JPS6094113A - Mobile dust collector - Google Patents

Mobile dust collector

Info

Publication number
JPS6094113A
JPS6094113A JP20133283A JP20133283A JPS6094113A JP S6094113 A JPS6094113 A JP S6094113A JP 20133283 A JP20133283 A JP 20133283A JP 20133283 A JP20133283 A JP 20133283A JP S6094113 A JPS6094113 A JP S6094113A
Authority
JP
Japan
Prior art keywords
furnace material
material layer
supporting body
surface supporting
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20133283A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kohama
小浜 弘幸
Hiroyuki Murata
博之 村田
Minoru Wakabayashi
稔 若林
Shunichi Mizukami
水上 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20133283A priority Critical patent/JPS6094113A/en
Publication of JPS6094113A publication Critical patent/JPS6094113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To move uniformly downward the filter medium layer when the gas contg. dust is passed, and to conduct a safety operation by arranging obliquely both supporting bodies so that the rear surface supporting body may be positioned above the front surface supporting body. CONSTITUTION:A front surface supporting body 14 and a rear surface supporting body 15 are arranged in parallel with each other at specified intervals, and inclined to a perpendicular at an angle of alpha. Namely, the rear surface supporting body 15 is positioned above the front surface supporting body 14. Accordingly, the component of a force G0 normal to the supporting bodies 14 and 15 is formed to a vertical gravitation G exerted to a filter medium 18. By balancing the component of a force G0 with the pressing pressure P0 due to the pressure gradient of the flowing gas, the filtration medium 18 can be pressed to the rear surface supporting body 15 by the flowing gas. The friction force between a filter medium layer 19 and the rear surface supporting body 15 can be eliminated in this way, and the descending speed of the filter medium layer 19 is made uniform in the widthwise direction. And the clogging due to the local stagnation of the filter medium layer 19 can be eliminated.

Description

【発明の詳細な説明】 本発明は、移動層式集塵装置に関する。[Detailed description of the invention] The present invention relates to a moving bed type dust collector.

移動層式集塵装置は、第1図に示すように、平行間隔を
有して垂直に配設された前面支持体illと背面支持体
(2)とを有し、これら副支持体(II(2+間にその
上方より珪砂などからなる炉材(3)を投入充満させ、
下方の定量切出様(4)により一定量ずつ炉材を排出す
ることにより、両支持体間の炉材層(6)を自然降下さ
せつつ、該炉材層に直交して前面支持体側から背面支持
体側へ含塵ガス(6)を通過させ、該炉材層にて含塵ガ
スの塵あいを集塵するものである。
As shown in FIG. 1, the moving bed type dust collector has a front support (ill) and a back support (2) which are arranged vertically with parallel spacing, and these sub-supports (II). (Inject furnace material (3) made of silica sand etc. from above between 2+ and fill it,
By discharging a fixed amount of furnace material using the lower quantitative cutting method (4), while naturally lowering the furnace material layer (6) between both supports, the furnace material layer (6) is discharged from the front support side perpendicular to the furnace material layer. The dust-containing gas (6) is passed to the back support side, and the dust of the dust-containing gas is collected in the furnace material layer.

かかる移動層式集塵装置(7)を高圧高炉の炉頂ガス集
塵に用いると、ある通風条件においては、第1図のグラ
フに示す如く、通風後約20時間程度で炉材層内ガス通
過時の圧力損失が急激に上昇し、連続して集塵すること
が不可能となった。
When such a moving bed type dust collector (7) is used to collect dust from the furnace top gas of a high-pressure blast furnace, under certain ventilation conditions, the gas in the furnace material bed will disappear in about 20 hours after ventilation, as shown in the graph of Figure 1. The pressure loss during passage increased rapidly, making it impossible to collect dust continuously.

