JPS6092653A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6092653A
JPS6092653A JP58200214A JP20021483A JPS6092653A JP S6092653 A JPS6092653 A JP S6092653A JP 58200214 A JP58200214 A JP 58200214A JP 20021483 A JP20021483 A JP 20021483A JP S6092653 A JPS6092653 A JP S6092653A
Authority
JP
Japan
Prior art keywords
type
island
region
integrated circuit
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58200214A
Other languages
Japanese (ja)
Other versions
JPH0517711B2 (en
Inventor
Junichi Ono
淳一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58200214A priority Critical patent/JPS6092653A/en
Publication of JPS6092653A publication Critical patent/JPS6092653A/en
Publication of JPH0517711B2 publication Critical patent/JPH0517711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To suppress both deterioration in element characteristics due to the kink current generating by the formation of a short channel and the inversion of the MOS transistor located on the same island-like semiconductor layer by a method wherein, in a gate alley type integrated circuit device, two diffusion regions are provided on the island-like semiconductor layer. CONSTITUTION:In the n-channel MOS transistor Tr1 and Tr2 formed on a p type island-like silicon layer 33, as the bottom face of n<+> type diffusion regions 401 and 402 do not reach the surface of a sapphire substrate 31, the area of a p type base region 46 can be made larger, thereby enabling to suppress the kink current generating due to the formation of a short channel. The base region 46 is divided by the n<+> type diffusion region 41 reached the surface of the substrate 31 located between gate electrodes 341 and 342, the electric potential of the base region 66 is brought in an independent state allowing the transistors Tr1 and Tr2 to perform an independent operation. The transistors Tr3 and Tr4 formed on an n type insular silicon layer 43 can also be operated in the same manner as above.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路装置に関し、詳しくはマスター
スライス方式によるP−ドアレイ型のMO8型大規模集
積回路装置の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, and more particularly to an improvement of a P-dore array type MO8 type large-scale integrated circuit device using a master slice method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

マスタースライス方式とは、予め複数の素子からなる基
本セルを半導体基板に多数作シ、コンタクトホール及び
金属配線(配線ノセタ〜ン)を変更することによ)所望
の回路動作を得るものである。即チ、コンタクトホール
を形成するまでの半導体チップは全ての回路機能に対し
て共通である丸め、開発期間のIEi縮、製造コストの
低減を図ることが可能とな)、近年注目されている。
The master slicing method is a method in which a desired circuit operation is obtained by creating a large number of basic cells each consisting of a plurality of elements on a semiconductor substrate in advance and changing the contact holes and metal wiring (wiring nosetan). In other words, rounding of the semiconductor chip (until contact holes are formed) is common to all circuit functions, which makes it possible to shorten the development period and reduce manufacturing costs) has attracted attention in recent years.

マスメースライス方式のf−)アレイでは、半導体チッ
プは基本セルが連なる基本セル領域と、基本セル群を相
互に接続する配線領域()イールド領域)とから構成さ
れている。基本セルとして要求されることは、種々の機
能をもつ回路を実現できる形態をとると共に、単体のト
ランジスタとしての特性も要求される。
In the mass-slice f-) array, the semiconductor chip is composed of a basic cell area in which basic cells are connected, and a wiring area (yield area) that interconnects the basic cells. A basic cell is required to have a form that can realize circuits with various functions, and also to have characteristics as a single transistor.

一方、絶縁基板上の半導体集積回路、代表的な例として
SOS(Silicon on sapphire)で
は、構造に起因する高速性と低消費電力を実現するため
に回路構成をCMOS(complementary 
MOS)にして種々の半導体集積回路装置が実用化され
ている。このため、高速、低消費電力のCMOS/SO
Sデバイスをゲートアレイ型集積回路装置として利用す
ることが行なわれている。具体的には、第1図(A)〜
(C)に示す基本セルを複数配列した基本セル領域から
なるCMOS/SOSのゲートプレイ構造が知られてい
る。即ち、図中1はサファイア基板でちり、この基板1
上にはフィールド酸化膜2で分離されたp型の島状シリ
コン層3、n型の島状シリコン層4が夫々設けられてい
る。
On the other hand, in semiconductor integrated circuits on insulating substrates, a typical example being SOS (Silicon on Sapphire), the circuit configuration is CMOS (complementary) to achieve high speed and low power consumption due to the structure.
Various semiconductor integrated circuit devices (MOS) have been put into practical use. Therefore, high speed, low power consumption CMOS/SO
S devices are being utilized as gate array type integrated circuit devices. Specifically, Figure 1 (A) ~
A CMOS/SOS gate play structure including a basic cell region in which a plurality of basic cells are arranged as shown in (C) is known. That is, 1 in the figure is a sapphire substrate, and this substrate 1
A p-type island silicon layer 3 and an n-type island silicon layer 4 separated by a field oxide film 2 are provided thereon.

