JPS6089357A - Hydrogen absorbing inhibiting coating steel material and manufacture thereof - Google Patents

Hydrogen absorbing inhibiting coating steel material and manufacture thereof

Info

Publication number
JPS6089357A
JPS6089357A JP19802483A JP19802483A JPS6089357A JP S6089357 A JPS6089357 A JP S6089357A JP 19802483 A JP19802483 A JP 19802483A JP 19802483 A JP19802483 A JP 19802483A JP S6089357 A JPS6089357 A JP S6089357A
Authority
JP
Japan
Prior art keywords
steel
steel material
hydrogen
metal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19802483A
Other languages
Japanese (ja)
Inventor
隆 山本
岡井 敏博
小田 光之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP19802483A priority Critical patent/JPS6089357A/en
Priority to GB08426527A priority patent/GB2149321A/en
Priority to DE19843438508 priority patent/DE3438508A1/en
Publication of JPS6089357A publication Critical patent/JPS6089357A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水素吸収抑制鋼材、よシ詳しくは、鋼材の腐食
により発生する原子状水素が鋼材中に吸収されて発生す
る水素誘起割れ、即ち、水索脆性割れを防止した鋼材お
よびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides hydrogen absorption suppressing steel materials, and more specifically, hydrogen-induced cracking, that is, water cable embrittlement cracking, which occurs when atomic hydrogen generated by corrosion of steel materials is absorbed into steel materials. Concerning steel materials and their manufacturing methods.

一般に鋼材は硫化水素Iたは次酸ガヌの存在する環境で
割れを起こすことかめる。この原因は硫化水素と鋼材と
′の反応によシ生じた水素が一部原子状で鋼材中に拡散
侵入して水素脆性を起こすためと信じられている。
In general, steel materials tend to crack in environments where hydrogen sulfide I or hypooxylic acid exists. The cause of this is believed to be that some of the hydrogen produced by the reaction between hydrogen sulfide and the steel material diffuses into the steel material in atomic form, causing hydrogen embrittlement.

従来、この水素脆性を防止するためには、塗装2よびラ
イニング等の方法によフ、硫化水素等のJfi6食性因
子を遮断することが一般的である。典型的なものとして
は、塗料組成物中に硫化水素と反応する金属粉(顔料)
を添加する方法またはイオン交換樹脂を添加する方法が
ある。前者は金属粉と硫化水素との反応により硫化水素
が鋼面へ到達するのを阻止する。後者に硫化水素をイオ
ン交換樹脂に反応させて硫化水素の鋼面への到達を阻止
する。
Conventionally, in order to prevent this hydrogen embrittlement, it is common to block Jfi6 eroding factors such as hydrogen sulfide by methods such as painting 2 and lining. Typically, metal powders (pigments) that react with hydrogen sulfide are present in paint compositions.
There are two methods: adding ion exchange resin or adding ion exchange resin. The former prevents hydrogen sulfide from reaching the steel surface through a reaction between metal powder and hydrogen sulfide. In the latter case, hydrogen sulfide is reacted with ion exchange resin to prevent hydrogen sulfide from reaching the steel surface.

しかしながら、上記方法は硫化水素と金属粉I反応 たはイオン交換樹脂と9c用に基づくもので、反応が無
限に続くものではなく全ての添加物が反応するとその効
果が激減し、鋼材の腐食反応が増大して水素脆性割れが
生じる。一般に上述の遮断法では、30時間から100
日程度で鋼材の腐食反応が増大し始める。従って、実際
の鋼材の使用期間C数十年)に遠く及ばない。
However, the above methods are based on hydrogen sulfide and metal powder I reaction or ion exchange resin and 9c reaction, and the reaction does not continue indefinitely, and when all the additives react, the effect will be drastically reduced, and the corrosion reaction of steel materials will occur. increases and hydrogen embrittlement cracking occurs. Generally, the above-mentioned blocking method requires 30 hours to 100 hours.
The corrosion reaction of steel material begins to increase in about a day. Therefore, it is far short of the actual service life of steel (several decades).

本発明者等は鋼材表面に薄い金属層を設けることによシ
、水素の吸収が有効に阻止されることを見出し本発明を
成すに到った。
The present inventors have discovered that hydrogen absorption can be effectively prevented by providing a thin metal layer on the surface of a steel material, and have accomplished the present invention.

