成され易い過度
な昇温を防止することにより高感度な光電面形成と管内
ゴミの発生源とならないよう1にするものである。
, [Summary of the Invention] The present invention provides an electron tube having an optical surface made of a metalloid and an alkali:metal compound inside a vacuum envelope,
An electron tube characterized by being equipped with a side vortex sensor for detecting the temperature of a semimetal evaporation source, and further a photocathode made of a compound such as a semimetal and an alkali metal inside the vacuum envelope. (In the manufacturing method of τ:, during step 1' of forming a charging surface by a reaction compound of a semimetallic thin film and an alkali totally reflective thin film, a side vortex sensor placed near the evaporation source for the semimetallic thin film A metalloid evaporation source according to an electron tube manufacturing method comprising a metalloid evaporation step capable of detecting a metal evaporation source temperature and controlling the evaporation temperature of the r7a JU to a predetermined temperature or lower. By keeping the photocathode at a predetermined temperature to help control metalloid deposition and preventing excessive temperature rise that would easily cause eutectic formation, it is possible to form a highly sensitive photocathode and prevent it from becoming a source of dust inside the tube. be.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例のX線螢光増倍管について第5図を参
照して説明する。な」6、従来例と同一、箇所は同一符
号を付すことにする。
An X-ray fluorescence multiplier tube according to an embodiment of the present invention will be explained with reference to FIG. 6. Same as the conventional example, parts are given the same reference numerals.

X線螢光増倍管:は第1図に示し・たものの他に動作に
関わるものとして集束電極8、集束電極・9、陽極10
.出力面11が配設されている。光電面形成時の光屯々
流測定には数十ボルトの電源12及び微小′市流創13
が設けられ、アルカリとアンチモンの反応進展に伴ない
、その・光’?fQ而の感度を測定している。
X-ray fluorescence multiplier tube: In addition to those shown in Figure 1, there are also components involved in the operation: a focusing electrode 8, a focusing electrode 9, and an anode 10.
.. An output surface 11 is arranged. To measure the optical current during the formation of the photocathode, a power source of several tens of volts 12 and a microscopic current 13 are used.
is established, and as the reaction between alkali and antimony progresses, the light'? The sensitivity of fQ is measured.

一方、アルカリ金属蒸発用には、アルカリ金属J、τr
iI々青も各づ鵞1−イ1Aか右ナス丁ル41II g
tr 土器15が設けられ′Cいる。そして、半金属蒸
発源1の近傍には赤外線センサー16例えば加熱された
蒸発源からの赤外線が入射するとその抵抗値が減少する
光8電効果を利用し、た半導体素子をアンチモン3の蒸
着膜が被着されない位置に配設し、測定器17に接続さ
れている。
On the other hand, for alkali metal evaporation, alkali metal J, τr
iI blue mo each goose 1-i 1A or right eggplant 41II g
tr Earthenware 15 is installed. An infrared sensor 16 is placed in the vicinity of the semi-metal evaporation source 1, for example, by utilizing the photoelectric effect, in which the resistance value decreases when infrared rays from a heated evaporation source are incident, and the semiconductor element is coated with an evaporated film of antimony 3. It is arranged in a position where it is not covered and connected to the measuring device 17.

光′砥面18は第61図に示すようにAl基板19上に
形成された人力螢光体層20J:に半金属蒸発源1を力
IJA’%してアンチモン3を必稗な膜厚し蒸着し、次
、いてアルカリ金属発生器15のスリーブ14を加熱、
して例えばセシウム蒸気を発生させて8b−Cs。
As shown in FIG. 61, the optical abrasive surface 18 is formed by manually applying a semi-metal evaporation source 1 to a phosphor layer 20J formed on an Al substrate 19 to form antimony 3 to a certain thickness. evaporation, and then heating the sleeve 14 of the alkali metal generator 15;
For example, 8b-Cs is generated by generating cesium vapor.

化合物の光′セ面とする工程によって形成されてい、る
It is formed by a process of exposing a compound to light.

、この時、入力面5は両者の反応を促進する最適な温度
に維持される。
, at this time, the input surface 5 is maintained at an optimal temperature that promotes both reactions.

