JPS6088856A - Air-fuel ratio control device in internal-combustion engine - Google Patents

Air-fuel ratio control device in internal-combustion engine

Info

Publication number
JPS6088856A
JPS6088856A JP19607583A JP19607583A JPS6088856A JP S6088856 A JPS6088856 A JP S6088856A JP 19607583 A JP19607583 A JP 19607583A JP 19607583 A JP19607583 A JP 19607583A JP S6088856 A JPS6088856 A JP S6088856A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19607583A
Other languages
Japanese (ja)
Inventor
Akira Osada
長田 鑑
Fujiyuki Suzuki
鈴木 富士往
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP19607583A priority Critical patent/JPS6088856A/en
Publication of JPS6088856A publication Critical patent/JPS6088856A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the purification of exhaust gas and the fuel consumption, by proceeding the feed-back control of the air-fuel ratio with the use of an exhaust sensor for a predetermined time upon shifting to high load operation, and thereafter by establishing a set enrichment. CONSTITUTION:The feed-back control of the air-fuel ratio is carried out such that an air-bleed control means 26 in a carburetter 6 is controlled in accordance with the output of an oxygen sensor 18 disposed in the exhaust system of an engine 2 having a ternary catalyst 14. Upon high load operation of the engine, the opening of a throttle valve 10 is detected by a switch 62 whose signal is delivered to a timer 64 in a control device 20. Accordingly, until a predetermined time elapses, the feed-back control is sustained, and after the elapse of the predetermined time a set enrichment is established to carry out power output operation. With this arrangement detrimental exhaust gas is reduced and fuel consumption is prevented from deteriorating upon shifting to high load operation.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は内燃機関の空燃比制御装置に係り、特に混合
気を理論空燃比域に制御する制御手段を設け、内燃機関
の高負荷運転開始から所定時間はこの制御手段により理
論空燃比域に制御し、所定時間経過後は制御を解除して
出力空燃比に制御することにより、排気ガス有害成分の
低減効果を向上し、また高負荷運転時には充分に出力を
発揮し得る内燃機関の空燃比制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air-fuel ratio control device for an internal combustion engine, and particularly includes a control means for controlling the air-fuel mixture to a stoichiometric air-fuel ratio range, and is capable of controlling the air-fuel ratio from the start of high-load operation of the internal combustion engine. This control means controls the air-fuel ratio to the stoichiometric range for a predetermined period of time, and releases the control after the predetermined period of time and controls the air-fuel ratio to the output air-fuel ratio, thereby improving the effect of reducing harmful components in exhaust gas. The present invention relates to an air-fuel ratio control device for an internal combustion engine that can provide sufficient output.

[発明の技術的背景] 内燃機関における排気ガス中の有害物質たるCo、HC
XNOxの低減対策の一つとして三元触媒がある。三元
触媒は、単一の触媒によりC01HCを酸化すると同時
に、NOxを還元する。また、そのほかにも有害物質の
低減対策としては、混合気を理論空燃比(たとえば14
.6)域に制御する方法がある。
[Technical background of the invention] Co and HC are harmful substances in the exhaust gas of internal combustion engines
A three-way catalyst is one of the measures to reduce XNOx. A three-way catalyst oxidizes CO1HC and simultaneously reduces NOx using a single catalyst. In addition, as a measure to reduce harmful substances, the air-fuel mixture is adjusted to the stoichiometric air-fuel ratio (for example, 14
.. 6) There are ways to control the area.

[背景技術の問題点] ところが、このように混合気を機関運転状態に拘わらず
理論空燃比付近に制御すると、C01HC等の有害物質
の低減を図ることはできるが、特に高負荷運転において
は要求空燃比よりもリーンになり、出力不足による運転
性の悪化を招く。
[Problems with the Background Art] However, if the air-fuel mixture is controlled to be around the stoichiometric air-fuel ratio regardless of the engine operating state, it is possible to reduce harmful substances such as CO1HC, but this does not meet the requirements, especially in high-load operation. The air-fuel ratio becomes leaner, resulting in poor drivability due to insufficient output.

そこで、従来は、高負荷運転時には理論空燃比域の混合
気を出力空燃比の混合気に切換えて、出方向上を図って
いた。しかし、一方では出力空燃比への切換えによる混
合気の濃化で排気ガス有害成分の増加を招くとともに、
燃費の悪化を来した。
Therefore, conventionally, during high-load operation, the air-fuel mixture in the stoichiometric air-fuel ratio range was switched to the air-fuel mixture in the output air-fuel ratio to increase the output direction. However, on the other hand, switching to the output air-fuel ratio enriches the air-fuel mixture, leading to an increase in harmful exhaust gas components.
This resulted in worsening fuel efficiency.

[発明の目的] そこでこの発明はこのような問題を解消し、高負荷運転
時において高負荷運転開始から所定時間は混合気を理論
空燃比域に制御し、所定時間経過後はこの制御を解除す
ることにより、排気ガス浄化範囲を拡大して有害成分の
低減効果を向上し、また所定時間経過後は出力を最大に
発揮し得る内燃機関の空燃比制御装置を実現することを
目的とする。
[Purpose of the Invention] Therefore, the present invention solves such problems by controlling the air-fuel mixture to the stoichiometric air-fuel ratio range for a predetermined time from the start of high-load operation during high-load operation, and canceling this control after the predetermined time has elapsed. By doing so, the present invention aims to realize an air-fuel ratio control device for an internal combustion engine that can expand the range of exhaust gas purification and improve the effect of reducing harmful components, and can also maximize output after a predetermined period of time has elapsed.