そこで、本願発明者は、上記現象の原因を解明するため
穏々の調査を行なった。その結果、圧力損失の急上昇は
、炉材層の背面支持体側において生じており、その原因
は、第2図に示すように、背面支持体(2)に接触して
いる部分の炉材(3)の流動が停止し、そこへ飛来ダス
トが詰ることによるものと判明した。この炉材の部分的
な流動停止は、炉材層通過時のガス透過抵抗により、炉
材が背面支持体側に押し付けられるために生じるもので
あると推考される。
Therefore, the inventor of the present application conducted a modest investigation in order to elucidate the cause of the above phenomenon. As a result, a sudden increase in pressure loss occurs on the back support side of the furnace material layer, and the cause of this is as shown in Figure 2, the reason for this is that the part of the furnace material (3) that is in contact with the back support (2) ) stopped flowing and became clogged with flying dust. It is presumed that this partial flow stoppage of the furnace material occurs because the furnace material is pressed against the back support body due to gas permeation resistance when passing through the furnace material layer.

従って、移動層式集塵装置を長期的に安定して操業する
ためには、第3図に示すように、面支持体fl+ +2
1間における炉材層(5)の流動を均一化させることが
重要な操業技術と認められた。
Therefore, in order to operate the moving bed type dust collector stably over a long period of time, as shown in FIG.
It was recognized that making the flow of the furnace material layer (5) uniform between 1 and 1 is an important operating technique.

そこで、本発明は、上記考察に基づき鋭意研究の結果完
成されたものであり、含塵ガス通過時に炉材層を均一に
降下移動させて安全操業を行なうことができる移動層式
集塵装置を提供することを目的とする。
Therefore, the present invention was completed as a result of intensive research based on the above considerations, and provides a moving bed type dust collector that can uniformly move the furnace material layer downward as the dust-containing gas passes through, thereby allowing safe operation. The purpose is to provide.

従って、その特徴とするところは、前記移動層式集塵装
置において、背面支持体が前面支持体よりも上方に位置
するよう、面支持体を傾斜状に配置した点にある。
Therefore, the feature of this moving bed type dust collector is that the surface supports are arranged in an inclined manner so that the back support is located above the front support.

以下、本発明を図面に基づき具体的に詳述する。Hereinafter, the present invention will be specifically explained in detail based on the drawings.

第4図において、移動層式集塵装置(10)の本体(1
1)には、含塵ガス入口(12)と、清浄ガス出口(1
3)とを有し、これら入口(12)と出口(13+間の
中途部を仕切るように、前面支持体(14)と背面支持
体(16)が、はぼ平行間隔を有して上下方向に沿って
配設されている。
In Fig. 4, the main body (1) of the moving bed dust collector (10) is shown.
1) includes a dust-containing gas inlet (12) and a clean gas outlet (1).
3), and the front support (14) and the back support (16) are spaced apart from each other in the vertical direction so as to partition the middle part between the inlet (12) and the outlet (13+). It is located along the

前面支持体(14)は入口(12)側に位置し、背面支
持体(I5)は出口(13)側に位置している。面支持
体(+4) (15+間の上方に炉材投入口(16)が
設けられ、下方に定量切出機07+が設けられている。
The front support (14) is located on the inlet (12) side, and the back support (I5) is located on the exit (13) side. A furnace material inlet (16) is provided above the surface support (+4) (15+), and a quantitative cutting machine 07+ is provided below.

前記投入口Q6)から面支持体(+41 +10間に炉
材(国が投入充満され、炉材層09)が形成され、定量
切出機(I71で炉材層を定量ずつ切り出すことにより
、炉材層(19)は面支持体+141 Qb1間を自然
降下して移動層を構成する。
The furnace material (the country is charged and filled, furnace material layer 09) is formed between the surface support body (+41 and +10) from the input port Q6), and the furnace material layer is cut out in fixed quantities using the quantitative cutting machine (I71). The material layer (19) naturally descends between the planar supports +141 Qb1 and constitutes a moving layer.

