JPS609011A - Optical fiber composite power cable - Google Patents

Optical fiber composite power cable

Info

Publication number
JPS609011A
JPS609011A JP58114392A JP11439283A JPS609011A JP S609011 A JPS609011 A JP S609011A JP 58114392 A JP58114392 A JP 58114392A JP 11439283 A JP11439283 A JP 11439283A JP S609011 A JPS609011 A JP S609011A
Authority
JP
Japan
Prior art keywords
optical fiber
cable
fiber composite
power cable
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114392A
Other languages
Japanese (ja)
Inventor
塩田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58114392A priority Critical patent/JPS609011A/en
Publication of JPS609011A publication Critical patent/JPS609011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Communication Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は大容量送電が可能な超電導ケーブルもしくは極
低温ケーブルと多量の情報を極めて71411いファイ
バーによシ伝送することかできる光ファイバとを祝金さ
せた複合ケーブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite cable that combines a superconducting cable or cryogenic cable capable of transmitting large amounts of power and an optical fiber capable of transmitting a large amount of information over extremely thin fibers. It is something.

光フアイバケーブルを電カケーブルに複合させる試みは
いろいろと行なわれているが、超′IE導ケーブルもし
くは極低温ケーブルに光ファイバを組合せたものは今日
まで実現していない。
Although various attempts have been made to combine optical fiber cables with electrical power cables, to date no combination of optical fibers with ultra-IE conductor cables or cryogenic cables has been realized.

大容量送電線として極低温ケーブルは高純厩の銅または
アルミニウムが極低温では常温に比べ電気抵抗が非常に
小さくなるので、これを導体として用い、窒素や水素な
どの液化ガスを用いて導体を100〜500”Kに冷却
して使用するケーブルであシ、超電導ケーブルは、チタ
ンT1、ニオブNb、バナジウムVなどの金属が臨界温
度以下で電気抵抗がOKなるといつ金属の超電導現象を
利用したもので、いづれも低温の低抵抗又は抵抗零の特
性を利用し画期的な大容量送電を行1よりんとするもの
である。
As a large-capacity power transmission line, cryogenic cables are made of high-purity copper or aluminum, which has a much lower electrical resistance at extremely low temperatures than at room temperature, and is made of high-purity copper or aluminum as a conductor using liquefied gas such as nitrogen or hydrogen. Superconducting cables are cables that are cooled to 100 to 500"K. Superconducting cables utilize the superconducting phenomenon of metals such as titanium T1, niobium Nb, and vanadium V when their electrical resistance is OK below the critical temperature. All of them utilize the characteristics of low resistance or zero resistance at low temperatures to achieve revolutionary large-capacity power transmission.

ところでこのようなケーブルの低温領域では通常の有機
絶縁物は脆化したシ或は収縮によって光・7アイパにマ
イクロベンディングロスを生じさせることから使用する
ことができないので、従来通常の場合好ましいとされて
いるシリコンコート光ファイバを複合させて使用しよう
としても光フアイバケーブル本来の特性を発揮すること
はできず結局実用的な複合ケーブルは得ることができな
い。
However, in the low-temperature range of such cables, ordinary organic insulators cannot be used because they become brittle or shrink, causing microbending loss in the optical fibers, so conventional organic insulators, which have been considered preferable in normal cases, cannot be used. Even if an attempt is made to use silicon-coated optical fibers in combination, the original characteristics of the optical fiber cable cannot be exhibited, and in the end, a practical composite cable cannot be obtained.

本発明はこのような状況を検討の結果ガラスファイバに
銅、アルミニウムの如き収縮率の小さい金属を蒸着法等
によルコーティングした金属コーティングガラスファイ
バを用いることによシ、光フアイバ複合極低温もしくは
超電導ケーブルを得ることに成功した。
As a result of studying this situation, the present invention has developed an optical fiber composite cryogenic or succeeded in obtaining a superconducting cable.