、半金属蒸発源1は加熱用1にΔ115によって通電加
熱されるがアンチモン3を蒸発さぜるのに萼するhQ流
値の制御によって行なうのが通常の方法である。普辿、
光電面のアンチモン+Iu厚は50〜200久の薄膜で
あって、同一組成の光電面を形成するにはこの膜厚及び
その結晶状態を均一にすることが高感度光電面の形成に
有効である。ところがこの蒸着加熱の電流値はボート2
の材質・形状によっても異なるが必要な蒸着されるアン
チモン量がatであることから、そのボート温度はボー
ト2及びボート周辺の熱容量や結線の安定性による抵抗
値の変化が生じやすく、再現性良くいつも同一電流で蒸
発源1が同一温度になることは極めて困難である。
The semi-metal evaporation source 1 is heated by applying electricity to the heating element 1 at Δ115, and the usual method is to evaporate the antimony 3 by controlling the hQ flow value in the calyx. popular,
The antimony + Iu thickness of the photocathode is a thin film with a thickness of 50 to 200 mm, and in order to form a photocathode with the same composition, it is effective to make this film thickness and its crystal state uniform to form a highly sensitive photocathode. . However, the current value of this vapor deposition heating is
Although it varies depending on the material and shape of the boat, since the required amount of antimony to be evaporated is at, the boat temperature is likely to change the resistance value depending on the heat capacity of the boat 2 and its surroundings, and the stability of the wiring, so it can be easily reproducibly It is extremely difficult for the evaporation source 1 to always reach the same temperature with the same current.

そのため、この発明の例では蒸発源温度を直接測定する
ようにし、アンチモン3が飛着しない位置に蒸発源1の
放射エネルギーを測定する赤外線センサー16が設は蒸
発源の昇温状態に対応して測定器17によって正確にそ
の温度及びその変化を知ることができ、あるいはあらか
じめ必要とされる蒸発源温度にボートを加熱することも
できるものである。この測定にはあらかじめ実験によっ
て確認したボート形状・材質・融着アンチモン駄等のパ
ラメーターを変えて蒸発源の温度変化を対応させて、ア
ンチモンの蒸発速度を制御するのに有効である。
Therefore, in the example of the present invention, the temperature of the evaporation source is directly measured, and an infrared sensor 16 for measuring the radiant energy of the evaporation source 1 is installed at a position where the antimony 3 does not fly in response to the temperature rise of the evaporation source. The temperature and its changes can be accurately determined by the measuring device 17, or the boat can be heated to a required evaporation source temperature in advance. This measurement is effective in controlling the evaporation rate of antimony by changing parameters such as boat shape, material, and fused antimony, which have been confirmed in advance through experiments, to correspond to changes in the temperature of the evaporation source.

赤外線センサー16としては、真空外囲器4内に設置さ
れるため圧力に耐え、気密性の維持力玉必要であり、X
線螢光増倍管の排気加温条件の高温加熱にもその特性劣
化の少ないことが要求される。
Since the infrared sensor 16 is installed inside the vacuum envelope 4, it must withstand pressure and maintain airtightness.
It is also required that there be little deterioration of the characteristics when heating the linear fluorescent multiplier tube at high temperatures under the exhaust gas heating conditions.

前者のパッケージ強度はメタルケースタイプの使用で充
分実用化でき、後者の加温条件ではセンサー16の感度
特性の劣化が20〜30%生ずるが測定波長範囲でほと
んど同程度に劣化しており、この劣化度はあらかじめ知
ることができ補正できるので温度測定としては支障がな
い。また、アンチモン蒸着時の赤外線センサー16を配
設した周囲の温度はその配設位置により異なるが比較的
常温に近い範囲にあり、X線螢光増倍管の構造と光電面
形成用排気台の温度特性を測温板等で測定して毎回同温
度にしてセンサー16への加温による感度特性の彩管を
一定にしている、 赤外線センサー16は半導体センサーを用い得るがこれ
は小型で軽量である。その材料はPbS 。
The former package strength is sufficient for practical use by using a metal case type, and the latter heating condition causes a 20 to 30% deterioration in the sensitivity characteristics of the sensor 16, but the deterioration is almost the same in the measurement wavelength range. Since the degree of deterioration can be known in advance and corrected, there is no problem in temperature measurement. Furthermore, the temperature around the infrared sensor 16 during antimony deposition varies depending on its location, but it is within a range relatively close to room temperature. The temperature characteristics are measured with a thermometer plate or the like, and the temperature is kept at the same temperature each time, and the sensitivity characteristics of the tube are kept constant by heating the sensor 16.The infrared sensor 16 can be a semiconductor sensor, but this is small and lightweight. be. The material is PbS.

