JPS6091569A - Air-supply-controlling system for fuel cell plant - Google Patents

Air-supply-controlling system for fuel cell plant

Info

Publication number
JPS6091569A
JPS6091569A JP58198325A JP19832583A JPS6091569A JP S6091569 A JPS6091569 A JP S6091569A JP 58198325 A JP58198325 A JP 58198325A JP 19832583 A JP19832583 A JP 19832583A JP S6091569 A JPS6091569 A JP S6091569A
Authority
JP
Japan
Prior art keywords
air flow
amount
air
fuel cell
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58198325A
Other languages
Japanese (ja)
Other versions
JPH0444391B2 (en
Inventor
Kazuhiro Hayakawa
和弘 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58198325A priority Critical patent/JPS6091569A/en
Publication of JPS6091569A publication Critical patent/JPS6091569A/en
Publication of JPH0444391B2 publication Critical patent/JPH0444391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable all stacked cells to perform power generation of equal voltage by increasing the amount of air flow when the voltage of each cell becomes lower than the limit level so as to restore a normal voltage level. CONSTITUTION:An air-flow-amount-controlling part 9 performs closed-loop control by using an air flow amount signal (S4) so that the amount of air flow is usually controlled according to the current signal (S3) of an output current (i) from a fuel cell 3. When the amount of air flow is insufficient to supply an amount of oxygen necessary for the whole air electrode 3, one (for example S1K) of voltage signals (S11-S1N) produced by a corresponding voltage detector 5 decreases. Next, the voltage signals (S11-S1N) are compared with set limit levels (L1-LN) in comparators 71-7N. After that, the large deviation level (LK-S1K) is selected in a signal selector 8 before an air-flow-amount-correcting signal (S2) corresponding to the deviation is produced in an air-flow-amount- correcting part 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池の空気流量制御装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an air flow rate control device for a fuel cell.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に燃料電池は単電池の発生電圧は極めて低く、容量
が小さいため複数の単電池を積み重ねて積層構造として
高電圧、大電力を得るようにしている。そして空気極側
に必要な酸素は、空気を積層電池の片側から供給する事
によって与えられ、各単電池での出力に見合った酸素が
消費される。
In general, fuel cells generate extremely low voltage and have a small capacity, so a plurality of fuel cells are stacked on top of each other to form a laminate structure in order to obtain high voltage and large power. The oxygen required for the air electrode side is provided by supplying air from one side of the stacked battery, and oxygen is consumed commensurate with the output of each cell.

そして、この空気流量は出力電流に見合った酸素量に対
し、足められた過剰分の酸素を供給するように制御され
る。
Then, this air flow rate is controlled so as to supply an excess amount of oxygen to the amount of oxygen commensurate with the output current.

ここで、供給された酸素量と燃料電池で消費された酸素
量との比を酸素利用率Uと呼び第1図にその特性を示す
。一般に酸素利用率Uが上昇すると電池電圧Vは低下す
る傾向を持つ。このようζ=空気流量を出力電流のみで
制御した場合、空気通路の劣化等による不均一によって
酸素量が減少する部分が生じ、酸素利用率が上昇し電池
電圧が低下する問題があった。また電池全体として酸素
量が必要量より少ない場合は、空気入口側に近い電池で
はまだ十分な酸素があるため各電池で必要な発電反応が
起きるが、空気出口側(二近い電池においては十分な発
電反応ができず、電圧の低下や、極端な場合は電気分解
反応を起こして極性が反転する転極を引き起こし、燃料
極側(二発生し九酸素が水素と燃焼反応し電池を損傷さ
せる危険がおった。
Here, the ratio between the amount of oxygen supplied and the amount of oxygen consumed by the fuel cell is called the oxygen utilization rate U, and its characteristics are shown in FIG. Generally, as the oxygen utilization rate U increases, the battery voltage V tends to decrease. When ζ=air flow rate is controlled only by the output current, there is a problem in that the amount of oxygen decreases in some areas due to non-uniformity due to deterioration of the air passages, the oxygen utilization rate increases, and the battery voltage decreases. In addition, if the amount of oxygen in the battery as a whole is less than the required amount, batteries closer to the air inlet still have enough oxygen and the necessary power generation reaction will occur in each battery, but batteries closer to the air outlet (closer to the second battery) will not have enough oxygen. The power generation reaction cannot occur, resulting in a drop in voltage, or in extreme cases, an electrolytic reaction may occur, causing polarity reversal, which may cause the fuel electrode side (2) to cause a combustion reaction between oxygen and hydrogen, causing damage to the battery. There was a thunderstorm.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のように酸素量が不足した場合これを検
知し、空気流量を増加して上記のような電池電圧の不均
一を少なくシ、できるだけ均一な電圧状態で発電できる
燃料電池の空気流量制御装置を得ることを目的とする。
The present invention detects when the amount of oxygen is insufficient as described above, increases the air flow rate, reduces the non-uniformity of the battery voltage as described above, and improves the air flow of the fuel cell so that power can be generated with as uniform a voltage as possible. The purpose is to obtain a flow control device.

