JPS609562A - Device for measuring solidification thickness of billet - Google Patents

Device for measuring solidification thickness of billet

Info

Publication number
JPS609562A
JPS609562A JP11637083A JP11637083A JPS609562A JP S609562 A JPS609562 A JP S609562A JP 11637083 A JP11637083 A JP 11637083A JP 11637083 A JP11637083 A JP 11637083A JP S609562 A JPS609562 A JP S609562A
Authority
JP
Japan
Prior art keywords
circuit
slab
amplifier
thickness
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11637083A
Other languages
Japanese (ja)
Other versions
JPH0464788B2 (en
Inventor
Kazumi Sugino
杉野 一美
Tetsuo Miyoshi
哲夫 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11637083A priority Critical patent/JPS609562A/en
Publication of JPS609562A publication Critical patent/JPS609562A/en
Publication of JPH0464788B2 publication Critical patent/JPH0464788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To control the gain of an amplifier and to prevent the amplified reception signal from deviating from a dynamic range by providing a peak holding circuit, arithmetic processing circuit and timing control circuit to a shell thickness gage for a continuous casting billet utilizing an ultrasonic wave. CONSTITUTION:The max. value of amplitude is detected from the reception signal passed through an amplifier 10 and gate circuit 11 of a shell thickness gage by a peak holding circuit 22, and from the three values: the gain of the amplifier 10, the set value 25 of an arithmetic circuit 23, that is, the dynamic range of a setting circuit 12 for passage time, the value obtd, by processing with the circuit 23 is the gain of the amplifier 10 for the next recetion signal to be detected by an electromagnetic ultrasonic wave receiver 2. The timing at which the circuit 22 and the circuit 23 operate is controlled by a timing control circuit 24 according to the command from a pulse generating circuit 8 so that the reception signal is processed until the succeeding reception signal is detected after detection of said signal.

Description

【発明の詳細な説明】 本発明は、電磁超音波を応用して連続鋳造における鋳片
凝固厚みを測定する装置(以下、シェル厚計という)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus (hereinafter referred to as a shell thickness gauge) for measuring the solidified thickness of a slab in continuous casting by applying electromagnetic ultrasonic waves.

従来この種の装置として第1図に示すものがあった。図
において(1)は電磁超音波発生器、(2)は電磁超音
波受信器、(7)は鋳片、(8)はパルス発生回路。
A conventional device of this type is shown in FIG. In the figure, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (7) is a slab, and (8) is a pulse generation circuit.

(9)は励磁電源、叫は増幅器、aυはゲート回路、0
2は透過時間測定回路、(131は表面温度計、a(は
鋳片全厚み測定器、(廁は凝固厚み演算回路、0[9は
出力回路である。一方、第2図はこのシェル厚計におけ
る電磁超音波発生、および受信の原理を示す図である。
(9) is the excitation power supply, y is the amplifier, aυ is the gate circuit, 0
2 is a transmission time measuring circuit, (131 is a surface thermometer, a is a total slab thickness measuring device, (廁 is a solidification thickness calculation circuit, and 0[9 is an output circuit. FIG. 2 is a diagram showing the principle of electromagnetic ultrasonic generation and reception in the meter.

この図において(3)は電磁超音波発生1・fル、(4
)は電磁超音波検出コイル、(5)は磁界を発生させる
ための励磁コイル、(6)は磁気回路を形成するための
磁心である。ここで検出コイル(4)の出力C11lは
増幅器叫に接続されている。
In this figure, (3) is the electromagnetic ultrasonic generation 1·f le, (4
) is an electromagnetic ultrasonic detection coil, (5) is an excitation coil for generating a magnetic field, and (6) is a magnetic core for forming a magnetic circuit. Here, the output C11l of the detection coil (4) is connected to the amplifier output.