Pb5e、InAs 、Ge等からなり、X線螢光増倍
管内(二配設する時はPbS、Pb5e、Geが適して
いる。ガラス壁を通して管外から温度測定量る時には冷
却型のInAsの使用も可能である。PbS光導電セル
とPb5e光導電セルの分光感度特性の□−例を第7図
ζ二示す。
It is made of Pb5e, InAs, Ge, etc., and PbS, Pb5e, and Ge are suitable when two are installed inside the X-ray fluorescence multiplier tube. When temperature is to be measured from outside the tube through the glass wall, cooled InAs is used. An example of the spectral sensitivity characteristics of a PbS photoconductive cell and a Pb5e photoconductive cell is shown in FIG.

このような光導電セルは第9図に示すようにステム8L
トに受光面82を有し、□このステム81および受光面
を被うガラス窓8′3からなる形状をしており比□較的
小さいので管内のアンチモン3が飛着□しない位置に配
設することは容易である。例えば第8図のように8bp
1着源1の近傍と半導体センサー16との間をファイバ
ケーブルで導き、蒸着源の光を検出し、測温することが
できる。
Such a photoconductive cell has a stem 8L as shown in FIG.
It has a light-receiving surface 82 at the top, and has a shape consisting of the stem 81 and a glass window 8'3 that covers the light-receiving surface.Since it is relatively small, it is placed in a position where the antimony 3 in the tube will not fly away. It's easy to do. For example, 8bp as shown in Figure 8
A fiber cable is connected between the vicinity of the deposition source 1 and the semiconductor sensor 16 to detect the light from the deposition source and measure the temperature.

このように赤外線センサー16を用いて計測した蒸発順
の温度はアンチモンの溶融状態を外部から検知できるの
で、蒸発源電源6と連動させることによって1つはアン
チモン3とボート2の共融混合物の生成してしまう温度
に蒸発源温度を上げないよう予知・制御ができ、1つは
あらかじめ実蔭測定し去蒸発源扁度とsbの蒸着速度の
較正デーhI−Jt、Aシ卑雷面嵌1j片賎の9h芋碧
凍ばを所望の値をほぼ一定にも制御できる。
In this way, the temperature in the order of evaporation measured using the infrared sensor 16 allows the molten state of antimony to be detected from the outside, so by linking it with the evaporation source power supply 6, one is able to generate a eutectic mixture of antimony 3 and boat 2. It is possible to predict and control the evaporation source temperature so as not to raise it to a temperature that would cause the evaporation source temperature to rise. It is also possible to control the desired value of the 9-hour imo-heki freezing temperature of the kataze to a substantially constant value.

したがって、8bの融点630°C(常圧)を境として
生成される極めてもろい共融混合物の生成を完全に防止
できるため管内のゴミ発生源となりうる可能性を全くな
くすことができ光像への欠点発生や耐電圧特性低下要因
となりえない。また、制御されたSbの蒸着速度は製造
上一定に保つことができ高感度な光電面の感度特性の品
質安定化に有効であって、アルカリ−アンチモン系の光
電面の種lAiの如何にかかわらず、この製造法を用い
ることができる。一般に蒸発源の温度が高い程アンチモ
ンの蒸発速度は速いが、常圧下では630℃付近・の共
融点にその実用上の上限値はあることが前述の如く示さ
れ、真空中では若干低い温度ではあるが蒸発速度が遅い
程形成されるアンチモン蒸着膜のアンチモン粒子は大き
いので、このようなアンチモン膜とアルカリ金属蒸気と
反応化合物を作る上でも速度制御は有効である。このよ
うに制御されたsb蒸着膜とアルカリ蒸気を反応させ高
感度・安定な光電面形成に寄与することができる。
Therefore, it is possible to completely prevent the formation of the extremely brittle eutectic mixture that is generated at the melting point of 8b at 630°C (at normal pressure), which completely eliminates the possibility that it could become a source of dust in the pipe, thereby preventing the optical image from becoming a source of dust. It cannot cause defects or deteriorate withstand voltage characteristics. In addition, the controlled Sb deposition rate can be kept constant during manufacturing, which is effective for stabilizing the quality of the sensitivity characteristics of a highly sensitive photocathode, regardless of the type of alkali-antimony photocathode seed lAi. First, this manufacturing method can be used. In general, the higher the temperature of the evaporation source, the faster the evaporation rate of antimony, but as mentioned above, it has been shown that the practical upper limit is around 630°C, the eutectic point under normal pressure, and at a slightly lower temperature in vacuum. However, the slower the evaporation rate is, the larger the antimony particles in the antimony vapor deposited film will be, so speed control is also effective in creating a reaction compound between the antimony film and the alkali metal vapor. The reaction between the sb vapor deposited film and the alkali vapor controlled in this manner can contribute to the formation of a highly sensitive and stable photocathode.