次に本発明を図面を参照しつ\説明する。Next, the present invention will be explained with reference to the drawings.

第1図は本発明に於て使用される光フアイバケーブルの
一例を示し、中心に鋼線1を設け、その周囲に金属コー
ティング層3を有するガラスファイバ2を6心よシ合わ
せ、その周囲にアルミニウムもしくは銅の如き金属パイ
プ4を設けた光フアイバケーブルで、以下第2図及び第
4図のケーブルに複合させである。第2図は光フアイバ
複合超電導ケーブルの一例を示すもので、中心に銅導体
11を設け、その周囲に内部液化窒素もしくはヘリウム
通路12を設け、更に外側の金属パイプ13の外側には
第1図に示したような光フアイバケーブル14とナイロ
ンのような介在15とを交互に配置し、その外側に金属
パイプ17を設けて。
FIG. 1 shows an example of an optical fiber cable used in the present invention, in which a steel wire 1 is provided at the center, and six glass fibers 2 having a metal coating layer 3 are tied together around the steel wire 1. This is an optical fiber cable provided with a metal pipe 4 such as aluminum or copper, which is combined with the cables shown in FIGS. 2 and 4 below. FIG. 2 shows an example of an optical fiber composite superconducting cable, in which a copper conductor 11 is provided in the center, an internal liquefied nitrogen or helium passage 12 is provided around it, and an outer metal pipe 13 is provided with a copper conductor 11 as shown in FIG. Optical fiber cables 14 as shown in FIG. 1 and intervening materials 15 made of nylon are alternately arranged, and a metal pipe 17 is provided on the outside thereof.

光フアイバケーブル14と介在15を設けである空間内
を真空室16としである。なお金属コートファイバを真
空室16内に入れることにょ夛ファイバをコートする金
属の劣化が防止できる。金属パイプ17の外側には反射
板18、外部液化窒素もしくはヘリウム流路19、金属
パイプ20.塩ビの如きケーブルシース21を順次設け
てケーブルを構成している。
A space in which an optical fiber cable 14 and an interposer 15 are provided is defined as a vacuum chamber 16. By placing the metal-coated fiber in the vacuum chamber 16, deterioration of the metal coating the fiber can be prevented. On the outside of the metal pipe 17, there is a reflector 18, an external liquid nitrogen or helium channel 19, a metal pipe 20. A cable is constructed by sequentially providing cable sheaths 21 such as PVC.

第3図は第2図に示される複合ケーブル用光ファイバと
して金属コートファイバを適用した場合(Il及び従来
タイプのシリコンゴム−テフロン被覆ファイバを適用し
た場合(Ill 、シリコンゴム−ナイロン被覆ファイ
バを適用した場合(III)の伝送損失の素度特性を示
したものである。
Figure 3 shows the case where a metal-coated fiber is applied as the optical fiber for the composite cable shown in Figure 2 (Ill), and the case where a conventional type silicone rubber-Teflon coated fiber is applied (Ill), and the case where a silicone rubber-nylon coated fiber is applied. This figure shows the elementary characteristic of transmission loss in case (III).

図から明らかなように、従来タイプ印)、(Ill)の
場合低温になるにつれて急激にロスが増大するが、金属
コートファイバTI)の場合微増に留まることがわかる
As is clear from the figure, in the case of the conventional types marked) and (Ill), the loss increases rapidly as the temperature decreases, but in the case of the metal coated fiber TI), it increases only slightly.