前記p型の島状シリコン層3にはソースもしくはドレイ
ン又はこれらを兼ねるn+型領域51〜53が互に電気
的に分離して設けられている。また、n型の島状シリコ
ン層4にも同様な機能をもっp+型領領域61〜63が
互に電気的に分離して設けられている。なお、これらn
+型、p−型領域51〜58、61〜63はサファイア
基板1表面まで達するように形成されている。前記n+
領域51、52及び52、53間を含むp型のシリコン
層(基部領域)7,7上にはダート酸化膜8,8を介し
て例えばリンドープ多結晶シリコンからなるゲート電極
91,92が夫々設けられている。前記p+型領域61
、62及び62、63間を含むn型のシリコン層(基部
領域)10.10にはゲート酸化膜8,8を介して同様
なゲート電極91′、92′が設けられている。
In the p-type island-like silicon layer 3, n+-type regions 51 to 53, which serve as a source, a drain, or both, are provided so as to be electrically isolated from each other. Furthermore, p+ type regions 61 to 63 having similar functions are provided in the n type island silicon layer 4 so as to be electrically isolated from each other. Furthermore, these n
The + type and p- type regions 51 to 58 and 61 to 63 are formed to reach the surface of the sapphire substrate 1. Said n+
Gate electrodes 91 and 92 made of, for example, phosphorus-doped polycrystalline silicon are provided on p-type silicon layers (base regions) 7 and 7 including between regions 51 and 52 and 52 and 53 via dirt oxide films 8 and 8, respectively. It is being The p+ type region 61
, 62 and 62, 63, similar gate electrodes 91', 92' are provided on the n-type silicon layer (base region) 10.10 with gate oxide films 8, 8 interposed therebetween.

なお、ゲート電極91,91′及び92.92′は夫々
一直線土に配列され共通電極部111、112により一
体的に連結されている。こうした構造によって、二列に
並んだnチャンネルMOSトランゾスタTr1、Tr2
とこれらの並び方向に直交する方向に隣接した二列のp
チャンネルトランノスタTr3、Tr4とからなる基本
セルが構成される。
Note that the gate electrodes 91, 91' and 92, 92' are arranged in a straight line, respectively, and are integrally connected by common electrode portions 111, 112. With this structure, the n-channel MOS transistors Tr1 and Tr2 are arranged in two rows.
and p of two adjacent rows in the direction orthogonal to these alignment directions.
A basic cell is constituted by channel transnosters Tr3 and Tr4.

上述した第1図(A)〜(C)に示す蒼本セルを用いて
、例えば第2図に示す如く全面に被覆された眉間絶縁膜
のn+型領域51、52及びp+増領域61、62の一
部に対応する箇所にコンタクトホール121〜124を
夫々開孔し、更に全面に金属膜(例えばAl膜)を蒸着
し、パターニングしてコンタクトホール121を介して
n+型領域51と接続するAl配線(VSS配線)13
、同ホール124を介してp+増領域61と接続するA
l配線(VDD配線)14、及びコンタクトホール12
2、123を介してn+型領域52とp+型領域62と
接続するAl配線(出力配線)15を形成することによ
り、第3図に示すCMOS/SOSインバータ回路を実
現できる。なお、第3図中のVDDは電源電位、VSS
は接地電位、Vinは入力端子、Voutは出力端子で
ある。かかるCMOS/SOSインバータ回路において
、入力端子Vinに“H”レベル信号(通常+5V程度
)を入力すると、nチャンネルMOSトランジスタTr
1はON、pチャンネルMOSトランゾスタTr3はO
FFし、出力端子Voutは″L″レベル(0V付近)
となる。一方、入力端子Vinに”L’レベルの信号(
0V程度)を入力すると、トランジスタTr1はOFF
Using the Aomoto cell shown in FIGS. 1(A) to (C) described above, for example, as shown in FIG. Contact holes 121 to 124 are respectively opened in locations corresponding to a part of Wiring (VSS wiring) 13
, A connected to the p+ increase region 61 via the same hole 124
l wiring (VDD wiring) 14 and contact hole 12
By forming an Al wiring (output wiring) 15 that connects the n+ type region 52 and the p+ type region 62 via 2 and 123, the CMOS/SOS inverter circuit shown in FIG. 3 can be realized. Note that VDD in Figure 3 is the power supply potential, VSS
is a ground potential, Vin is an input terminal, and Vout is an output terminal. In such a CMOS/SOS inverter circuit, when an "H" level signal (usually about +5V) is input to the input terminal Vin, the n-channel MOS transistor Tr
1 is ON, p-channel MOS transistor Tr3 is O
FF, and the output terminal Vout is "L" level (near 0V)
becomes. On the other hand, an “L” level signal (
When input voltage (approximately 0V), transistor Tr1 turns OFF.
.