しかして、入口(I2)から導入された含塵ガスン0)
は前面支持体04)→p炉材層19)→背面支持体(1
ωを通過して、移動する炉材層(19)により集塵され
、清浄ガス!2+1として出口(13)より排出される
。従って、前記面支持体Has)は、含塵ガx (2o
)は通過させるが炉材(I8)は通過させない開口を有
している。またp材層θ9)通過ガスは、炉材層09)
に直交して通過する。
Therefore, the dust-containing gas introduced from the inlet (I2)
is front support 04)→p furnace material layer 19)→back support (1)
After passing through ω, dust is collected by the moving furnace material layer (19), and clean gas! It is discharged from the outlet (13) as 2+1. Therefore, the surface support Has) has dust-containing gas x (2o
) has an opening that allows the passage of the furnace material (I8) but not the furnace material (I8). Also, the gas passing through the p material layer θ9) is the furnace material layer 09)
passes perpendicular to.

しかして、本発明においては、前面支持体(14)と背
面支持体(15)が所定平行間隔を保持して、垂線に対
し所定角度(α)だけ傾斜して設けられている。即ち、
背面支持体(15)が前面支持体(14)の上方に位置
するよう傾斜している。尚、傾斜角度(α)は変更可能
に構成されている。
Therefore, in the present invention, the front support (14) and the back support (15) are provided with a predetermined parallel interval between them and are inclined at a predetermined angle (α) with respect to the perpendicular line. That is,
The back support (15) is inclined to be located above the front support (14). Note that the inclination angle (α) is configured to be changeable.

上記の如<、P材層09)を風上側に向って傾斜させる
ことにより、炉材0(至)に作用する垂直重力(0)に
対して、支持体(14+ 115+の法線方向の分力(
Go)が生じる。この分力(GO)と、ガス通過の圧力
勾配による押圧力(PO)とを釣り合わすことにより、
通過ガスが炉材α8)を背面支持体(15)に押し付け
る力を相殺することができる。このように炉材層(19
)と片面支持体(16)間に摩擦力を生じさせないよう
にすることにより、炉材層(19)の降下速度はその幅
方向にわたって均一となり、f材層L19)の部分的な
滞留による目詰まりが生じなくなる。
As described above, by tilting the P material layer 09) toward the windward side, the vertical gravity (0) acting on the furnace material 0 (to) is Power(
Go) occurs. By balancing this component force (GO) with the pressing force (PO) due to the pressure gradient of gas passage,
The force of the passing gas that presses the furnace material α8) against the back support (15) can be offset. In this way, the furnace material layer (19
) and the single-sided support (16), the descending speed of the furnace material layer (19) becomes uniform across its width, and the drop rate due to partial retention of the f-material layer L19) is reduced. No more clogging.

従って、前記炉材層(19)の傾斜角度(α)は、前記
分力(Go)と押圧力(PO)が釣り合う角度が好まし
く、次にその角度(α)の算出方法を説明する。
Therefore, the inclination angle (α) of the furnace material layer (19) is preferably an angle at which the component force (Go) and the pressing force (PO) are balanced.Next, a method for calculating the angle (α) will be explained.

第5・6図に示す如く、炉材層(19)を連続体とした
場合、炉材層(19j内の任意の位置の外力(K)は次
式%式% () 次に第7図に示す如く、炉材層09)が傾斜していてガ
スが流れていない場合の炉材層09)内の力の釣合は次
式で表わされる。
As shown in Figures 5 and 6, when the furnace material layer (19) is a continuum, the external force (K) at any position within the furnace material layer (19j) is expressed by the following formula % formula % () Next, as shown in Figure 7 As shown in the figure, the balance of forces within the furnace material layer 09) when the furnace material layer 09) is inclined and no gas is flowing is expressed by the following equation.

ここで、座標軸を角度αだけ回転させ、χ、y座標に変
換すれば、■、■式は次のように表わされる。
Here, if the coordinate axes are rotated by an angle α and converted into χ and y coordinates, the equations (1) and (2) can be expressed as follows.