即ち、本発明は鋼材表面と塗料またはライニング材塗膜
の間に、膜厚0.05〜1μmの金属層を有する水素吸
収抑制鋼材およびその製法を提供するO 本発明の金属層は電気メッキ、無電解メッキ、金属と有
機物(高分子樹脂)との混合した複合メッキ、溶融メッ
キIたは金属蒸着等により鋼材表面に被覆される。金属
層を形成する金属はアルミニウム、ニッケル、クロム、
カドミウム、銅、鉛等であって、硫化水系または次酸ガ
ヌ等と反応して不活性な被膜を形成するものである。好
ましくはニッケル、クロム、カドミウム、銅等でめる。
That is, the present invention provides a hydrogen absorption-suppressing steel material having a metal layer with a thickness of 0.05 to 1 μm between the surface of the steel material and a coating film of paint or lining material, and a method for manufacturing the same. The surface of the steel material is coated by electroless plating, composite plating of a mixture of metal and organic material (polymer resin), hot-dip plating, metal vapor deposition, etc. The metals forming the metal layer are aluminum, nickel, chromium,
It is made of cadmium, copper, lead, etc., and forms an inert film by reacting with aqueous sulfide or hypooxylic acid. It is preferably plated with nickel, chromium, cadmium, copper, etc.

金属層の膜厚は0.05〜ll−1m、好ましくは0.
08〜0.5μmである。0.05μmよシ薄いと腐食
による水素吸収の抑制効果が小さい。従来水素吸収の抑
制効果を高めるために膜厚を厚くすることが考えられて
いたが、実際には1μm=i越えると水素吸収の抑制効
果は高くなるものの、鋼中に吸収された水素が鋼材裏面
から鋼外へ放出されにくくなることが解った。
The thickness of the metal layer is 0.05 to 1 m, preferably 0.05 m to 1 m.
08 to 0.5 μm. When the thickness is as thin as 0.05 μm, the effect of suppressing hydrogen absorption due to corrosion is small. Conventionally, it was thought to increase the thickness of the film to increase the hydrogen absorption suppression effect, but in reality, if it exceeds 1 μm = i, the hydrogen absorption suppression effect increases, but the hydrogen absorbed in the steel is It was found that it becomes difficult for the metal to be released from the back side to the outside of the steel.

本発明は上記金属層の上面を硫化水素、次酸ガス等を遮
断し、透過量を少なくするために塗料またはライニング
材で塗装する。これらの塗料またはライニング材は常套
の防食塗料に用いられる樹脂を用いるもので、一般に重
合油、天然または合成樹脂の単IAxたは複合樹脂が用
いられる。
In the present invention, the upper surface of the metal layer is coated with a paint or a lining material in order to block hydrogen sulfide, hypooxygen gas, etc., and to reduce the amount of permeation. These coatings or linings employ resins used in conventional anticorrosive coatings, generally polymerized oils, natural or synthetic resins, single IAx, or composite resins.

重合油の例としては、主にボイル油が挙げられる。天然
Ifcは合成樹脂の例としては、エポキシ樹脂、エポキ
シウレタン樹脂、タールエポキシ樹脂、メラミン樹脂、
壇素ゴム、フェノール樹脂、ポリエステル樹脂、ポリウ
レタン樹ハトシリコーン樹脂、フッ素樹脂等が挙げられ
る。
Examples of polymerized oils include mainly boiled oils. Examples of synthetic resins for natural Ifc include epoxy resin, epoxy urethane resin, tar epoxy resin, melamine resin,
Examples include base rubber, phenol resin, polyester resin, polyurethane resin, silicone resin, and fluororesin.

塗装方法は常套のいかなる方法を用いてもよく、例えば
、流れ塗装、浸漬塗装、スプレー塗装、ノ翫ケ塗り塗装
、粉体塗装等が挙げられる。
Any conventional coating method may be used, and examples thereof include flow coating, dipping coating, spray coating, spray coating, powder coating, and the like.

本発明被覆組成物を塗布する鋼材としては、応力腐食、
水素脆性、水素誘起割れ、水系ブリスター等が生じる、
Iたに生じ易い綱材でめって、典型的には次索鋼、合金
鋼声張力鋼がるり、油井管、輸送パイプ、ボルト、船舶
等の鋼材が挙げられる。
Steel materials to which the coating composition of the present invention is applied include stress corrosion,
Hydrogen embrittlement, hydrogen-induced cracking, water-based blisters, etc. occur.
Typical examples of rope materials that are susceptible to this phenomenon include steel materials such as cable steel, alloy steel, high-strength steel, oil country tubular goods, transportation pipes, bolts, and ships.