第4図は極低温ケーブルの他の実施例で、中心に冷媒の
通路22を有し、その周囲をケーブル導体23とし、そ
の外部に電気絶縁層24、静電遮蔽25を設けてなる線
心3心の撚合間隙内に第1図に示したような光フアイバ
ケーブル14を配置し、ケーブル心は全体に大きな空間
の冷媒の通路26を保持するようにして、内部圧力ケー
ス(電磁遮蔽)27、熱絶縁層28及び外部保護ケース
29を順次重合して設はケーブルを構成している。
FIG. 4 shows another embodiment of the cryogenic cable, which has a core with a refrigerant passage 22 in the center, a cable conductor 23 around it, and an electrical insulation layer 24 and an electrostatic shield 25 on the outside. An optical fiber cable 14 as shown in FIG. 1 is arranged within the twisting gap of the three cores, and the cable core maintains a large refrigerant passage 26 throughout, thereby creating an internal pressure case (electromagnetic shielding). 27, the thermal insulating layer 28 and the external protective case 29 are sequentially superposed to form a cable.

本発明は上記各実施例のように光7アイパlとして有機
物であるシリコンゴムをコーティングしてないものを使
用しているので脆化の問題はなく。
In the present invention, as in the above-mentioned embodiments, the optical 7-ipal is not coated with organic silicone rubber, so there is no problem of embrittlement.

かつ収縮率も小さいので極低温或は超伝導を行なう温度
70°に〜3°にで安定である。
In addition, since the shrinkage rate is small, it is stable at extremely low temperatures or at temperatures ranging from 70° to 3° at which superconductivity occurs.

なおファイバタにコートする金属としては銅。The metal used to coat fiber butter is copper.

アルミニウム等低温での変態のない立方晶系の金属を用
いるのが好ましい。
It is preferable to use a cubic metal that does not undergo transformation at low temperatures, such as aluminum.

【図面の簡単な説明】[Brief explanation of the drawing]

$1図は本発明で使用する光フアイバケーブルの一例を
示す横断面図、第2図は本発明の光フアイバ複合超電導
ケーブルの一例を示す横断面図、第3図は第2図の複合
ケーブルに適用される本発明の光ファイバと従来のファ
イバの温度特性比較図、第4図は本発明の光フアイバ複
合極低温ケーブルの一例を示す横断面図である。 1:鋼線 2ニガラスファイバ 3:金属コーティング4:11に;4J≦≦11:銅導
体 12:内部12.He流路13:パイ7’ 14:
光フアイバクー フル15:介在 16:真空室 1T:パイプ 18:反射板 19:外部N2、He流路20:パイプ21:シース 
22:冷媒の通路 23:ケーブル導体 24:電気絶縁層25:静電遮蔽
 26:冷媒の通路 27:内部圧力ケース28:熱絶縁層 29:外部保護ケース 代理人 弁理士 竹 内 守
Figure 1 is a cross-sectional view showing an example of the optical fiber cable used in the present invention, Figure 2 is a cross-sectional view showing an example of the optical fiber composite superconducting cable of the present invention, and Figure 3 is the composite cable of Figure 2. FIG. 4 is a cross-sectional view showing an example of the optical fiber composite cryogenic cable of the present invention. 1: Steel wire 2 Glass fiber 3: Metal coating 4: 11; 4J≦≦11: Copper conductor 12: Internal 12. He channel 13: Pi 7' 14:
Optical fiber vacuum Full 15: Intervention 16: Vacuum chamber 1T: Pipe 18: Reflector plate 19: External N2, He flow path 20: Pipe 21: Sheath
22: Refrigerant passage 23: Cable conductor 24: Electrical insulation layer 25: Electrostatic shielding 26: Refrigerant passage 27: Internal pressure case 28: Thermal insulation layer 29: External protective case Representative Patent attorney Mamoru Takeuchi

Claims (1)

【特許請求の範囲】[Claims] (1) 超+1jX導もしくは極低温ケーブル内′fi
fSvcガラスファイバに金属をコーティングした光フ
ァイバを被合させたことを特徴とする光ファイバ複合型
カケーブル 複合醒カケーブル
(1) 'fi in super +1jX conductor or cryogenic cable
An optical fiber composite cable characterized by fSvc glass fiber coated with a metal-coated optical fiber.
JP58114392A 1983-06-27 1983-06-27 Optical fiber composite power cable Pending JPS609011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114392A JPS609011A (en) 1983-06-27 1983-06-27 Optical fiber composite power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114392A JPS609011A (en) 1983-06-27 1983-06-27 Optical fiber composite power cable