そこで、通風時に炉材層(l□□□のχ方向に作用する
外力(Kχ)と、無風時に角度αだけ傾斜した炉材層(
19)のχ方向に作用する外力(−rginα)の絶対
値が等しく、その正・負を逆にすればχ方向の力は相殺
しあって釣合うことになる。即ち■、0式から dP ・・・・・・・・・・・・■ −7,−= −(−r sinα) のとき、炉材層(19)にばy方向の力しか作用せず、
第8図に示す如く、炉材層09)は均一速度で降下する
ことになる。
Therefore, an external force (Kχ) acting in the χ direction of the furnace material layer (l
19), the absolute values of the external forces (-rginα) acting in the χ direction are equal, and if the positive and negative sides are reversed, the forces in the χ direction cancel each other out and become balanced. In other words, ■, from equation 0, dP ・・・・・・・・・・・・■ −7, −= −(−r sin α), only the force in the y direction acts on the furnace material layer (19). ,
As shown in FIG. 8, the furnace material layer 09) descends at a uniform speed.

従って、■式より となるよう炉材層(19)を傾斜させればよい。Therefore, from the formula ■ What is necessary is to incline the furnace material layer (19) so that

次に、上記αに関し、実際に本発明に適用できる範囲に
ついて0式を用いて考察する。
Next, regarding the above α, the range that is actually applicable to the present invention will be discussed using equation 0.

炉材Q8)として一般に用いられるものには、珪砂、セ
ラミック粒子、アルミナ粒子などの軽いもの(r = 
1,400−x、7oo Kpfif )から金属粒子
などの重いもの(r = 4,000−5,000 K
97?d )まである。
Commonly used furnace materials Q8) include light materials such as silica sand, ceramic particles, and alumina particles (r =
1,400-x, 7oo Kpfif) to heavy objects such as metal particles (r = 4,000-5,000 K
97? There are up to d).

dP 圧力勾配(=−g−)はガスの炉材層内通過速度や、炉
材粒子径によって異なるが、実用的に用いられている圧
力勾配は250 mM Aq/−B〜礼500 朋Aq
7’rn程度の範囲と考えられる。
dP The pressure gradient (=-g-) varies depending on the gas passage rate through the furnace material layer and the particle size of the furnace material, but the pressure gradient used practically is 250 mM Aq/-B ~ 500 mAq
It is thought to be in the range of about 7'rn.

dP 上記のC−5)および(r)の範囲で0式から得P られたαと−−πの関係を第9図に示す。dP P obtained from formula 0 within the range of C-5) and (r) above FIG. 9 shows the relationship between α and −π.

但し第9図において、α〉45°の領域は現実的でない
ため破線で示した。その理由は、(90°−α)が炉材
の安息角に近くなると無風時に炉材を流すことが不可能
になるためである。
However, in FIG. 9, the region where α>45° is not realistic and is therefore shown with a broken line. The reason for this is that when (90°-α) approaches the angle of repose of the furnace material, it becomes impossible to flow the furnace material when there is no wind.

従って、計算でめたαの値が、45′″を越えた場合は
、45°以下でそれに近い傾斜とする。その場合ガス通
過によるχ方向の外力は作用することになるが、直立時
よりは外力は軽減され、炉材の流速分布の変動は小幅に
おさまる。
Therefore, if the calculated value of α exceeds 45''', the slope should be close to 45° or less.In that case, the external force in the χ direction due to gas passage will be applied, but it will be lower than when standing upright. The external force is reduced, and fluctuations in the flow velocity distribution of the furnace material are suppressed to a small extent.

〈実施例〉 本発明を実証するため、第4図に示すものと同一構成を
もつ移動層式集塵装置を用いて炉材の流速分布を測定し
、同時に圧損と集塵率を測定した。
<Example> In order to demonstrate the present invention, the flow velocity distribution of the furnace material was measured using a moving bed type dust collector having the same configuration as that shown in FIG. 4, and at the same time, the pressure drop and dust collection rate were measured.

測定結果(I) 炉材層を鉛直方向に定置し、平均粒径2.Ormnの炉
材層を1.omm/sの速度で降下させつつ風速0.0
.5.1.0m/8で通風(空気)した時の炉材の降下
速度分布は第10図に示す通りである。
Measurement results (I) The furnace material layer was placed vertically, and the average particle size was 2. The furnace material layer of Ormn is 1. Wind speed 0.0 while descending at a speed of omm/s
.. The falling velocity distribution of the furnace material when ventilated (air) at 5.1.0 m/8 is as shown in Fig. 10.