トランジスタTr3はONして出力端子Voutは電源
電位VDDレベル、つまり”H”レベル(+5V付近)
となる。
The transistor Tr3 is turned on and the output terminal Vout is at the power supply potential VDD level, that is, the "H" level (near +5V)
becomes.

しかしながら、基本セルを構成する各MOSトランジス
タTr1〜Tr4のn型、p型の領域51〜53.61
〜63がサファイア基板1表面まで達していると、フロ
ーティング状態になって基部領域7、7.10.10の
面積が少なくなるため、トランジスタの静特性に変化が
起こり、キンク電流と呼ばれる電流が流れる。これを第
4図を参照して説明する。但し、キンク電流はnチャン
ネル及びpチャンネルのいずれにも現れるが、特にnチ
ャンネルにおいて顕著に現れるので第4図ではnチャン
ネルMOSトランジスタの場合を示した。第4図中の1
61、162はソース配線で通常、接地電位(0V)に
固定されている。17はドレイン配線で、これにかかる
電圧をVDとする。更に181 +182はダート配線
で、ここにかかる電圧をvGとする。
However, the n-type and p-type regions 51 to 53, 61 of each MOS transistor Tr1 to Tr4 constituting the basic cell
~ 63 reaches the surface of the sapphire substrate 1, it becomes a floating state and the area of the base regions 7, 7, 10, and 10 decreases, causing a change in the static characteristics of the transistor and a current called kink current flowing. . This will be explained with reference to FIG. However, although kink current appears in both n-channel and p-channel, it appears particularly prominently in n-channel, so FIG. 4 shows the case of an n-channel MOS transistor. 1 in Figure 4
Reference numerals 61 and 162 are source wirings which are normally fixed at a ground potential (0V). 17 is a drain wiring, and the voltage applied thereto is VD. Further, 181 +182 are dirt wiring, and the voltage applied thereto is vG.

第4図図示のnチャンネルMOSトランジスタTrlに
おいて、f−)配線181に加えられるvGがしきい値
電圧(VT)以上になると、チャンネル領域19が形成
され、ソース領域(n型領域)51の電子20はドレイ
ン領域(n型領域)5、に加えられたVDの電界に引か
れてチャンネル領域19、チャンネルに沿うシリコン層
領域21を移動し、ドレイン領域5雪に達し、これによ
ってドレイン電流として観察される。しかしながら、チ
ャンネル長が短かくなると、移動する電子20は前記シ
リコン層領域21で高電界による衝突電離を誘発し易く
なシ、その結果電子−旧札対を生成し易くなる。ここで
発生した電子22はドレイン配線17の電界に引かれて
ドレイン領域52へ流れ込むが、正孔23はフローティ
ング状態となっているシリコン層(基部領域)7へ流れ
込む。その結果、p型シリコン層7を正にバイアスする
ため、しきい値電圧(VT ’)を浅くする。更には層
型ソース領域51とp型シリコン層7のpn接合の順方
向電位障壁を越える正孔が蓄積されると、ソース領域5
1とシリコン層7とドレイン領域52とでnpn トラ
ンジスタが形成され、より大量の電流24が流れる。
In the n-channel MOS transistor Trl shown in FIG. 20 moves through the channel region 19 and the silicon layer region 21 along the channel due to the VD electric field applied to the drain region (n-type region) 5, and reaches the drain region 5, which is observed as a drain current. be done. However, when the channel length becomes short, the moving electrons 20 are less likely to induce impact ionization due to the high electric field in the silicon layer region 21, and as a result, electron-old banknote pairs are more likely to be generated. The electrons 22 generated here are attracted by the electric field of the drain wiring 17 and flow into the drain region 52, whereas the holes 23 flow into the silicon layer (base region) 7 which is in a floating state. As a result, in order to positively bias the p-type silicon layer 7, the threshold voltage (VT') is made shallow. Furthermore, when holes that exceed the forward potential barrier of the pn junction between the layered source region 51 and the p-type silicon layer 7 are accumulated, the source region 5
1, the silicon layer 7, and the drain region 52 form an npn transistor, through which a larger amount of current 24 flows.

一方、p型、n型の島状半導体層にソース、ドレイン領
域となる拡散領域をその底面がサファイア基板と所望距
離あけて設けた構造のr−トアレイ型集積回路装置も知
られている。しかしながら、こうした構造の集積回路装
置においても不都合が生じる。これを第5図のnチャン
ネルMOS トランジスタを参照して説明する。トラン
ジスタ魚がON状態、トランジスタエyノがOFF’状
態にあるとする。トランジスタηす、では第4図で既に
説明したのと同様、通常状態ではドレイン電流25が流
れるにすぎないが、電界が強くなると、電子22−正孔
23対も生成され、正孔23は基部領域7に流れ出す。
On the other hand, an r-array type integrated circuit device is also known, which has a structure in which diffusion regions serving as source and drain regions are provided in p-type and n-type island-shaped semiconductor layers, the bottom surfaces of which are spaced a desired distance from the sapphire substrate. However, even in an integrated circuit device having such a structure, disadvantages occur. This will be explained with reference to the n-channel MOS transistor shown in FIG. Assume that the transistor fish is in the ON state and the transistor eno is in the OFF' state. In the transistor η, as already explained in FIG. 4, only the drain current 25 flows in the normal state, but when the electric field becomes strong, electron 22-hole 23 pairs are also generated, and the hole 23 is It flows into area 7.