本発明鋼材は、硫化水素が含Iれる環境下で、鋼材の腐
食によ多発生した原子状水素を鋼材が殆んど吸収せず、
有効に鋼材の水素脆性割れが防止される。本発明の金属
層が水素脆性割れを防止する理由は金属層またはその金
属の反応生成物層が鋼面の電位を責な電位(卑な電位で
あると原子状水素の鋼材への侵入が促進される)に保つ
からであると思われる。
The steel of the present invention hardly absorbs atomic hydrogen generated due to corrosion of steel in an environment containing hydrogen sulfide.
Hydrogen embrittlement cracking of steel materials is effectively prevented. The reason why the metal layer of the present invention prevents hydrogen embrittlement cracking is that the metal layer or the reaction product layer of the metal has a potential that affects the potential of the steel surface (base potential promotes the penetration of atomic hydrogen into the steel material). This seems to be because it maintains the

本発明を実施例によシ更に詳相に説明する。実施例中の
部2よび%は特に指示しない限り産量に基づく。
The present invention will be explained in more detail by way of examples. Parts 2 and % in the examples are based on production quantities unless otherwise indicated.

実施例工2よび比軟例工 以下の表−1に示すように冷間圧延鋼板(厚さ0.8#
a、 JIS G 3141 )に金属層と塗料層を形
成した。
Example work 2 and comparative example work As shown in Table 1 below, cold rolled steel plates (thickness 0.8 #
A, JIS G 3141) was coated with a metal layer and a paint layer.

比較のため金属層が0.02μmと10μmでるる鋼材
を上記と同様の方法で得た。
For comparison, steel materials with metal layers of 0.02 μm and 10 μm were obtained in the same manner as above.

表−1つづき 表−1つづき 表−1つづき 上記塗布鋼板の水素吸収抑制性を調べるため、許第10
18241号に記載される電気化学的方法に基づく。
Table 1 continued Table 1 continued Table 1 continued
Based on the electrochemical method described in No. 18241.

評価方法を第1図を参照して説明する。第1図の曲線X
に金属IfIIを有さない塗装鋼板の水素引抜き電流の
経時変化を示し、曲NYは金属層を有する塗装鋼板の水
素引抜き電流の経時変化を表わす。
The evaluation method will be explained with reference to FIG. Curve X in Figure 1
shows the change over time in the hydrogen extraction current of a painted steel sheet without metal IfII, and the song NY represents the change over time in the hydrogen extraction current of a painted steel sheet with a metal layer.

電流が増加するのは塗布膜下の鋼面の腐食反応により鋼
中に溶解した水素が裏gJJJで引抜かれることを意味
している。従って、この立上がシが遅い程防食効果が優
れていることを示す。本願の発明の評価はこの立上がシ
時間、即ち、図中のtxと【yの比(ty/lx)で表
わした。結果とその腐食条件を表−2に示す。
The increase in current means that hydrogen dissolved in the steel is extracted by the back gJJJ due to a corrosion reaction on the steel surface under the coating film. Therefore, it is shown that the slower the rise, the better the anticorrosion effect. The evaluation of the invention of the present application was expressed by the rise time, that is, the ratio of tx and y (ty/lx) in the figure. The results and corrosion conditions are shown in Table 2.

表−2 表−2つづき d 餞 表−2つづき (注) 上記tyの測定は前述の電気化学的方法で行な
っているので、従来の気体測定により行なった場合より
も100倍も感度が高い。従って、本願ではtyの測定
時間を1000時間で打ち切り、ty点が存在しない場
合はtyを1000時間とした。また、上記測定法によ
ると、金属層を有さない場合で塗料層の厚い場合(例え
ば、ライニング材のようVc超膜厚にして縞賞環境の遮
断性を向上したもの)、t y/ t xの値は小さく
なる可能性かめるが、本発明の実施例iC2いてty7
’txQ値が4〜5以下の塗伯杯は存在しないので、本
発明の効果は十分達成されている。
Table 2 Table 2 continued d Table 2 continued (Note) Since the measurement of ty above is carried out by the electrochemical method described above, the sensitivity is 100 times higher than when carried out by conventional gas measurement. Therefore, in this application, the measurement time of ty was cut off at 1000 hours, and when there was no ty point, ty was set to 1000 hours. Also, according to the above measurement method, when there is no metal layer and the paint layer is thick (for example, when the coating layer is thicker than Vc like a lining material to improve the shielding performance of the striped award environment), t y / t There is a possibility that the value of x will be small, but the example iC2 and ty7 of the present invention
Since there is no cup with a txQ value of 4 to 5 or less, the effects of the present invention have been sufficiently achieved.