他に、ILむを得すアンチモンが飛着する位置に赤外線
センサー16を配線した場合には、その入射窓に付着す
るアンチモンの膜厚変化に応じて、入射するボートの放
射エネルギーがsb膜のフィルター作用により変化する
ので、そのような条件においてはあらかじめ補正すべき
実験をしておかなくてはならない。
In addition, if the infrared sensor 16 is wired in a position where antimony inevitably flies to the IL, the radiant energy of the incoming boat will be transferred to the sb film depending on the change in the thickness of the antimony adhering to the entrance window. Since it changes due to filter action, it is necessary to perform experiments to correct it in advance under such conditions.

なお、蒸発源1の構造は第10図に示した如くなってお
り、ボート2上にアンチモン3が融着されている。均一
で安定な放射エネルギーを赤外線センサー16に入射さ
せるには、ボート2にアンチモン3を融着する条件も一
定にしもちろん共融物生成のない温度以下でかつ酸化さ
れない雰囲気中で行なうことやボート2の形状と光沢等
の均一な処理条件を用いる等最適な配置や測定条件を選
択する。
The structure of the evaporation source 1 is as shown in FIG. 10, and antimony 3 is fused onto the boat 2. In order to inject uniform and stable radiant energy into the infrared sensor 16, the conditions for fusing the antimony 3 to the boat 2 must be constant, and of course, it must be done at a temperature below which no eutectic product is formed and in an atmosphere that does not oxidize. Select the optimal arrangement and measurement conditions, such as using uniform processing conditions such as shape and gloss.

光電面形成後真空外囲器外にsb、Q発源を取り去るX
線螢光増倍管の製造方法もあるが、この場合にも本発明
の温度測定法を用いることができる。
After forming the photocathode, remove the sb and Q sources from the vacuum envelope.X
There is also a method for manufacturing a linear fluorescence multiplier tube, and the temperature measuring method of the present invention can also be used in this case.

さらには前述のようなファイバーケーブルを用いること
により蒸発源の温度の影警をセンサーに与えることを防
ぎ、ファイバーグープルを介して温度計測をすることも
できる。
Furthermore, by using a fiber cable as described above, it is possible to prevent the temperature of the evaporation source from being given to the sensor, and to measure the temperature via the fiber group.