Publications (1)

Publication Number Publication Date
JPS609011A true JPS609011A (en) 1985-01-18

Family

ID=14636524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114392A Pending JPS609011A (en) 1983-06-27 1983-06-27 Optical fiber composite power cable

Country Status (1)

Country Link
JP (1) JPS609011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281133A1 (en) * 1987-03-05 1988-09-07 Sumitomo Electric Industries Limited Electricity-light transmitting composite wire
US6951985B1 (en) * 1995-05-08 2005-10-04 Lemelson Jerome H Superconducting electrical cable
WO2007034631A1 (en) * 2005-09-22 2007-03-29 Sumitomo Electric Industries, Ltd. Method for assembling interconnecting structure for superconducting cable
JP2018530784A (en) * 2015-10-16 2018-10-18 エーエフエル・テレコミュニケーションズ・エルエルシー Optical fiber and cable for high temperature applications

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281133A1 (en) * 1987-03-05 1988-09-07 Sumitomo Electric Industries Limited Electricity-light transmitting composite wire
JPS646308A (en) * 1987-03-05 1989-01-10 Sumitomo Electric Industries Composite cable for electricity and light transmission
US6951985B1 (en) * 1995-05-08 2005-10-04 Lemelson Jerome H Superconducting electrical cable
WO2007034631A1 (en) * 2005-09-22 2007-03-29 Sumitomo Electric Industries, Ltd. Method for assembling interconnecting structure for superconducting cable
EP1928067A1 (en) * 2005-09-22 2008-06-04 Sumitomo Electric Industries, Ltd. Method for assembling interconnecting structure for superconducting cable
EP1928067A4 (en) * 2005-09-22 2010-11-03 Sumitomo Electric Industries Method for assembling interconnecting structure for superconducting cable
US8007186B2 (en) 2005-09-22 2011-08-30 Sumitomo Electric Industries, Ltd. Method of constructing a normal joint structure of a superconducting cable
JP2018530784A (en) * 2015-10-16 2018-10-18 エーエフエル・テレコミュニケーションズ・エルエルシー Optical fiber and cable for high temperature applications

Similar Documents

Publication Publication Date Title
US4845308A (en) Superconducting electrical conductor
JPH0268820A (en) Electric conductor in the form of wire or cable
JP2584476B2 (en) Composite wire for electrical and optical transmission
US3639672A (en) Electrical conductor
US6005194A (en) A.C. cable with two concentric conductor configurations of stranded single conductors
JPS609011A (en) Optical fiber composite power cable
US3550050A (en) Superconducting coil with cooling means
AU702118B2 (en) Electric conductors and cables
JPS618809A (en) Cable
US6215072B1 (en) Method of preparing an oxide superconducting conductor
CA2299245C (en) High temperature superconducting cable and process for manufacturing the same
JP2002008459A (en) Superconducting cable
JPH01144516A (en) Optical composite coaxial cable
JP2003187651A (en) High-temperature superconducting cable
JP2519717B2 (en) Superconducting cable
JPH01186712A (en) Superconductor
CN215183265U (en) High-density superconductive superfine coaxial cable
JPH10112227A (en) System using oxide superconducting wire
JPH08124434A (en) Superconductor
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JPS60198009A (en) Compound superconductive conductor
JPS63299011A (en) Optical fiber coated with oxide ceramic superconductor
JP3415646B2 (en) Superconducting conductor
JPS63124310A (en) Manufacture of nb-ti very fine multi-core superconductive wire
Takeuchi et al. Precursor wire for Nb 3 Al superconducting wire, Nb 3 Al superconducting wire, method for producing precursor wire for Nb 3 Al superconducting wire, and method for producing Nb 3 Al superconducting wire