こうした正孔23の基部領域7への流出によシ、各n+
型領領域1′〜53′はサファイア基板1表面まで達し
ておらず、浮いた状態でトランジスタTrI、 )ラン
ノスタTrlの基部領域7がつながった状態になってい
るため、トランジスタTr1の基部領域のみならず、ト
ランジスタTryの電位をも変化する。その結果、極端
な場合はOFF状態にあるトランジスタ)もバックy=
トパイアス効果忙よりON状態になってしまうという不
都合さを生じる。
Due to the outflow of holes 23 to the base region 7, each n+
The mold regions 1' to 53' do not reach the surface of the sapphire substrate 1, and are connected to the base region 7 of the transistor TrI and ) rannostar Trl in a floating state. First, the potential of the transistor Try is also changed. As a result, in the extreme case the transistor which is in the OFF state) also backs up y=
This causes the inconvenience of being turned on due to the Topias effect.

〔発明の目的〕 本発明は短チャンネル化に伴なうキンク電流による素子
特性の劣化の抑制と、同一島状半導体層のMOSトラン
ジスタの反転を抑制し、大規模集積回路として正常に動
作できうるf−)アレイ構造の半導体集積回路装置を提
供しようとするものである。
[Object of the Invention] The present invention suppresses deterioration of device characteristics due to kink current accompanying shortened channels, suppresses inversion of MOS transistors in the same island-shaped semiconductor layer, and enables normal operation as a large-scale integrated circuit. f-) It is an object of the present invention to provide a semiconductor integrated circuit device having an array structure.

〔発明の概要〕[Summary of the invention]

本発明は絶縁基板上の素子分離領域で分離された@シ合
うp型、n型の島状半導体層に例えば2つの?−)電極
をそれら半導体層を横切るように設け、P−)電極と素
子分離領域の間の島状半導体層に底面が絶縁基板表面ま
で達しない拡散領域を、?−)電極間の島状半導体層に
絶縁基板表面まで達する拡散領域を設けることによって
、短チャンネル化に伴なうキンク電流による素子特性の
劣化を抑制すると共に1同一島状半導体層内の2つのM
OS )ランジスタを独立して動作させるようにしたこ
とを骨子とする。
In the present invention, for example, two ? -) An electrode is provided across these semiconductor layers, and P-) A diffusion region whose bottom surface does not reach the surface of the insulating substrate is provided in the island-shaped semiconductor layer between the electrode and the isolation region. -) By providing a diffusion region that reaches the surface of the insulating substrate in the island-shaped semiconductor layer between the electrodes, it is possible to suppress the deterioration of device characteristics due to the kink current that accompanies the shortening of the channel, and to M
OS) The main point is that the transistors are operated independently.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明の実施例を製造方法を併記して説明する。 Next, an embodiment of the present invention will be described along with a manufacturing method.

なお、製造工程ではnチャンネルMOS )ランゾスタ
のみを説明する。
Note that in the manufacturing process, only the n-channel MOS (Lanzostar) will be explained.

(1) まず、厚さ525μmのサファイア基板31上
にシランがス(SIH4ffス)の熱分解によシ厚さ0
.6μmの単結晶シリコン層を形成した後、選択酸化法
等によ多素子分離領域としてのフィールド酸化膜32を
形成すると共にフィールド酸化膜32で分離された複数
の島状シリコン層を形成した。つづいて、所定の島状シ
リコン層にビロンをイオン注入してp型島状シリコン層
33とし、これに隣シ合う島状シリコン層に砒素をイオ
ン注入してn型島状シリコン層(図示せず)とした。ひ
きつづき、熱酸化処理を施してp型島状シリコン層33
表面等忙厚さ450Xの熱酸化膜を成長させ、更に全面
に厚さ4500にの多結晶シリコン膜を堆積し、これを
74ターニングしてp型島状シリコン層33、n型島状
シリコン層を横切る互に平行な2つのP−ト電極341
゜342を形成した後、これらP−)電極341゜34
3をマスクとして熱酸化膜をエツチングしてf−)酸化
膜35・・・を形成した(第6図(a1図示)。
(1) First, silane (SIH4ff) was thermally decomposed on a sapphire substrate 31 with a thickness of 525 μm.
.. After forming a 6 μm single crystal silicon layer, a field oxide film 32 as a multi-element isolation region was formed by selective oxidation or the like, and a plurality of island-shaped silicon layers separated by the field oxide film 32 were formed. Next, Viron is ion-implanted into a predetermined island-like silicon layer to form a p-type island-like silicon layer 33, and arsenic is ion-implanted into an adjacent island-like silicon layer to form an n-type island-like silicon layer (not shown). ). Subsequently, thermal oxidation treatment is performed to form the p-type island silicon layer 33.
A thermal oxide film with a thickness of 450× is grown on the surface, and a polycrystalline silicon film with a thickness of 4,500× is deposited on the entire surface, which is turned 74 times to form a p-type island silicon layer 33 and an n-type island silicon layer. Two P-to electrodes 341 parallel to each other across the
342, these P-) electrodes 341°34
The thermal oxide film was etched using No. 3 as a mask to form f-) oxide films 35 (FIG. 6 (a1)).