風速が増加するに従って、炉材層背面付近の炉材流速が
低下していることが認められる。
It is observed that as the wind speed increases, the flow velocity of the furnace material near the back surface of the furnace material layer decreases.

測定結果(n) r = 1,600に9A/の珪砂を炉材として、風速
0.5層を風上側へ16°(α−5in ” (ユ) 
)傾けたとこ600 ろ、第11図に示す如<、炉材の流速はχ方向に関して
ほぼ均一に流れることを確認した。
Measurement results (n) At r = 1,600, using 9A/silica sand as the furnace material, the wind velocity 0.5 layer was moved 16° (α-5in”) to the windward side.
) It was confirmed that the flow velocity of the furnace material was almost uniform in the χ direction as shown in FIG.

尚、第11図中、破線は無風時の炉材流速分布を示す。In FIG. 11, the broken line indicates the flow velocity distribution of the furnace material when there is no wind.

測定結果ulD 上記CI)のμ== Q 、 5 fi/8の条件と(
II)の運転条件において、ガス(空気)中に高炉ダス
トを混入p L テ炉材Hへのガス通過による圧力勾配(−5)を連
続的に測定した結果を第12図に示す。
Measurement result ulD μ == Q of the above CI), 5 fi/8 conditions and (
FIG. 12 shows the results of continuous measurement of the pressure gradient (-5) due to gas passage to the furnace material H under the operating conditions of II), in which blast furnace dust was mixed into the gas (air).

第12図の[11)に示す如く、本発明によれば、炉材
の流動を均一にすることができ安定操業を持続できるこ
とが確認される。
As shown in [11] of FIG. 12, it is confirmed that according to the present invention, the flow of the furnace material can be made uniform and stable operation can be maintained.

尚、上記実施例では、前面支持体の前面に付着するダス
トが常時除去される装置を設置しているので、前面付着
ダスト層の圧損値を考慮する必要はない。また、集塵率
はm[:lDとも96.5〜98.0%の範囲で安定し
ていた。
In the above embodiment, since a device is installed to constantly remove dust adhering to the front surface of the front support, there is no need to consider the pressure drop value of the dust layer adhering to the front surface. Moreover, the dust collection rate was stable in the range of 96.5 to 98.0% for both m[:lD.

尚、本発明は上記実施例のように一層型の炉材層に限定
されるものではなく、第13図に示すように多層型や、
第14図に示すように多角型の移動層式集塵装置t22
1 f231にも適用される。また集塵装置に限らず、
移動層を用いた反応器や熱交換器にも応用できるもので
ある。
It should be noted that the present invention is not limited to a single-layer type furnace material layer as in the above embodiments, but can also be applied to a multi-layer type furnace material layer as shown in FIG.
As shown in Figure 14, the polygonal moving bed type dust collector t22
1 also applies to f231. In addition to dust collectors,
It can also be applied to reactors and heat exchangers using moving beds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の説明図、第2図は従来の炉材層内の流
速分布図、第3図は改善されるべき炉材層内の流速分布
図、第4図は本発明の移動層式集塵装置の断面図、第5
図は炉材層内の圧力勾配を示す図、第6図は炉材層内の
任意の位置における力の釣合を示す図、@7図は炉材層
を傾斜させたときの力の釣合を示す図、第8図は通風時
の力の釣合を示す図、第9図は圧力勾配と傾斜角の関係
を示すグラフ、第10図から第12図は実施例の結果を
示すグラフ、第13図〜@14図は本発明の他の実施例
を示す断面図及び斜視図である。 (!4)・・・前面支持体、(16)・・・背面支持体
、(1(至)・・・炉材層、α・・・傾斜角。 特許出願人 株式会社神戸w鋼所
Figure 1 is an explanatory diagram of the conventional example, Figure 2 is a flow velocity distribution diagram in the conventional furnace material layer, Figure 3 is a flow velocity distribution diagram in the furnace material layer to be improved, and Figure 4 is the movement of the present invention. Cross-sectional view of layered dust collector, No. 5
Figure 6 shows the pressure gradient within the furnace material layer, Figure 6 shows the force balance at any position within the furnace material layer, and Figure @7 shows the force balance when the furnace material layer is tilted. Figure 8 is a diagram showing the force balance during ventilation, Figure 9 is a graph showing the relationship between pressure gradient and inclination angle, and Figures 10 to 12 are graphs showing the results of the examples. , FIGS. 13 to 14 are sectional views and perspective views showing other embodiments of the present invention. (!4)...Front support, (16)...Back support, (1 (to)...Furnace material layer, α...Inclination angle. Patent applicant Kobe W Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 略平行間隔を有して上下方向に沿って配設された
前面支持体と背面支持体間に充満された炉材層を自然落
下させつつ、該炉材層に直交して前面支持体側から背面
支持体側へ含塵ガスを通過させて集塵する移動層式集塵
装置において、前記背面支持体が前面支持体よりも上方
に位置するよう副支持体を傾斜状に配置したことを特徴
とする移動層式集塵装置。
1. While allowing the furnace material layer filled between the front support and the back support, which are arranged along the vertical direction with a substantially parallel interval, to naturally fall, the furnace material layer is perpendicular to the furnace material layer on the front support side. A moving bed type dust collector that collects dust by passing dust-containing gas from the rear support to the back support, characterized in that the sub support is arranged in an inclined manner so that the back support is located above the front support. A moving bed type dust collector.
JP20133283A 1983-10-26 1983-10-26 Mobile dust collector Pending JPS6094113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20133283A JPS6094113A (en) 1983-10-26 1983-10-26 Mobile dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20133283A JPS6094113A (en) 1983-10-26 1983-10-26 Mobile dust collector