次に動作について説明する。パルス発生回路(8)によ
ってパルス信号を通電された発生コイル(3)はコイル
のまわりに矢印071のようにパルス磁界を発生し、こ
のパルス磁界はレジノの法則により厚みDの鋳片(7)
の表面に起電力を誘起し、うず電流fllDを発生させ
る。このうず電流o81はさらにフレミングの左手の法
則により矢印αηのパルス磁界との相互作用によるパル
ス電磁力を発生させこれが鋳片(7)の表面に超音波振
動を起させる。以上が電磁超音波発生の原理である。
Next, the operation will be explained. The generating coil (3), which is energized with a pulse signal by the pulse generating circuit (8), generates a pulsed magnetic field around the coil as shown by arrow 071, and this pulsed magnetic field is applied to the slab (7) having a thickness of D according to Resino's law.
induces an electromotive force on the surface of , generating an eddy current fllD. This eddy current o81 further generates a pulsed electromagnetic force due to interaction with the pulsed magnetic field indicated by the arrow αη according to Fleming's left-hand rule, which causes ultrasonic vibrations on the surface of the slab (7). The above is the principle of electromagnetic ultrasound generation.

次に鋳片(7)の表面で発生した電磁超音波は鋳片(7
)の中を矢印αlの向きに進行し、他面に達すると鋳片
(7)の表面に撮動を発生させる。この振動と、励磁電
源0〔によって励磁された励磁コイル(5)が作る磁界
との相互作用により鋳片(7)の表面に起電力が発生す
る。これはフレミングの右手の法則によるものである。
Next, the electromagnetic ultrasonic waves generated on the surface of the slab (7)
) in the direction of the arrow αl, and when it reaches the other surface, it generates an image on the surface of the slab (7). An electromotive force is generated on the surface of the slab (7) due to the interaction between this vibration and the magnetic field created by the excitation coil (5) excited by the excitation power source 0. This is due to Fleming's right-hand rule.

この起電力は鋳片(7)の表面にうず電流■を発生し、
このうず電流の作る磁界がレンツの法則により、検出コ
イル(4)に起電力を誘起し。
This electromotive force generates an eddy current ■ on the surface of the slab (7),
The magnetic field created by this eddy current induces an electromotive force in the detection coil (4) according to Lenz's law.

この起電力信号が受信信号として増幅器Qnによりて増
幅され、ゲート回路0zによって時間軸上の必要な部分
が取り出され、透過時間測定回路0段に送られる。この
ゲート回路α2では通常パルス発生回路のパルス出力タ
イミング信号を基準にして時間ゲートが作成される。
This electromotive force signal is amplified as a received signal by an amplifier Qn, and a necessary portion on the time axis is extracted by a gate circuit 0z and sent to a transmission time measuring circuit stage 0. In this gate circuit α2, a time gate is created based on the pulse output timing signal of the normal pulse generating circuit.

次に透過時間測定回路Q31ではゲート回路(2)から
入力された受信信号とパルス出力タイミング信号の時間
差から超音波が鋳片(7)の−面からその裏面の他面ま
でに伝搬するに要する時間tをめ、その結果が凝固厚み
演算回路0eに送られる。
Next, the transmission time measurement circuit Q31 determines the time difference between the received signal input from the gate circuit (2) and the pulse output timing signal, and determines the time required for the ultrasonic wave to propagate from the - side of the slab (7) to the other side of the back side. After a time t, the result is sent to the solidification thickness calculation circuit 0e.

さて、今、鋳片内に未凝固部が残っているとし。Now, suppose that there is an unsolidified part left in the slab.

すでに凝固している部分の厚さをd=dt+dzとすれ
ば未凝固部の厚さはD−dのはずであるから凝固部を超
音波が伝搬する速度をVs、未凝固部を超音波が伝搬す
る速度を■eとすれば鋳片全体を超音波が透過する透過
時間tは であられされる。一般にVsは鋼種によって決まる鋳片
の凝固温度と9表面温度計圓によって測定された表面温
度から平均又は加重平均環によってめた凝固部の平均温
度により超音波伝搬速度の温度依存特性から算出され、
又Veは未凝固部が過冷却状態にあると考えられること
から、この状態での超音波伝搬速度を実験によってめら
れた値が使用される。
If the thickness of the already solidified part is d = dt + dz, the thickness of the unsolidified part should be D - d, so the speed at which the ultrasound propagates through the solidified part is Vs, and the ultrasound travels through the unsolidified part. If the propagation speed is ``e'', the transmission time t for the ultrasonic wave to pass through the entire slab is given by: In general, Vs is calculated from the temperature dependence characteristic of the ultrasonic propagation velocity using the solidification temperature of the slab determined by the steel type and the average temperature of the solidified part determined by an average or weighted average ring from the surface temperature measured by a nine-surface thermometer ring.
Furthermore, since it is considered that the unsolidified portion of Ve is in a supercooled state, a value determined experimentally for the ultrasonic propagation speed in this state is used.