(iil 次いで、写真蝕刻法によjDf−)電極34
1゜34哀間のp型島状シリコン層33部分が開口され
たレジストノーターン36を形成した後、r−ト電極”
l +34雪及びレジストパターン36をマスクとして
n型不純物、例えばリンを加速電圧50keV、ドーズ
量4X10153−2の条件でイオン注入してp型島状
シリコン層33の深い箇所にリンイオン注入層37を形
成した(第6図(b)図示)。
(iii then jDf-) electrode 34 by photolithography
After forming a resist no-turn 36 in which a portion of the p-type island-like silicon layer 33 between 1° and 34 mm is opened, an r-to electrode is formed.
A phosphorus ion implantation layer 37 is formed in a deep part of the p-type island-like silicon layer 33 by ion-implanting an n-type impurity, for example, phosphorus, using the +34 snow and resist pattern 36 as a mask under conditions of an acceleration voltage of 50 keV and a dose of 4×10153-2. (as shown in FIG. 6(b)).

(iill 次いで、レゾストノやターン36を除去し
、再度、写真蝕刻法によF)?’−)電極34K 。
(iill Next, remove the resistance and turn 36 and use the photo-etching method again)? '-) Electrode 34K.

34鵞とフィールド酸化膜32間のp型島状シリコン層
33部分が開口されたレジストノーターン38を形成し
た。つづいて、P−)電極341゜341、フィールド
酸化膜32及びレジストパターン38をマスクとしてリ
ンを加速電圧40ksV s P −!量2X1015
3−’+7)条件でイオン注入してp型島状シリコン層
33の浅い箇所K IJンイオン注入層391,39.
を形成した(第6図(c)図示)。
A resist no-turn 38 was formed in which a portion of the p-type island silicon layer 33 between the oxide film 34 and the field oxide film 32 was opened. Next, using the P-) electrode 341, the field oxide film 32, and the resist pattern 38 as a mask, phosphorus was accelerated at a voltage of 40 ksV s P-! Amount 2X1015
3-'+7) ion implantation layers 391, 39.
was formed (as shown in FIG. 6(c)).

Qψ 次いで、レジストパターン38を除去した後、1
ooo℃、20分間の熱処理を施して、リンイオン注入
層37*391 .391を活性化、拡散を行なった。
Qψ Next, after removing the resist pattern 38, 1
Heat treatment was performed at ooo°C for 20 minutes to form a phosphorus ion-implanted layer 37*391. 391 was activated and spread.

これ釦より、r−ト電極341゜341とフィールド酸
化膜320間のp型島状シリコン層S3に底部がサファ
イア基板31表面から所定距離へだてたn+型領領域1
r401が形成されると共にP−)電極”1+342間
のp型シリコン層33に底部がサファイア基板31表面
にまで達するn+型領領域41形成された(第6図C(
至)図示)。この後、n型島状シリコン層についてもボ
ロンのイオン注入を前記(ii) 。
When this button is pressed, an n+ type region 1 whose bottom part protrudes at a predetermined distance from the surface of the sapphire substrate 31 is formed in the p type island-like silicon layer S3 between the r-toe electrode 341 and the field oxide film 320.
At the same time as r401 is formed, an n+ type region 41 whose bottom reaches the surface of the sapphire substrate 31 is formed in the p type silicon layer 33 between the P- electrode "1+342" (FIG. 6C).
to) (as shown). Thereafter, boron ions are implanted into the n-type island-like silicon layer as described in (ii) above.

riillと同様、レゾストパターンをマスクとしてイ
オン注入し、p+型領領域形成(但し熱処理はn+型領
領域同一工程で行なう)し、基本セル421を備えたf
−)アレイ型集積回路装置を製造した(第7図、第8図
図示)。なお、第8図は第7図の■−■線に沿う断面で
あシ、43はn型島状シリコン層である。441 ・4
4:はC−ト電極34.,34.とフィールド酸化膜3
2間の島状n型シリコ7層43表面に設けられ、底部が
サファイア基板31表面から所定距離へだてられたp+
型領領域45はf−)電極34哀。
Similar to riill, ions are implanted using the resist pattern as a mask to form a p+ type region (however, the heat treatment is performed in the same step as the n+ type region), and an f with basic cell 421 is formed.
-) An array type integrated circuit device was manufactured (as shown in FIGS. 7 and 8). Incidentally, FIG. 8 is a cross section taken along the line ■-■ in FIG. 7, and 43 is an n-type island-shaped silicon layer. 441 ・4
4: C-to electrode 34. , 34. and field oxide film 3
The p +
The mold area 45 is f-) the electrode 34.