〔発明の概要〕[Summary of the invention]

このため、本発明は、積層された電池のうちの部分的な
電圧を検知する手段を設け、この電圧が制限値を下まわ
った時、全体の空気流量を増加させること(二より電圧
を回復させ、均一電圧での発電を図るようにしたことを
特徴とする。
For this reason, the present invention provides means for detecting the partial voltage of the stacked batteries, and when this voltage falls below a limit value, increases the overall air flow rate (secondarily, the voltage is restored). It is characterized in that it is designed to generate electricity at a uniform voltage.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示すものである。 FIG. 2 shows an embodiment of the present invention.

図中1は空気供給源である。この空気供給源より供給さ
れる空気は空気流量調節弁2を介して、燃料電池3の空
気極3aへ導入される。一方燃料電池3の燃料極3bに
は水素を含む燃料ガスが導入され、電解質3cffi介
して酸素と水素が反応を起し、直流電気エネルギーエが
得られる。この直流電流は電流検出器4によって検出さ
れる。
In the figure, 1 is an air supply source. Air supplied from this air supply source is introduced into the air electrode 3a of the fuel cell 3 via the air flow control valve 2. On the other hand, a fuel gas containing hydrogen is introduced into the fuel electrode 3b of the fuel cell 3, and oxygen and hydrogen react through the electrolyte 3cffi to obtain DC electrical energy. This direct current is detected by a current detector 4.

一方、燃料電池3の各部分電圧は電圧検出器5によって
検出される。電圧検出器5から得られる部分電圧信号S
、l−8INは後述の比較器71〜7NI信号選択器8
.流量補正部6によって空気流量補正信号S!となる。
On the other hand, each partial voltage of the fuel cell 3 is detected by a voltage detector 5. Partial voltage signal S obtained from voltage detector 5
, l-8IN are comparators 71 to 7NI signal selector 8, which will be described later.
.. The air flow rate correction signal S! is generated by the flow rate correction unit 6. becomes.

空気流量調節弁2は、空気流量制御部9を介し、電流検
出器4から得られる電流信号Ss、空気流貴補正部6か
ら得られる空気流量補正信号S雪、流量検出器10から
得られる空気流量信号S4とを比較器11にて比較演算
し、この演算結果に応じて制御される。
The air flow control valve 2 receives a current signal Ss obtained from the current detector 4, an air flow correction signal S obtained from the air flow correction section 6, and an air flow obtained from the flow rate detector 10 through the air flow control section 9. The flow rate signal S4 is compared with the flow rate signal S4 by the comparator 11, and the control is performed according to the result of this calculation.

以上の構成で、通常は燃料電池3からの出力電流Iの電
流信号S3に応じた空気流量に制御すべく空気流量制御
部9は空気流量信号Sak用いて閉ループ制御をする。
With the above configuration, the air flow rate control section 9 normally performs closed loop control using the air flow rate signal Sak in order to control the air flow rate according to the current signal S3 of the output current I from the fuel cell 3.