従って、凝固厚み演算回路αeの入力として、前記透過
時間を以外に全厚み測定器0りからの厚み情報りと9表
面温度計03からの表面温度情報と鋼種によって決まる
鋳片の凝固温度値と未凝固部の超音波伝搬速度■eが得
られれば前記の関係式から凝固厚みdが算出できるわけ
である。算出された凝固厚みdは出力回路Q61により
表示又は記録される。
Therefore, as inputs to the solidification thickness calculation circuit αe, in addition to the transmission time, the thickness information from the total thickness measuring device 03, the surface temperature information from the surface thermometer 03, and the solidification temperature value of the slab determined by the steel type are used. If the ultrasonic propagation velocity ■e of the unsolidified portion is obtained, the solidified thickness d can be calculated from the above relational expression. The calculated coagulation thickness d is displayed or recorded by the output circuit Q61.

しかしながら従来の方法にあっては次のような問題があ
った。すなわち、実際の連続鋳造ラインでの凝固厚み測
定においては鋳片(7)の内部状態および電磁超音波発
生器(1)、電磁超音波受信器(2)の各々と鋳片(7
)との間のギャップの変化など(二より受信信号が透過
時間測定回路αりのダイナミックレンジの中に含まれる
値にならないことが多い。これについて第3図を用いて
詳述する。ただし、ここでダイナミックレンジとは測定
可能な振幅の下限値から上限値までの範囲である。
However, the conventional method has the following problems. That is, in measuring the solidification thickness in an actual continuous casting line, the internal state of the slab (7), the electromagnetic ultrasonic generator (1), the electromagnetic ultrasonic receiver (2), and the slab (7) are measured.
), etc. (2) The received signal often does not have a value that is included in the dynamic range of the transmission time measurement circuit α.This will be explained in detail using Fig. 3. However, Here, the dynamic range is the range from the lower limit to the upper limit of measurable amplitude.

第3図は、パルス発生回路(8)で発生した送信パルス
電流波形Tと受信された電流波形Rの増幅器0Iでの出
力信号を時間軸上で示したものである。
FIG. 3 shows the output signals of the transmitting pulse current waveform T generated by the pulse generating circuit (8) and the received current waveform R at the amplifier 0I on the time axis.

同図において、超音波は送信パルス電流Tが発生すると
同時に発生し、電磁超音波受信器(2)で電気信号に変
換され受信パルス電流Rとして検出される。そして、超
音波の鋳片(7)中の透過時間toは。
In the figure, an ultrasonic wave is generated at the same time as a transmission pulse current T is generated, and is converted into an electric signal by an electromagnetic ultrasonic receiver (2) and detected as a reception pulse current R. And the transmission time to of the ultrasonic wave in the slab (7) is.

同図の時間軸上で送信パルスの発生する原点からA点ま
での時間となる。
This is the time from the origin where the transmission pulse is generated to point A on the time axis in the figure.

詳しく述べると、送信パルス電流波形Tは図示した様な
減衰振動波形であり同時に発生する超音波の振動波形(
図示せず)も減衰振動波形になるが、その様にして発生
した超音波は通常鋳片および増幅器を経る間に第3図に
示した様な波形になる。よって、送信電流波形の原点に
相当する。
To be more specific, the transmission pulse current waveform T is a damped vibration waveform as shown in the figure, and the vibration waveform of the simultaneously generated ultrasonic wave (
(not shown) also has a damped vibration waveform, but the ultrasonic waves generated in this way usually have a waveform as shown in FIG. 3 while passing through the slab and an amplifier. Therefore, it corresponds to the origin of the transmission current waveform.

A点が不明になる。そこで実際に透過時間をめるために
は次の様な方法を用いる。たとえば。
Point A becomes unclear. Therefore, in order to actually determine the transmission time, the following method is used. for example.

受信電流波形Rにおいて、ピーク値の前後のゼロクロス
点すなわちB点と6点を検出して周波数を演算し逆にA
点をめるという方法である。
In the received current waveform R, detect the zero crossing points before and after the peak value, that is, point B and 6 points, calculate the frequency, and conversely calculate A.
The method is to score points.