34意間のn型島状シリコ7層43JfC設けられ、底
部がサファイア基板31表面と接触したp増領域である
Thirty-four layers of n-type island silicon 7 layers 43JfC are provided, and the bottom is a p-enhanced region in contact with the surface of the sapphire substrate 31.

本発明のf−)アレイ型集積回路装置は第6図I、第7
図及び第8図に示す如くサファイア基板31上にフィー
ルド酸化膜32にょシ分離されて設けられた互に隣接す
るp型、n型の島状シリコン層33.43と、これら島
状シリコン層33.43をf−)酸化膜35を介して横
切る互に平行な2つのP−)電極341.34gと、こ
れらP−)電極34%、34意とフィールド酸化膜32
の間のp型、n型の島状シリコン層33.34に底部が
サファイア基板31表面と所定距離へだてるように設け
られたn+型領領域401* 4’* % p+型領領
域441.449 と、前記P−)電極341.34意
間のp型、n型の島状シリコン層33.43に底部がサ
ファイア基板31表面まで達するように夫々設けられた
?属領域41、p+型領領域45から構成されたnチャ
ンネルMO8)ランジスタTrl r Tr!とこれに
隣接したpチャンネルMO8)ランゾスタTry eT
r4からなる基本セル42を複数配列した構造になって
いる。
The f-) array type integrated circuit device of the present invention is shown in FIGS. 6I and 7.
As shown in FIG. 8 and FIG. 8, adjacent p-type and n-type island-shaped silicon layers 33 and 43 are separated from each other by a field oxide film 32 on a sapphire substrate 31, and these island-shaped silicon layers 33 .43 to f-) Two mutually parallel P-) electrodes 341.34g crossing through the oxide film 35, and these P-) electrodes 34%, 34 and the field oxide film 32.
An n+ type region 401*4'*% p+ type region 441. is provided in the p-type and n-type island-like silicon layers 33 and 34 between the p-type and n-type island-like silicon layers 33 and 34 so that the bottom part is oriented at a predetermined distance from the surface of the sapphire substrate 31. 449 and the p-type and n-type island-shaped silicon layers 33 and 43 between the P-) electrodes 341 and 34 were respectively provided so that their bottoms reached the surface of the sapphire substrate 31. An n-channel MO8) transistor Trl r Tr! composed of a primary region 41 and a p+ type region 45. and the adjacent p-channel MO8) Lanzosta Try eT
It has a structure in which a plurality of basic cells 42 consisting of r4 are arranged.

しかして本発明によれば、例えばnチャンネルMO8)
ランジスタTr1.Tr意において、トランジスタTr
lを構成するn+型領領域ソース領域)401の底面が
サファイア基板31表面に達しておらず、一方トランゾ
スタTr4を構成するn型領域(ソース領域)401の
底面もサファイア基板31表面に達していないため、そ
れらのp型基部領域46.46の面積を第4図図示の従
来構造に比べて大きくできる。その結果、短チャンネル
化に伴なうキンク電流の発生を抑制できる。また、トラ
ンジスタTrl r Tr2の基部領域46.46は?
−ト電極341,34.間のサファイア基板31表面ま
で達した討型領域47によシ分離され、それら基部領域
46.46の電位はトランジスタTr1 * Tr2に
依存して独立した状態となる。その結果、トランジスタ
TrI側の基部領域46への正孔の蓄積、電位変化がト
ランジスタTr2の基部領域46に影響を与えないため
、夫々のトランジスタTrs+Trlを独立して動作さ
せることができる。なお、n型島状シリコ7層43に形
成されたトランジスタ’rr3+ ’rr4におりても
、そのi型基部領域47.47の面積増大、基部領域4
7.47のp+型領領域45よる分離によって、同様な
効果が達成される。
According to the invention, for example n-channel MO8)
Transistor Tr1. In Tr, the transistor Tr
The bottom surface of the n+ type region (source region) 401 constituting the transistor L does not reach the surface of the sapphire substrate 31, and on the other hand, the bottom surface of the n type region (source region) 401 constituting the transistor Tr4 also does not reach the surface of the sapphire substrate 31. Therefore, the areas of the p-type base regions 46, 46 can be made larger than in the conventional structure shown in FIG. As a result, the generation of kink current that accompanies shortened channels can be suppressed. Also, what about the base region 46.46 of the transistor Trl r Tr2?
- electrodes 341, 34. They are separated by a depressed region 47 that reaches the surface of the sapphire substrate 31 between them, and the potentials of these base regions 46 and 46 are independent depending on the transistors Tr1*Tr2. As a result, accumulation of holes and potential changes in the base region 46 on the transistor TrI side do not affect the base region 46 of the transistor Tr2, so each transistor Trs+Trl can be operated independently. Note that even in the transistor 'rr3+'rr4 formed in the n-type island-shaped silicon 7 layer 43, the area of the i-type base region 47.47 increases, and the base region 4
A similar effect is achieved by isolation by 7.47 p+ type regions 45.