実施例■ 本実施例は被膜側の1員食電位全測定して、本光明鋼材
物が該電位を責な電位に保つことを示す。
Example 2 In this example, the single-member corrosion potential on the coating side was completely measured, and it was shown that the present Komei steel material maintains the potential at a reasonable level.

メラミン−アルキド樹脂100都に酸化チタン10部(
X−1)’Eたはベンガラ10都(X−2)をそれぞれ
含有する塗料を用いて実施例1の冷間圧延鋼材に塗装し
、本弁明の金属層を有する鋼材(Y−1)と比軟する。
100 parts of melamine-alkyd resin and 10 parts of titanium oxide (
X-1) The cold-rolled steel material of Example 1 was coated with a paint containing 'E or Red Garla 10 (X-2), and the steel material (Y-1) having the metal layer of this defense was coated. Be soft.

該塗装板の破膜側に3%NaC1+H2ミ(gas)飽
和液全接触し、該剛和欣には塩橋で銀−塩化銀″醒極全
入れ、この温W電極と鋼材との闇の電位差全測定した。
The ruptured membrane side of the coated plate was fully contacted with 3% NaC1 + H2 gas saturated liquid, and the silver-silver chloride "powder" was fully put into the Gowashin with a salt bridge, and the dark side between this warm W electrode and the steel material was placed. All potential differences were measured.

結果全第2図に示す。The results are shown in Figure 2.

1 昆2図から明らかなように、金属層を有しない、めるい
は硫化水系と反応する物質をペイント中に含有する場合
、塗装’x47の腐食電位は貴な電位に保持されず、径
時的に卑な電位に変化する。一方、本発明塗装鋼板の場
合、賞な電位に保持され電気化学的反応による水系吸収
抑制作用が働く。
As is clear from Figure 1 and 2, if the paint does not have a metal layer and contains a substance that reacts with the sulfide water system, the corrosion potential of the paint 'x47 will not be maintained at a noble potential and will increase over time. The potential changes to a lower level. On the other hand, in the case of the coated steel sheet of the present invention, it is maintained at a high potential and has a water-based absorption suppressing effect due to an electrochemical reaction.

実施例証 本実施例は南中に溶解した水系が再び調性に放出される
程度を測定する。
EXAMPLE This example measures the extent to which a dissolved aqueous system is released back into the tonality.

第3図に示す装置を用いて測定した。鋼板(1)の両1
111にバッキング(2)を介して容器3(3〕と容器
(4)を固定金具(図示していない)で取付けた。容器
a(3)内には水等の屑食阪を賞たし、容t!j b 
(4)内は配管(5)全介してコック(6)全開放して
真空排気ポンプ(7)により 10−2〜l Q−7T
orr (2)真空vc t、り後、コック?閉じた。
The measurement was carried out using the apparatus shown in FIG. Both 1 of steel plate (1)
Container 3 (3) and container (4) were attached to 111 via backing (2) with fixing fittings (not shown). , t!j b
Inside (4), open the cock (6) completely through the piping (5) and use the vacuum pump (7) 10-2~l Q-7T
orr (2) Vacuum vc t, after ri, cock? Closed.

次いで、鋼板(1)と白金線(8)の間に定常電流(1
mA)を流し、鋼板(1)の水系吸収面より、一定速度
で鋼板中に水素を吸収させた。上記操作により鋼板の水
系引抜き面より水素が真空中に放出され、この水系を配
管(5)全弁して、質量分析計〈9)に導入した。質量
数lあるいは2のマススペクトルの高ざ′fr:電圧で
表示した。比較例1、比較例22よび実施例21〜23
の5時間後の質′jt数2のマススペクトルの尚ざを表
−3に示す。
Next, a steady current (1) is applied between the steel plate (1) and the platinum wire (8).
mA) to absorb hydrogen into the steel plate at a constant rate from the aqueous absorption surface of the steel plate (1). By the above operation, hydrogen was released into a vacuum from the aqueous drawing surface of the steel plate, and the aqueous system was introduced into the mass spectrometer (9) through the piping (5), which was fully valved. Height fr of mass spectrum of mass number l or 2: expressed as voltage. Comparative Example 1, Comparative Example 22 and Examples 21 to 23
Table 3 shows the mass spectra with a quality of 2 after 5 hours.