よって第3図に示した様な受信信号波形の山の部分がた
とえば透過時間測定回路α渇のダイナミックレンジの上
限値を越える場合、正確にピークを検出℃きなくなり、
ピーク値の前後のゼロクロス点が不明となるため正確に
A点を演算することができなくなる。
Therefore, if the peak of the received signal waveform as shown in Figure 3 exceeds the upper limit of the dynamic range of the transmission time measurement circuit, the peak cannot be detected accurately.
Since the zero crossing points before and after the peak value become unknown, it becomes impossible to accurately calculate point A.

また受信信号がダイナミックレンジの下限値より小さい
とノイズと判別できにくくなるため、ピークの位置が検
出しにく(なり、やはりA点を正確に算出できなくなる
Furthermore, if the received signal is smaller than the lower limit of the dynamic range, it becomes difficult to distinguish it from noise, making it difficult to detect the peak position (and thus making it impossible to accurately calculate point A).

この発明は上記従来の欠点を改善するためになされたも
ので、増幅器のゲインを自動的に制御して、増幅器で増
幅された受信信号が、透過時間測定回路のダイナミック
レンジに含まれる値になるようにしたことを特徴とする
This invention was made to improve the above-mentioned conventional drawbacks, and the gain of the amplifier is automatically controlled so that the received signal amplified by the amplifier has a value included in the dynamic range of the transmission time measurement circuit. It is characterized by the following.

第4図は、この発明の実施例を示したものである。(1
)は電磁超音波発生器、(2)は電磁超音波受信器、(
7)は鋳片、(8)はパルス発生回路、(9)は励磁電
源、 (1(Iは増幅器、α1)はゲート回路、α2は
透過時間測定回路、031は表面温度計、 f141は
鋳片全厚み測定器9(19は凝固厚み演算回路、061
は出力回路、いはピークホールド回路、 (Z3)は演
算処理回路、P241はタイミング制御回路である。
FIG. 4 shows an embodiment of the invention. (1
) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (
7) is the slab, (8) is the pulse generation circuit, (9) is the excitation power supply, (1 (I is the amplifier, α1) is the gate circuit, α2 is the transmission time measurement circuit, 031 is the surface thermometer, f141 is the casting Piece total thickness measuring device 9 (19 is a coagulation thickness calculation circuit, 061
is an output circuit or a peak hold circuit, (Z3) is an arithmetic processing circuit, and P241 is a timing control circuit.

次に第4図に示したこの発明のシェル厚計の動作例につ
いて第5図を併用して以下に説明する。
Next, an example of the operation of the shell thickness gauge of the present invention shown in FIG. 4 will be described below with reference to FIG. 5.

第5図において、(a)および(b)は電磁超音波受信
器(2)の出力であって、各々の振幅の最大値はei、
 k−1および”I、 kであり、また同図の(c)お
よび(d)は、増幅器(IGで増幅された受信信号であ
って、各々の振幅の最大値はea、に−1およびeo、
 kである。なお、添字にはに番目の受信信号の意であ
る。
In FIG. 5, (a) and (b) are the outputs of the electromagnetic ultrasonic receiver (2), and the maximum value of each amplitude is ei,
(c) and (d) in the same figure are the received signals amplified by the amplifier (IG), and the maximum value of each amplitude is -1 and eo,
It is k. Note that the subscript means the second received signal.

電磁超音波受信器(2)の出力の振幅の最大値と増幅器
α1の出力の振幅の最大値との関係は、各々の場合のゲ
インGk−1およびG、とすると以下の式で表わされる
The relationship between the maximum amplitude of the output of the electromagnetic ultrasonic receiver (2) and the maximum amplitude of the output of the amplifier α1 is expressed by the following equation, where gains Gk-1 and G are in each case.

eo、 h−t = Gk−t −et、 k−s ・
・・・・・・= (11eo、に= Gk−ei、に−
=・−−−−−(21いま、透過時間測定回路Ozのダ
イナミックレンジの中間値をecとすると、eo、kが
ecを越えないようにするにはゲインGkは最大で (1)式より が得られ、一方、ei、にはに番目より一つ前のに一1
番目の信号ei、 k−1とほぼ等しいとすると(3)
式のel、 kに(4)式を代入すると、以下に示した
関係が得られる。
eo, h-t = Gk-t -et, k-s ・
・・・・・・= (11eo, ni= Gk-ei, ni-
=・------(21 Now, if the intermediate value of the dynamic range of the transmission time measuring circuit Oz is ec, then in order to prevent eo and k from exceeding ec, the maximum gain Gk is as follows from equation (1). is obtained, and on the other hand, ei has the 11th one before the 2nd
Assuming that the th signal ei is almost equal to k-1, (3)
By substituting equation (4) into el and k in the equation, the relationship shown below is obtained.