なお、上記実施例では絶縁基板としてサファイア基板を
用いたが、この代シにスピネル基板を用いてもよく、或
いはSOI (Silicon oninsulato
r)構造にも同様に適用できる。
In the above embodiments, a sapphire substrate was used as the insulating substrate, but a spinel substrate may be used instead, or an SOI (Silicon on Insulator) substrate may be used instead.
r) It can be similarly applied to structures.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればキンク電流による素
子特性の劣化を抑制できると共に同一島状半導体層の複
数のMOS )ランゾスタを独立して動作でき、ひいて
は大規模集積回路として正常に動作できうるr−)プレ
イ構造の半導体集積回路装置を提供できる。
As detailed above, according to the present invention, it is possible to suppress the deterioration of device characteristics due to kink current, and also it is possible to operate multiple MOS transistors of the same island-shaped semiconductor layer independently, which in turn allows normal operation as a large-scale integrated circuit. It is possible to provide a semiconductor integrated circuit device having an urr-)play structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(2)は従来のP−)アレイ型集積回路装置の基
本セルを示す平面図、同図[Blは同図IAJのB−B
線忙沿う断面図、同図(C1は同図IA)のc−c線に
沿う断面図、第2図は従来の基本セルに、1配線を施す
ことによ多形成されたCMO8/SOSインバータ回路
の平面図、第3図は第2図のインパーク回路の回路図、
第4図は従来の集積回路装置の問題点を説明するための
断面図、第5図は従来の他の集積回路装置の問題点を説
明するだめの断面図、第6図(a)〜Cωは本発明の実
施例におけるr−ドアレイ型集積回路装置のnチャンネ
ルトランジスタ側の製造工程を示す断面図、第7図は本
実施例方法で製造された集積回路装置の基本セルを示す
平面図、第8図は第7図の■−■線に沿う断面図である
。 、91・・・サファイア基板、32・・・フィールド酸
化膜、33・・・p型島状シリコン層、341゜34?
・・・P−)電極、35・・・P−)酸化膜、4011
40! 141・・・n+型領領域4 j ・・・基本
セル、43・・・n M 1% 状シリコンI、”t+
44意 、45・・・p型領域、46.46・・・p型
基部領域、47.47・・・n型基部領域。 第1図 第2図 ■2 第3図
Figure 1 (2) is a plan view showing the basic cell of a conventional P-) array type integrated circuit device;
A cross-sectional view taken along line C--C in the same figure (C1 is IA in the same figure), and Figure 2 shows a CMO8/SOS inverter in which multiple wirings are formed by applying one wiring to a conventional basic cell. A plan view of the circuit, Figure 3 is a circuit diagram of the impark circuit in Figure 2,
FIG. 4 is a cross-sectional view for explaining the problems of a conventional integrated circuit device, FIG. 5 is a cross-sectional view for explaining the problems of another conventional integrated circuit device, and FIG. 6(a) to Cω 7 is a cross-sectional view showing the manufacturing process of the n-channel transistor side of the r-dore array integrated circuit device according to the embodiment of the present invention, and FIG. 7 is a plan view showing the basic cell of the integrated circuit device manufactured by the method of this embodiment. FIG. 8 is a sectional view taken along the line ■-■ in FIG. 7. , 91... Sapphire substrate, 32... Field oxide film, 33... P-type island silicon layer, 341°34?
...P-) electrode, 35...P-) oxide film, 4011
40! 141...n+ type region 4j...basic cell, 43...nM 1% silicon I, "t+"
44 meaning, 45... p type region, 46.46... p type base region, 47.47... n type base region. Figure 1 Figure 2 ■2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上の半導体層に複数個のnチャンネル及びpチ
ャンネルのMOS )ランジスメからなる基本セルを複
数個配列して集積し、配線、4ターンによシ所望の動作
を実現する半導体集積回路装置において、前記各基本セ
ルを、絶縁基板上に素子分離領域によシ分離されて設け
られた基本セルの配列方向と直交する方向に互に隣接す
るp型、n型の島状半導体層と、これら島状半導体層を
f−)酸化膜を介して横切る互に平行な複数のP−)電
極と、これらf−)電極と前記素子分離領域の間のp型
、n型の島状半導体層に底部が前記絶縁基板と所望距離
へだてるように夫々設けられた半導体層に対して反対導
電型の拡散領域と、前記各電極間のp型、n型の島状半
導体層に@部が前記絶縁基板表面忙達するように夫々設
けられた半導体層に対して反対導電型の拡散領域とによ
シ構成したことを特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device in which a plurality of basic cells consisting of a plurality of n-channel and p-channel MOS transistors are arranged and integrated on a semiconductor layer on an insulating substrate, and a desired operation is realized by wiring and four turns. , p-type and n-type island-shaped semiconductor layers adjacent to each other in a direction perpendicular to the arrangement direction of the basic cells provided on an insulating substrate and separated by element isolation regions; A plurality of mutually parallel P-) electrodes that cross the island-shaped semiconductor layer via an oxide film, and p-type and n-type island-shaped semiconductor layers between these f-) electrodes and the element isolation region. diffusion regions of opposite conductivity type to the semiconductor layers provided so that their bottoms extend to a desired distance from the insulating substrate; and p-type and n-type island-shaped semiconductor layers between the respective electrodes; 1. A semiconductor integrated circuit device comprising diffusion regions of opposite conductivity type to each semiconductor layer provided so as to cover the surface of an insulating substrate.
JP58200214A 1983-10-26 1983-10-26 Semiconductor integrated circuit device Granted JPS6092653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200214A JPS6092653A (en) 1983-10-26 1983-10-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200214A JPS6092653A (en) 1983-10-26 1983-10-26 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6092653A true JPS6092653A (en) 1985-05-24
JPH0517711B2 JPH0517711B2 (en) 1993-03-09