また、この発明はX線螢光増倍管に隈るものではなく広
く光電面を有する電子管の検体及びその製造方法にも応
用できることは言うまでもなく、蒸発源材Itが他の種
類であっても応用することができる。
Furthermore, it goes without saying that the present invention can be applied not only to X-ray fluorescence multiplier tubes but also to a wide variety of electron tube specimens having a photocathode and methods for manufacturing the same. Even if the evaporation source material It is of other types, It can be applied.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、半金属の蒸発時、測温センサに
よってその温度を充分管理することかでき、過剰加熱に
よるボート材成分を蒸発させて劣化することやボート上
に残存する反応生成物が異物となって性向に残存するこ
とのない優れた光電面形成手段が得られる効果を有する
As described above, the present invention makes it possible to sufficiently control the temperature using a temperature sensor when a metalloid evaporates, thereby preventing evaporation and deterioration of boat material components due to excessive heating and reaction products remaining on the boat. This has the effect of providing an excellent means for forming a photocathode in which no particles remain as foreign matter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なX線螢光増倍管な示す概略図、第2図
は第1図のA部を区大して示す断面図、第3図はN1−
8bの二成分系状態図、第4図はsb蒸着に P M/
1 後の蒸発源の溶融物を元素分析した淋佇青チャートを示
す図、第5図はこの発明の一実施例を示ず柵111R図
、第6図は、第5図のB部を拡大して示す断面図、6j
′47図は本発明を説明するための赤外線センサーの分
光感度特性を示す図、第8図は本発明の一実施例のX線
螢光増倍管の要部を示す断面図、第9図は本発明の一実
施例に適用する赤外瞬センサーを示す側面図、第10図
は本発明の二が施例のsb蒸名源を示す側面図である。 1・・・半金属蒸発源 2・・・ボート3・・・アンチ
モン 4・・・真空外囲器5・・・入方向 6,12・
・・電源 7・・・電流内゛メ入端子 8,9・・・集束電極10
・・・1揚極 11・・・出力面 13・・′「IL流M114・・・スリーブ15・・発
生器 16・・・測温センサー17・・・測定器 18
・・・光電面 19・・・基板 20・・・入力螢光体層21・・・フ
ァイバーケーブル□ 代理人 弁理士 則 近 憲 佑(ほか1名)第U図 第 2 図 / 第 314 NI4b 第 、1 1Xl −元素 一元素 第5図 第 6 図 第7図 一]ゼ □□■ 第8図 1 ’a ’3 t!’] ■ 第 v、 6 )*1
Fig. 1 is a schematic diagram showing a general X-ray fluorescence multiplier tube, Fig. 2 is a cross-sectional view showing section A in Fig. 1, and Fig. 3 is a cross-sectional view showing the N1-
The binary system phase diagram of 8b, Figure 4 shows sb deposition P M/
1. A diagram showing the Shinpo blue chart obtained by elemental analysis of the molten material of the evaporation source after 1. Figure 5 shows an example of this invention and is a diagram of fence 111R. Figure 6 is an enlarged view of part B of Figure 5. 6j
Fig. 47 is a diagram showing the spectral sensitivity characteristics of an infrared sensor for explaining the present invention, Fig. 8 is a sectional view showing the main parts of an X-ray fluorescence multiplier tube according to an embodiment of the present invention, and Fig. 9 1 is a side view showing an infrared instantaneous sensor applied to one embodiment of the present invention, and FIG. 10 is a side view showing an sb vaporization source according to the second embodiment of the present invention. 1... Semi-metal evaporation source 2... Boat 3... Antimony 4... Vacuum envelope 5... Entry direction 6, 12.
...Power supply 7...Input terminal for current 8,9...Focusing electrode 10
...1 Lifting pole 11...Output surface 13...'IL flow M114...Sleeve 15...Generator 16...Temperature sensor 17...Measuring device 18
... Photocathode 19 ... Substrate 20 ... Input phosphor layer 21 ... Fiber cable □ Agent Patent attorney Noriyuki Chika (and one other person) Figure U Figure 2 / Figure 314 NI4b Chapter , 1 1Xl - Element 1 element Figure 5 Figure 6 Figure 7 Figure 1 ]ze □□■ Figure 8 1 'a '3 t! '] ■ Chapter v, 6) *1

Claims (5)