すなわち、第4図に示した本発明のシェル厚計の実施例
においては、増幅器αlおよびゲート回路0Dを経た受
信信号からピークホールド回路(2)により振幅の最大
値co、に−1が検出され、増幅器α〔のゲイン、およ
び演算処理回路(2)の設定値(至)すなわち透過時間
測定回路αりのダイナミックレンジecの3つの値から
(5)式の演算処理が演算処理回路(至)が行なわれ、
その結果得られたGkが、電磁超音波受信器(2)で検
出される次の受信信号に対する増幅器時のゲインとなる
That is, in the embodiment of the shell thickness meter of the present invention shown in FIG. 4, -1 is detected at the maximum amplitude value co by the peak hold circuit (2) from the received signal that has passed through the amplifier αl and the gate circuit 0D. , the gain of the amplifier α, and the setting value of the arithmetic processing circuit (2), that is, the dynamic range ec of the transmission time measuring circuit α, the arithmetic processing of equation (5) is performed by the arithmetic processing circuit (to) is carried out,
The Gk obtained as a result becomes the amplifier gain for the next received signal detected by the electromagnetic ultrasonic receiver (2).

なお、ピークホールド回路@にて振幅の最大値が検出さ
れるタイミングおよび演算処理回路(2)にて(5)式
の演算が行なわれるタイミングは、電磁超音波受信器(
2)である受信信号が検出されてから次の受信信号が検
出されるまでの時間にそれらの処理が行なわれるよう、
パルス発生回路(8)の指令によりタイミング制御回路
(財)が制御する。
Note that the timing at which the peak hold circuit @ detects the maximum amplitude value and the timing at which the arithmetic processing circuit (2) performs the calculation of equation (5) are determined by the electromagnetic ultrasonic receiver (
2) so that these processes are performed during the time from when a received signal is detected until the next received signal is detected.
The timing control circuit is controlled by the command from the pulse generation circuit (8).

以上述べたようにこの発明によれば、従来のシェル厚計
に新たにピークホールド回路、演算処理回路、およびタ
イミング制御回路を設け、タイミング制御回路によりタ
イミングを制御されるピークホールド回路、演算処理回
路によって前の増幅器を経た受信信号とそのゲインおよ
び透過時間測定回路のダイナミックレンジに基づき次の
受信信号に対するゲインを演算し、常に、増幅器にて増
幅された受信信号が、上記ダイナミックレンジな逸脱し
ないようにして、透過時間の測定精度を上げることがで
きる。
As described above, according to the present invention, a conventional shell thickness gauge is newly provided with a peak hold circuit, an arithmetic processing circuit, and a timing control circuit, and a peak hold circuit and an arithmetic processing circuit whose timing is controlled by the timing control circuit. The gain for the next received signal is calculated based on the received signal that has passed through the previous amplifier, its gain, and the dynamic range of the transmission time measurement circuit, and the gain for the next received signal is always ensured so that the received signal amplified by the amplifier does not deviate from the above dynamic range. This can improve the measurement accuracy of transmission time.

すなわち、シェル厚計の電磁超音波発生器、および受信
器は鋳片ならい装置によって連続して流れている鋳片に
対し取り付けられており、鋳片の内部状態や鋳片と電磁
超音波発生器および鋳片と電磁超音波受信器とのギャッ
プの急激な変化がないため受信信号振幅のある値とその
前後の値とでは大きな変化がない。よって前回の受信信
号に基づき増幅器の次回のゲインを制御すること(−よ
って、透過時間測定回路のダイナミックレンジを逸脱し
ないようにできる。
In other words, the electromagnetic ultrasonic generator and receiver of the shell thickness gauge are attached to the slab that is continuously flowing by the slab tracing device, and the electromagnetic ultrasonic generator and the electromagnetic ultrasonic generator of the shell thickness gauge are attached to the slab that is continuously flowing by the slab tracing device. Also, since there is no sudden change in the gap between the slab and the electromagnetic ultrasonic receiver, there is no large change between a certain value of the received signal amplitude and the values before and after that value. Therefore, it is possible to control the next gain of the amplifier based on the previous received signal (-thereby, it is possible to avoid deviating from the dynamic range of the transmission time measuring circuit).