金属層を有ざない場合の上記測定の結果は25QmVで
めった。従って、比較例の水系の調性への放出性が、極
めて悪いことが解る。
The result of the above measurement without the metal layer was 25 QmV. Therefore, it can be seen that the release properties of the comparative example to the aqueous tonality are extremely poor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塗装w4f7娯仰」の水系引抜き反応′酸流の
経時変化を示すグラフでろって、四線Xは金属層を有さ
ない場合を表わす同線、囲板Yは本押明の塗装鋼板を表
わす回線でろる。 第2図は被膜側のI両賞電位の経時変化を示すグラフで
るる。曲線x−1に金属層を有式ず、硫化水系と反応す
る物質を含有しない塗料により塗装された塗装鋼板を表
わし、曲線x−2は金属層を有さず、硫化水系と反応す
る物質を含有する塗料によフ塗装された塗装鋼板を示す
。曲線Y−1は本発明塗装鋼板を示す。 第3図は鋼中に溶解した水系の調性への放出のし易さを
示す装置の断面図である。図中の記号、(1)は鋼板、
(2)はバッキング、(3)は容器a、(4)は容器b
 、 (5)は配管、(6)はコック、(7)は真空排
気ポンプ、(8)は白金線、(9)は質量分析計を表わ
す。 特許出願人 日本ペイント株式会社
Figure 1 is a graph showing the change in acid flow over time for the aqueous drawing reaction of the coating W4F7. It is a line representing painted steel plate. FIG. 2 is a graph showing the change over time in the I potential on the coating side. Curve x-1 represents a painted steel sheet without a metal layer and coated with a paint that does not contain a substance that reacts with sulfurized water, and curve x-2 does not have a metal layer and contains a substance that reacts with sulfurized water. This figure shows a painted steel plate that has been painted with a paint containing it. Curve Y-1 shows the coated steel plate of the present invention. FIG. 3 is a cross-sectional view of the device illustrating the ease of tonal release of the aqueous solution dissolved in the steel. Symbols in the figure (1) are steel plates;
(2) is backing, (3) is container a, (4) is container b
, (5) represents piping, (6) represents a cock, (7) represents a vacuum pump, (8) represents a platinum wire, and (9) represents a mass spectrometer. Patent applicant Nippon Paint Co., Ltd.

Claims (1)

【特許請求の範囲】 1、w4材表面と塗料筒たはライニング材塗膜の間に、
膜厚0.05〜1μmの金属層を有する水素吸収抑制塗
装鋼材。 2、IlmMJの金属がアルミニウム、ニッケル、クロ
ム、カドミウム、銅から成る群から選ばれる第1項記載
の鋼材。 3、鋼材表面に0.05〜1μmの厚さの金属被膜を施
した後、塗料Y7tはライニング材を塗布することを特
徴とする水素吸収抑制塗装鋼材の製造方法。 4、金属−bxアルミニウム、ニッケル、クロム、カド
ミウム、銅から成る群から選ばれる第3項記載の製造方
法。 5、金属被膜をメッキまたは金属蒸着で形成する第3項
記載の製造方法。
[Claims] 1. Between the surface of the W4 material and the coating film of the paint tube or lining material,
Hydrogen absorption suppressing coated steel material having a metal layer with a film thickness of 0.05 to 1 μm. 2. The steel material according to item 1, wherein the metal of IlmMJ is selected from the group consisting of aluminum, nickel, chromium, cadmium, and copper. 3. A method for manufacturing a hydrogen absorption-suppressing coated steel material, which comprises applying a lining material as paint Y7t after applying a metal coating with a thickness of 0.05 to 1 μm on the surface of the steel material. 4. The manufacturing method according to item 3, wherein metal-bx is selected from the group consisting of aluminum, nickel, chromium, cadmium, and copper. 5. The manufacturing method according to item 3, wherein the metal coating is formed by plating or metal vapor deposition.
JP19802483A 1983-10-22 1983-10-22 Hydrogen absorbing inhibiting coating steel material and manufacture thereof Pending JPS6089357A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19802483A JPS6089357A (en) 1983-10-22 1983-10-22 Hydrogen absorbing inhibiting coating steel material and manufacture thereof
GB08426527A GB2149321A (en) 1983-10-22 1984-10-19 Coated steel
DE19843438508 DE3438508A1 (en) 1983-10-22 1984-10-20 FOR CONTROLLING THE HYDROGEN ABSORPTION OF COATED STEEL AND THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19802483A JPS6089357A (en) 1983-10-22 1983-10-22 Hydrogen absorbing inhibiting coating steel material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6089357A true JPS6089357A (en) 1985-05-20