もし、燃料電池3の空気通路の劣化等何らかの原因によ
り空気極3a全体で必要な酸素量を供給するのに空気流
量が不足する時、該当する電圧検出器5によって得られ
る電圧信号811〜SINのいずれか(仮にSIKとす
る)は低下する。電圧信号811”’−’SINは、そ
れぞれ比較器71〜7Nにおいて第1図の範囲Aと範囲
Bの境界電圧付近に設定した制限値L 1−LNと比較
演算され、信号選択器8において偏差の大きい(LK 
−5lx)が選択され空気流量補正部6:二おいて偏差
に応じた空気流量補正信号S2が得られる。この空気流
量補正信号S2は比較器11において電流信号S3およ
び空気流量S4と比較演算され、空気流量制御部9にお
いて空気流量設定値を増加させるように作用し、空気流
量調節弁2を増量させる。これにより空気流量は全体的
に増加し、酸素利用率は低下する。
If the air flow rate is insufficient to supply the required amount of oxygen to the entire air electrode 3a due to some reason such as deterioration of the air passage of the fuel cell 3, the voltage signals 811 to SIN obtained by the corresponding voltage detector 5 may be Either one (temporarily assumed to be SIK) will decrease. The voltage signal 811''-'SIN is compared with a limit value L1-LN set near the boundary voltage between range A and range B in FIG. The big (LK
-5lx) is selected, and the air flow rate correction section 6:2 obtains an air flow rate correction signal S2 according to the deviation. This air flow rate correction signal S2 is compared with the current signal S3 and the air flow rate S4 in the comparator 11, and acts to increase the air flow rate set value in the air flow control section 9, causing the air flow control valve 2 to increase the amount. This increases the overall air flow rate and reduces oxygen utilization.

この時第1図の範囲A l:1つた部分が範囲Bに入り
、低下した部分電圧は回復し、はぼ均一な電圧を発生す
るようになる。
At this time, the area A1 in FIG. 1 enters the area B, the reduced partial voltage recovers, and a nearly uniform voltage is generated.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、燃料電池空気極の酸素量
を必要量供給するよう制御するので、酸素不足によって
起きる電圧低下や転極を防止でき、電池の損傷を防ぐこ
とや、効率の良い発電ができる。また各単一電池が均等
カ発電をするようになるので、各電池の劣化のばらつき
を少なくすることができる。
As described above, according to the present invention, since the amount of oxygen at the fuel cell air electrode is controlled to be supplied in the required amount, it is possible to prevent voltage drop and polarity reversal caused by lack of oxygen, prevent damage to the battery, and improve efficiency. It can generate good power. Furthermore, since each single battery generates power equally, variations in deterioration of each battery can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の酸素利用率の特性図、第2図は本発
明の一実施例を示すブロック図である。 ■・・・空気供給源 2・・・空気流量調節弁3・・・
燃料電池 3a・・・空気極 3b・・・燃料極 3C・・・電解質 4・・・電流検出器 5・・・電圧検出器6・・・空気
流量補正部 71〜7N・・・比較器8・・・信号選択
器 9・・・空気流量制御部10・・・流量検出器 1
1・・・比較器(7317) 代理人 弁理士 則 近
 憲 佑 (ほか1名)第1図 第2図
FIG. 1 is a characteristic diagram of the oxygen utilization rate of a fuel cell, and FIG. 2 is a block diagram showing an embodiment of the present invention. ■... Air supply source 2... Air flow control valve 3...
Fuel cell 3a...Air electrode 3b...Fuel electrode 3C...Electrolyte 4...Current detector 5...Voltage detector 6...Air flow rate correction section 71-7N...Comparator 8 ...Signal selector 9...Air flow rate control section 10...Flow rate detector 1
1... Comparator (7317) Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 単電池が積層されてなる燃料電池を用いた発電システム
の前記燃料電池の出力電流に基づいて前記燃料電池に供
給する空気流量を制御するようにした燃料電池プラント
の空気流量制御装置において、前記燃料電池の積層部分
の発生電圧をそれぞれ検出する検出器と、ここで検出し
たこれら部分電圧と予め定めた制限値とを比較し前記部
分電圧が前記制限値より小さいときは前記空気流量を増
加させる補正信号を出す空気流量補正部とを備えたこと
を特徴とする燃料電池プランFの空気流量制御装置。
In an air flow rate control device for a fuel cell plant, the air flow rate control device for a fuel cell plant is configured to control the air flow rate supplied to the fuel cell based on the output current of the fuel cell in a power generation system using a fuel cell formed by stacking unit cells. A detector that detects the voltage generated in each of the laminated parts of the battery, and a correction that compares these partial voltages detected here with a predetermined limit value and increases the air flow rate when the partial voltage is smaller than the limit value. An air flow rate control device for a fuel cell plan F, characterized by comprising an air flow rate correction section that outputs a signal.
JP58198325A 1983-10-25 1983-10-25 Air-supply-controlling system for fuel cell plant Granted JPS6091569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198325A JPS6091569A (en) 1983-10-25 1983-10-25 Air-supply-controlling system for fuel cell plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198325A JPS6091569A (en) 1983-10-25 1983-10-25 Air-supply-controlling system for fuel cell plant