なお9本実施例では、振幅の最大値を検出する回路とし
てピークホールド回路を用いているが。
Note that in this embodiment, a peak hold circuit is used as a circuit for detecting the maximum value of amplitude.

振幅の最大値を検出する機能をもつ回路ならば。If the circuit has the function of detecting the maximum value of amplitude.

他のものを用いてもよい。Others may be used.

また1本実施例では増幅器のゲイン制御に前回の受信信
号のみ用いているが、ある受信信号に対するゲインを決
定するために、前回まで得られた複数個の受信信号の平
均をめるなど統計処理し
In addition, in this embodiment, only the previous received signal is used to control the gain of the amplifier, but in order to determine the gain for a certain received signal, statistical processing such as averaging multiple received signals obtained up to the previous time is performed. death

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の鋳片凝固厚み測定装置を説明するための
図、第2図は鋳片凝固厚み測定における電磁超音波発生
および受信の原理を説明するための図、第3図は送信パ
ルス電流波形および受信パルス電流波形を示す図、第4
図および第5図はこの発明による鋳片凝固厚み測定装置
を説明するための図であり、(1)は電磁超音波発生器
、(2)は電磁超音波受信器、(3)は電磁超音波発生
コイル、(4)は電磁超音波検出コイル、(5)は静磁
界用コイル、(6)は靜磁界用磁極、(7)は鋳片、(
8)はパルス発生回路。 (9)は励磁電源、叫は増幅器、 ttnはゲート回路
、u2は透過時間測定回路、q漠は表面温度計、u4)
は鋳片全厚み測定器、1国は凝固厚み演算回路、叫は出
力回路、@はピークホールド回路、(231は演算処理
回路、+241はタイミング制御回路、(251は演算
処理回路の設定値であり、eo、に−1およびeo、 
kは増幅器(IGで増幅されたそれぞれに一1番目およ
びに番目の受信信号であり、 Gk−xおよびG、はそ
れぞれに−1番目およびに番目の増幅器αQのゲインで
あり、また、eCは透過時間測定回路a2のダイナミッ
クレンジである。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人大岩増雄 手続補正書(自発) ↑、■許庁長宮殿 1、事件の表示 待願昭58−116370号2、発明
の名称 銃片凝固厚み測定装置 3、 補正をする占 代表者片由仁へ部 4、代理人 5 補正の対象 (1) 明細書の発明の詳細な説明の翻6、補正の内容 11+ 明細書第3頁第14行に「電源部」とあるのを
「電源(9J」と訂正する。 +2+ PJ、 第3*g2 o行ttc r増巾器Q
DJとおるのを「増巾器部」と訂正する。 (31同、第4負第1行、第3行および第6行にそれぞ
れ「ゲート回路112」とあるのを「ゲート回路任D」
と訂正する。 (4) 同、第4頁第6行にr R11l定回路(13
Jとあるのを「測定回路Q2Jと訂正する。 (5) 同、第4頁第10行に「演算回路αe」とある
のを「演算回路α9」と訂正する。 (7) 同、第4負第19行に「温度計I」とあるのを
「m度肝0(」と訂正する。 (8) 同、第5負第1行に「演算回路a[9」と心る
のを「演算回路0FilJと訂正する。
Figure 1 is a diagram to explain a conventional slab solidification thickness measuring device, Figure 2 is a diagram to explain the principle of electromagnetic ultrasonic generation and reception in slab solidification thickness measurement, and Figure 3 is a transmission pulse. Diagram showing current waveform and received pulse current waveform, 4th
5 and 5 are diagrams for explaining the slab solidification thickness measuring device according to the present invention, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, and (3) is an electromagnetic ultrasonic wave generator. Sound wave generation coil, (4) is electromagnetic ultrasonic detection coil, (5) is static magnetic field coil, (6) is magnetic pole for quiet magnetic field, (7) is cast slab, (
8) is a pulse generation circuit. (9) is the excitation power supply, yen is the amplifier, ttn is the gate circuit, u2 is the transmission time measurement circuit, q is the surface thermometer, u4)
1 is the slab total thickness measuring device, 1 country is the solidification thickness calculation circuit, shout is the output circuit, @ is the peak hold circuit, (231 is the calculation processing circuit, +241 is the timing control circuit, (251 is the setting value of the calculation processing circuit) Yes, eo, ni-1 and eo,
k are the 11th and 2nd received signals amplified by the amplifier (IG), Gk-x and G are the gains of the -1st and 2nd amplifier αQ, respectively, and eC is This is the dynamic range of the transmission time measurement circuit a2. In Figure 9, the same or corresponding parts are indicated with the same reference numerals. Agent Masuo Oiwa's procedural amendment (voluntary) ↑, ■ Director-General's Palace 1, Indication of the case Long application No. 58-116370 2, Name of the invention Gun piece coagulation thickness measuring device 3, Representative Kata Yuhito making the amendment 4, Agent 5 Subject of amendment (1) Details of the invention in the specification Translation of explanation 6, amendment content 11+ Correct “power supply section” in line 14 of page 3 of the specification to “power supply (9J)”. +2+ PJ, 3rd *g2 line o ttc r amplifier Q
DJ Tooru corrects her by saying ``Amplifier Club.'' (31, ``Gate circuit 112'' in the 4th negative 1st line, 3rd line, and 6th line respectively is ``Gate circuit D'')
I am corrected. (4) Same, page 4, line 6 shows r R11l constant circuit (13
J is corrected to ``Measurement circuit Q2J.'' (5) Similarly, on page 4, line 10, ``Arithmetic circuit αe'' is corrected to ``Arithmetic circuit α9.'' (7) Same as above, in the 4th negative line, 19th line, "thermometer I" is corrected to ``m degree 0 (''). I am correcting this to ``Arithmetic circuit 0FilJ.''