Family

ID=16384250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19802483A Pending JPS6089357A (en) 1983-10-22 1983-10-22 Hydrogen absorbing inhibiting coating steel material and manufacture thereof

Country Status (3)

Country Link
JP (1) JPS6089357A (en)
DE (1) DE3438508A1 (en)
GB (1) GB2149321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009982A (en) * 2004-06-28 2006-01-12 Kobe Steel Ltd High pressure vessel for high pressure hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2271729A (en) * 1992-10-20 1994-04-27 Lo Chung Ching Aluminum frame of a door or window

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216005C3 (en) * 1972-04-01 1981-04-02 Dynamit Nobel Ag, 5210 Troisdorf Process for applying polyvinylidene fluoride top layers to metallic surfaces
US3877998A (en) * 1973-06-11 1975-04-15 Lubrizol Corp Treatment of metal surfaces with aqueous solution of melamine-formaldehyde composition
DE2353701C3 (en) * 1973-10-26 1982-01-07 Inmont GmbH, 5300 Bonn Zinc dust primer system for malleable sheet steel
US4329402A (en) * 1978-09-27 1982-05-11 Whyco Chromium Co., Inc. Micro-throwing alloy undercoatings and method for improving corrosion resistance
JPS602186B2 (en) * 1980-12-24 1985-01-19 日本鋼管株式会社 Surface treated steel sheet for painting base
GB2091130B (en) * 1981-01-16 1984-06-27 Standard Telephones Cables Ltd Corrosion inhibition
JPS5898248A (en) * 1981-12-08 1983-06-11 日本鋼管株式会社 Double-layer surface treated steel plate with layer containing zinc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009982A (en) * 2004-06-28 2006-01-12 Kobe Steel Ltd High pressure vessel for high pressure hydrogen
JP4514033B2 (en) * 2004-06-28 2010-07-28 株式会社神戸製鋼所 High pressure vessel for high pressure hydrogen

Also Published As

Publication number Publication date
DE3438508A1 (en) 1985-05-02
GB8426527D0 (en) 1984-11-28
GB2149321A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
Ramanauskas et al. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings
KR890700471A (en) High Corrosion Resistance Surface Treatment
US5043230A (en) Zinc-maganese alloy coated steel sheet
AU621042B2 (en) Highly corrosion-resistant, multi-layer coated steel sheets
Xie et al. Improving the performance of zinc-rich coatings using conductive pigments and silane
TW305882B (en)
Rico-Yuson et al. Cyanide-free environment-friendly alternative to copper electroplating for zinc die-cast alloys
Udabe et al. Metal-free coumarate based ionic liquids and poly (ionic liquid) s as corrosion inhibitors
JPS6089357A (en) Hydrogen absorbing inhibiting coating steel material and manufacture thereof
JPS6056420B2 (en) Zinc-aluminum alloy coated steel products
Wang et al. Preparation and corrosion resistance of ZnO/CeO2 composite films
JPS6343479B2 (en)
Das et al. Effect of microstructure of ferrous substrate on porosity of electroless nickel coating
JPS62228498A (en) Plated steel sheet for painting
JP2000319790A (en) Surface treated steel sheet for fuel vessel and coating material composition therefor
Bhargava et al. Chemical conversion coating for protecting magnesium alloys from corrosion
JP3254158B2 (en) Rust proof steel plate for fuel tank
TW302398B (en)
Briggs Corrosion resistance of zinc coatings on depleted uranium and uranium alloys
JPH0218981B2 (en)
Kitahara et al. Assessment of Hydrogen Absorption into Steel during Sacrificial Dissolution of Zinc and Zinc Coatings in Various pH Solutions
JPH01166A (en) Modified epoxy resin paint
RU2065893C1 (en) Multilayer corrosion-resistant coating
Zhong et al. Selective brush plating a tin-zinc alloy for sacrificial corrosion protection
JP2804398B2 (en) Corrosion-resistant steel plate with excellent corrosion resistance and plating adhesion