【特許請求の範囲】[Claims] (1) 真空外囲器内部に半金属およびアルカリ金属等
の化合物からがる光電面を有する電子管において、半金
属蒸発源の温度を検出する測温セνすを具備することを
特徴とする電子管。
(1) An electron tube having a photocathode made of compounds such as metalloids and alkali metals inside a vacuum envelope, characterized in that it is equipped with a temperature measuring device for detecting the temperature of a metalloid evaporation source. .
(2) 測温センサは赤外線□に感度翻有する半導体セ
ンナであることを特徴とする特許請求の範囲′第1項記
戦の電子管。
(2) The electron tube according to claim 1, wherein the temperature sensor is a semiconductor sensor that is sensitive to infrared rays.
(3) 測温センサは管内に内蔵されかつ□半金属′蒸
発源の蒸発方向と反対の位置に配設されること・を特徴
とする特許請求の範囲第1項ないし第2項記載の電子管
(3) The electron tube according to claim 1 or 2, characterized in that the temperature sensor is built in the tube and is disposed at a position opposite to the evaporation direction of the metalloid evaporation source. .
(4)光電面を有する電子管はX射線像を電子線像に変
換する入力スクリーンと、前記電子線像を加速集束させ
る電子光学系と、この加速集束された電子線像を可視像
に変換する出力スクリーンを具4ifi(才るX練螢光
増強管であることを特徴とする特許請求の範囲第1項な
いし第3項記載の電子管。
(4) An electron tube having a photocathode includes an input screen that converts an X-ray image into an electron beam image, an electron optical system that accelerates and focuses the electron beam image, and converts this accelerated and focused electron beam image into a visible image. 4. The electron tube according to claim 1, wherein the electron tube is an X-ray fluorescent intensifier tube having an output screen.
(5)真空外囲器内部に半金属およびアルカリ金属等の
化合物からなる光電面を有する電子管の製造方法□にお
いて、半金属薄膜およびアルカリ金属薄膜の反応化合物
によって光電面を形成する工程のうち、半金属薄膜用蒸
発源近傍に配設された測1センチにより半金属の蒸発源
温度を検知し、該温度を所定温度以下にて蒸発温度を制
御し得る半金属蒸着」1程を具備することを特徴とする
電子管の製造方法。
(5) In the method for manufacturing an electron tube having a photocathode made of a compound such as a semimetal and an alkali metal inside the vacuum envelope, the step of forming the photocathode with a reaction compound of a semimetal thin film and an alkali metal thin film includes: A metalloid thin film evaporation source capable of detecting the temperature of the semimetal evaporation source with a 1 cm gauge placed near the evaporation source for the semimetal thin film and controlling the evaporation temperature by keeping the temperature below a predetermined temperature. A method for manufacturing an electron tube characterized by:
JP20256583A 1983-10-31 1983-10-31 Electron tube and its manufacture Pending JPS6095839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20256583A JPS6095839A (en) 1983-10-31 1983-10-31 Electron tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20256583A JPS6095839A (en) 1983-10-31 1983-10-31 Electron tube and its manufacture

Publications (1)

Publication Number Publication Date
JPS6095839A true JPS6095839A (en) 1985-05-29

Family

ID=16459596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20256583A Pending JPS6095839A (en) 1983-10-31 1983-10-31 Electron tube and its manufacture

Country Status (1)

Country Link
JP (1) JPS6095839A (en)

Similar Documents

Publication Publication Date Title
GB1311550A (en) X-ray and gamma-ray scintillators
US5427817A (en) Process for manufacturing an auto-collimating scintillator and product produced thereby
JPS6095839A (en) Electron tube and its manufacture
NL7908196A (en) RADIATION SENSITIVE SCREEN.
JP3431388B2 (en) Method for producing chalcopyrite structure semiconductor thin film
Devaud et al. Observations of the melting transition in thin lead films
US4007395A (en) Target structure for use in photoconductive image pickup tubes
US3082340A (en) Radiation sensitive device
EP0324676B1 (en) Method to manufacture a photocathode for an image intensifier tube
US3681638A (en) Storage tube comprising electro-luminescent phosphor and cadmium sulfide field sustained conducting target
JPS60215761A (en) Formation of target for sputtering
JP2758939B2 (en) Local temperature measurement method for electron microscope samples
Nakamura et al. Temperature of a W ribbon furnace in electrothermal atomic absorption spectrometry
US4357368A (en) Method of making a photosensitive electrode and a photosensitive electrode made thereby
US3985918A (en) Method for manufacturing a target for an image pickup tube
JP2955317B2 (en) Evaporation source, its manufacturing method and image tube
US4319159A (en) Camera tube selenium target including arsenic increasing in concentration from radiation side
US3468807A (en) Alkali metal generator
Massegu et al. S20 photocathodes grown by molecular-beam deposition
JPS5846452B2 (en) Vapor deposition method of yalium oxide thin film for image pickup tube photoelectric conversion target
JPH04209452A (en) X-ray image tube
JPH0675021B2 (en) Tracer for visualization of melt convection by X-ray fluoroscopy
Mulder Vacuum sealing of lithium fluoride windows with lead fluoride
US3612935A (en) Selenium-sulfur photoconductive target
Tenchov et al. Evaporation rate distribution during electron beam evaporation