Claims (1)

【特許請求の範囲】 連続鋳造される鋳片の一面に設置され、かつ高周波パル
ス電流を通電されるコイルを備えて上記鋳片表面に超音
波を発生させる電磁超音波発生器と、上記鋳片の他面に
設置されて前記超音波を受信する検出コイルを備えた電
磁超音波受信器と。 上記の超音波発生器および受信器の超音波発生。 受信のタイミングから前記鋳片を超音波が前記−面から
他面まで伝搬するに要する時間tをめる時間測定回路と
、前記鋳片の全厚みDを測定する全厚み測定器と、前記
時間測定回路によって測定された時間t、前記全厚み測
定器によって測定された全厚みり、前記鋳片の厚みdの
凝固部を超音波が伝搬する速度vs、および前記鋳片の
厚みD −dの未凝固部を超音波が伝搬する速度veと
から凝固部厚みdを算出する演算回路とからなることを
特徴とする鋳片凝固厚み測定装置において、受信信号の
振幅の最大値を検出しその値を基に前記増幅器のゲイン
を制御する制御回路を設けたことを特徴とする鋳片凝固
厚み測定装置。
[Scope of Claims] An electromagnetic ultrasonic generator that is installed on one surface of a continuously cast slab and includes a coil to which a high-frequency pulse current is applied and generates ultrasonic waves on the surface of the slab; an electromagnetic ultrasonic receiver including a detection coil installed on the other surface to receive the ultrasonic wave; Ultrasonic generation of the above ultrasonic generator and receiver. a time measuring circuit that measures the time t required for the ultrasonic wave to propagate from the - side to the other side of the slab from the timing of reception; a total thickness measuring device that measures the total thickness D of the slab; and a total thickness measuring device that measures the total thickness D of the slab; The time t measured by the measurement circuit, the total thickness measured by the total thickness measuring device, the speed at which the ultrasonic wave propagates through the solidified part of the slab having a thickness d vs, and the thickness D - d of the slab. A slab solidification thickness measuring device characterized by comprising an arithmetic circuit that calculates a solidified part thickness d from a velocity ve at which an ultrasonic wave propagates in an unsolidified part, detects the maximum value of the amplitude of a received signal, and detects the maximum value of the amplitude of the received signal. A slab solidification thickness measuring device characterized in that a control circuit is provided to control the gain of the amplifier based on.
JP11637083A 1983-06-28 1983-06-28 Device for measuring solidification thickness of billet Granted JPS609562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11637083A JPS609562A (en) 1983-06-28 1983-06-28 Device for measuring solidification thickness of billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11637083A JPS609562A (en) 1983-06-28 1983-06-28 Device for measuring solidification thickness of billet