Publications (2)

Publication Number Publication Date
JPS6091569A true JPS6091569A (en) 1985-05-22
JPH0444391B2 JPH0444391B2 (en) 1992-07-21

Family

ID=16389226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198325A Granted JPS6091569A (en) 1983-10-25 1983-10-25 Air-supply-controlling system for fuel cell plant

Country Status (1)

Country Link
JP (1) JPS6091569A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729930A (en) * 1987-05-29 1988-03-08 International Fuel Cells Corporation Augmented air supply for fuel cell power plant during transient load increases
JPS6463273A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell power generation system
JPH0426069A (en) * 1990-05-18 1992-01-29 Fuji Electric Co Ltd Operation controlling method for fuel cell generator
WO1999016145A1 (en) * 1997-09-24 1999-04-01 Aer Energy Resources, Inc. Air manager control using cell voltage as auto-reference
JP2004207029A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel battery system
JP2004281421A (en) * 2004-07-08 2004-10-07 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system, and information recording medium storing program of the same
JP2005093218A (en) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Fuel cell system
JP2005524216A (en) * 2002-04-30 2005-08-11 ゼネラル・モーターズ・コーポレーション Λ detection of fuel cell stack
JP2006032168A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Fuel cell system
US8247122B2 (en) 2003-07-25 2012-08-21 Nissan Motor Co., Ltd. Device and method for controlling fuel cell system with vibration amplitude detection

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729930A (en) * 1987-05-29 1988-03-08 International Fuel Cells Corporation Augmented air supply for fuel cell power plant during transient load increases
EP0293007A2 (en) * 1987-05-29 1988-11-30 International Fuel Cells Corporation Augmented air supply for fuel cells power plant during transient load increases
JPS6463273A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Fuel cell power generation system
JPH0426069A (en) * 1990-05-18 1992-01-29 Fuji Electric Co Ltd Operation controlling method for fuel cell generator
WO1999016145A1 (en) * 1997-09-24 1999-04-01 Aer Energy Resources, Inc. Air manager control using cell voltage as auto-reference
JP2005524216A (en) * 2002-04-30 2005-08-11 ゼネラル・モーターズ・コーポレーション Λ detection of fuel cell stack
JP2004207029A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel battery system
US8247122B2 (en) 2003-07-25 2012-08-21 Nissan Motor Co., Ltd. Device and method for controlling fuel cell system with vibration amplitude detection
US8679690B2 (en) 2003-07-25 2014-03-25 Nissan Motor Co., Ltd. Device and method for controlling fuel cell system having oxygen concentration transient reduction
JP2005093218A (en) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Fuel cell system
JP2004281421A (en) * 2004-07-08 2004-10-07 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system, and information recording medium storing program of the same
JP2006032168A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JPH0444391B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US4904548A (en) Method for controlling a fuel cell
US6761987B2 (en) Fuel cell system having an energy source backup
JPS6091569A (en) Air-supply-controlling system for fuel cell plant
JP2006278046A (en) Fuel cell system
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
JPS6121516A (en) Fuel battery power generating system
JPS6326961A (en) Fuel cell power generating system and its operation method
US20190207230A1 (en) Temperature control system and method for fuel cell system and fuel cell system
KR102627125B1 (en) Fuel cell system
US11652225B2 (en) Fuel cell system and control method for fuel cell system
JPH0833782B2 (en) Fuel cell voltage control circuit
JPH0629029A (en) Fuel cell operating method
US20050089729A1 (en) Technique and apparatus to control the response of a fuel cell system to load transients
US11271229B2 (en) Method of controlling measurement of cell voltage of fuel cell and apparatus for executing the same
US20050214602A1 (en) Load following algorithm for a fuel cell based distributed generation system
JPH06275296A (en) Fuel cell power generating device
JPH0451466A (en) Output control device for fuel cell power generation system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2013134866A (en) Fuel cell system and fuel cell system control method
JP2013145709A (en) Fuel cell system and control method therefor
JPS60253171A (en) Fuel battery power generation system
JPS6032254A (en) Method of controlling supply of fuel and oxidizing agent
US11522205B2 (en) Fuel cell system and control method for fuel cell system
JP2021048066A (en) Fuel cell system
JP2016134258A (en) Control device for fuel battery system