Publications (1)

Publication Number Publication Date
JPS6094113A true JPS6094113A (en) 1985-05-27

Family

ID=16439256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20133283A Pending JPS6094113A (en) 1983-10-26 1983-10-26 Mobile dust collector

Country Status (1)

Country Link
JP (1) JPS6094113A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162083B1 (en) 2007-05-18 2015-12-30 Zeltiq Aesthetics, Inc. Device for enhanced removal of heat from subcutaneous lipid-rich cells having an actuator
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
EP2162083B1 (en) 2007-05-18 2015-12-30 Zeltiq Aesthetics, Inc. Device for enhanced removal of heat from subcutaneous lipid-rich cells having an actuator
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics

Similar Documents

Publication Publication Date Title
US4443233A (en) Mist separator
Paretsky et al. Panel bed filters for simultaneous removal of fly ash and sulfur dioxide: II. Filtration of dilute aerosols by sand beds
CN101801504B (en) Desulfuration-denitration apparatus for exhaust gas
JPS6094113A (en) Mobile dust collector
JPH0295415A (en) Waste gas denitration apparatus
Yin et al. Experimental study on filtration characteristics of a novel moving granular bed filter
JPS6344409B2 (en)
CN110100015A (en) Gas processing device and the operating method for using the gas processing device
JP3153773B2 (en) Exhaust gas treatment equipment
Ahuja Wetted wall cyclone—A novel concept
JPH0742488Y2 (en) Moving bed type dedusting / reactor
Lv et al. Effects of operating parameters on the performance of moving bed filter
CN208595664U (en) Ventiduct system
JP3373467B2 (en) Exhaust gas treatment equipment
JPS63291615A (en) Dust collector
JP3854332B2 (en) Exhaust gas dry dust remover
JP6137643B2 (en) Dry smoke moving bed purification device
CN113521890B (en) Granular layer filter and fluidized bed system
Yocom et al. The Collection of Silica Fume with a Venturi Scrubber
Risnes High temperature filtration in biomass combustion and gasification processes
JP3901762B2 (en) Superstructure of moving bed reactor
JPS5936516A (en) Filtering layer type dust collecting device
Boehm et al. On the filtration of sodium oxide aerosols by multilayer sand bed filters
JPS6233519A (en) Horizontal flow system waste gas treating apparatus
Mizukami et al. Interaction between pressure drop of gas and flow of medium in a moving granular bed filter