Publications (2)

Publication Number Publication Date
JPS609562A true JPS609562A (en) 1985-01-18
JPH0464788B2 JPH0464788B2 (en) 1992-10-16

Family

ID=14685290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11637083A Granted JPS609562A (en) 1983-06-28 1983-06-28 Device for measuring solidification thickness of billet

Country Status (1)

Country Link
JP (1) JPS609562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251011A (en) * 1988-08-12 1990-02-21 Nippon Steel Corp Cast piece solidification thickness meter
JPH0255909A (en) * 1988-08-22 1990-02-26 Nippon Steel Corp Arithmetic unit for solidification thickness of cast billet
EP1666173A1 (en) * 2001-04-25 2006-06-07 JFE Steel Corporation Manufacturing method for continuously cast product of steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557665A (en) * 1978-07-04 1980-01-19 Nippon Kokan Kk <Nkk> Thickness gauge of ultrasonic wave type
JPS57190281A (en) * 1981-05-19 1982-11-22 Yokogawa Hokushin Electric Corp Ultrasonic wave measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557665A (en) * 1978-07-04 1980-01-19 Nippon Kokan Kk <Nkk> Thickness gauge of ultrasonic wave type
JPS57190281A (en) * 1981-05-19 1982-11-22 Yokogawa Hokushin Electric Corp Ultrasonic wave measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251011A (en) * 1988-08-12 1990-02-21 Nippon Steel Corp Cast piece solidification thickness meter
JPH0255909A (en) * 1988-08-22 1990-02-26 Nippon Steel Corp Arithmetic unit for solidification thickness of cast billet
EP1666173A1 (en) * 2001-04-25 2006-06-07 JFE Steel Corporation Manufacturing method for continuously cast product of steel
US7156148B2 (en) 2001-04-25 2007-01-02 Nkk Corporation Manufacturing method for continuously cast product of steel
EP1900454A3 (en) * 2001-04-25 2008-08-27 JFE Steel Corporation Manufacturing method for continuously cast product of steel
US7448430B2 (en) 2001-04-25 2008-11-11 Nkk Corporation Manufacturing method for continuously cast product of steel

Also Published As

Publication number Publication date
JPH0464788B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JPH10281921A (en) Method and device for monitoring leakage of gas piping
US4603589A (en) Ultrasonic flowmeter
JPS609562A (en) Device for measuring solidification thickness of billet
JPH07198362A (en) Method and apparatus for measurement of decrease in wall thickness of pipe
JP2006300854A (en) Piping plate thickness measuring device
Murayama Non-Contact Stress Measurement during Tensile Testing Using an Emat for SH0-Plate Wave and Lamb Wave.
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
JPH0419524A (en) Automatic output device for natural vibration frequency of structure
JPS6053806A (en) Thickness measuring method
JPS5925182B2 (en) AE monitoring device
JPH02248824A (en) Apparatus for measuring residual stress
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPS6027361B2 (en) How to measure the thickness of conductive materials
JP2003043134A (en) Frequency detecting device of short pulse echo
SU601609A1 (en) Device for measuring ultrasound propagation velocity in moving sheet material
JPH038688B2 (en)
JPS63138259A (en) Magnetism probing method
JPS6031010A (en) Apparatus for measuring thickness of solidified cast piece
JPH11281788A (en) Device and method for shock wave generation locator
JPS6186121A (en) Tube cutting method
JP2005009893A (en) Ultrasonic fluid measuring device
JPH05215617A (en) Method for measuring average temperature on cross-section of object
JP3079912B2 (en) Metal material inspection equipment
JPS5892821A (en) Ultrasonic flow meter
SU1520364A1 (en) Method of measuring the torque