Family

ID=16420708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200214A Granted JPS6092653A (en) 1983-10-26 1983-10-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6092653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370439A (en) * 1986-09-11 1988-03-30 Seiko Epson Corp Semiconductor integrated circuit device
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor
US6140161A (en) * 1997-06-06 2000-10-31 Nec Corporation Semiconductor integrated circuit device and method for making the same
US6414357B1 (en) 1998-06-05 2002-07-02 Nec Corporation Master-slice type semiconductor IC device with different kinds of basic cells
JP2003069027A (en) * 2001-08-24 2003-03-07 Semiconductor Energy Lab Co Ltd Element group for evaluation and manufacturing method thereof, semiconductor device and method for evaluating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370439A (en) * 1986-09-11 1988-03-30 Seiko Epson Corp Semiconductor integrated circuit device
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor
US6140161A (en) * 1997-06-06 2000-10-31 Nec Corporation Semiconductor integrated circuit device and method for making the same
US6414357B1 (en) 1998-06-05 2002-07-02 Nec Corporation Master-slice type semiconductor IC device with different kinds of basic cells
JP2003069027A (en) * 2001-08-24 2003-03-07 Semiconductor Energy Lab Co Ltd Element group for evaluation and manufacturing method thereof, semiconductor device and method for evaluating the same

Also Published As

Publication number Publication date
JPH0517711B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US4613886A (en) CMOS static memory cell
US4804637A (en) EEPROM memory cell and driving circuitry
US4184207A (en) High density floating gate electrically programmable ROM
US6528853B2 (en) Method and semiconductor structure for implementing dual plane body contacts for silicon-on-insulator (SOI) transistors
JP2001168340A (en) Soi-structure mis field-effect transistor and its manufacturing method
TW488077B (en) Semiconductor integrated circuit device and the manufacturing method thereof
JP2005026366A (en) Semiconductor memory device and semiconductor integrated circuit
US6621123B1 (en) Semiconductor device, and semiconductor integrated device
JPS6092653A (en) Semiconductor integrated circuit device
JP2644776B2 (en) Semiconductor device and manufacturing method thereof
JP2538856B2 (en) Method for manufacturing semiconductor device
JPH1174530A (en) Semiconductor integrated circuit device and its manufacture
US6153915A (en) CMOS semiconductor device
JP2568770B2 (en) High density memory array and method of forming the same
KR900004730B1 (en) Semiconductor memory device and method for production thereof
KR100226784B1 (en) Manufacturing method of semiconductor memory device
JPS6271258A (en) Semiconductor integrated circuit device
JPS58176964A (en) Preparation of complementary mos semiconductor device
JP2735285B2 (en) Semiconductor device
JPH05136382A (en) Complementary gate array
JPH0855909A (en) Semiconductor integrated circuit and manufacture thereof
JPS61280650A (en) Input circuit
JPS6021542A (en) Semiconductor integrated circuit device
JPS62263668A (en) Semiconductor integrated circuit device
JPH1154742A (en) Semiconductor device