[発明の構成] この目的を達成するためにこの発明は、内燃機関気化器
の空燃比を調整する空燃比調整手段を設け、前記内燃機
関の排気系に排気センサを設け、該排気センサの検知信
号により空燃比を理論空燃比域に調整すべ(前記空燃比
調整手段を制御する制御手段を設け、前記内燃機関の運
転状態を検知し所定の高負荷運転状態においては前記制
御手段の制御を解除する検知手段を設け、前記内燃機関
が所定の高負荷運転状態を維持しているときに該検知手
段による前記制御手段の制御解除を所定時間遅延させる
タイマを設けたことを特徴としている。
[Structure of the Invention] In order to achieve this object, the present invention provides an air-fuel ratio adjusting means for adjusting the air-fuel ratio of an internal combustion engine carburetor, an exhaust sensor is provided in the exhaust system of the internal combustion engine, and a detection method of the exhaust sensor is provided. The air-fuel ratio is adjusted to a stoichiometric air-fuel ratio range by a signal (a control means for controlling the air-fuel ratio adjusting means is provided, the operating state of the internal combustion engine is detected, and the control of the control means is released in a predetermined high-load operating state). The present invention is characterized in that a timer is provided for delaying release of control of the control means by the detection means for a predetermined period of time when the internal combustion engine maintains a predetermined high-load operating state.

[発明の実施例] 次にこの発明の実施例を図に基づいて詳細に説明する。[Embodiments of the invention] Next, embodiments of the present invention will be described in detail based on the drawings.

図はこの発明の実施例を示し、第1図は制御装置の概略
説明図、第2図は空燃比調整機構を設けた気化器の部分
断面図である。図において、2は内燃機関である。内燃
機関2には、エアクリーナ4と気化器6とから形成され
る吸気通路8を連通している。気化器6で生成された混
合気は、絞り弁10により供給量を制御され、内燃機関
2で燃焼する。燃焼で生成した排気ガスは、排気通路1
2を通り外部に排出される。このとき、排気ガス中の有
害成分たるCo、HCXNOxは、排気通路12の途中
に設けた三元触媒14により酸化・還元される。
The figures show an embodiment of the invention, with FIG. 1 being a schematic explanatory diagram of a control device, and FIG. 2 being a partial sectional view of a carburetor provided with an air-fuel ratio adjustment mechanism. In the figure, 2 is an internal combustion engine. An intake passage 8 formed by an air cleaner 4 and a carburetor 6 is communicated with the internal combustion engine 2 . The amount of the air-fuel mixture generated in the carburetor 6 is controlled by a throttle valve 10, and is combusted in the internal combustion engine 2. Exhaust gas generated by combustion is passed through exhaust passage 1.
2 and is discharged to the outside. At this time, Co and HCXNOx, which are harmful components in the exhaust gas, are oxidized and reduced by the three-way catalyst 14 provided in the middle of the exhaust passage 12.

この三元触媒14とともに有害成分を有効に低減させる
ために、混合気を理論空燃比域に制御している。混合気
は、気化器6に設けた空燃比調整機構】6により理論空
燃比域に調整される。この空燃比調整機構16は、排気
系に排気センサたとえば排気通路12に02センサ18
を設け、排気ガス中の酸素濃度により空燃比を調整する
。02センサ18で検知した酸素濃度は、コンピュータ
等の制御回路20に入力する。制御回路20は、空燃比
調整機構16の空燃比調整用のメイン系補助エアブリー
ド通路22およびスロー系補助エアブリード通路24の
それぞれ途中に設げた流量制御弁26の開度を調整し、
理論空燃比域に制御する。
In order to effectively reduce harmful components together with the three-way catalyst 14, the air-fuel mixture is controlled within the stoichiometric air-fuel ratio range. The air-fuel mixture is adjusted to a stoichiometric air-fuel ratio range by an air-fuel ratio adjustment mechanism 6 provided in the carburetor 6. This air-fuel ratio adjustment mechanism 16 includes an exhaust sensor 18 in the exhaust system, for example, an 02 sensor 18 in the exhaust passage 12.
The air-fuel ratio is adjusted according to the oxygen concentration in the exhaust gas. The oxygen concentration detected by the 02 sensor 18 is input to a control circuit 20 such as a computer. The control circuit 20 adjusts the opening degrees of flow control valves 26 provided in the middle of each of the main system auxiliary air bleed passage 22 and the slow system auxiliary air bleed passage 24 for adjusting the air-fuel ratio of the air-fuel ratio adjustment mechanism 16,
Control to the stoichiometric air-fuel ratio range.

空燃比調整機構16の詳細を第2図に従って説明する。Details of the air-fuel ratio adjustment mechanism 16 will be explained with reference to FIG. 2.

気化器6の吸気通路8には、絞り弁10の上流側にチョ
ーク弁28を設けている。フロート室30からメイン燃
料通路32に流出した燃料は、気化器6の上流側吸気通
路に始端開口するメインエアブリード通路34で取入れ
た空気とメインエアブリード36で混合し、メインノズ
ル38から噴出する。
A choke valve 28 is provided in the intake passage 8 of the carburetor 6 on the upstream side of the throttle valve 10. The fuel flowing out from the float chamber 30 into the main fuel passage 32 is mixed with the air taken in through the main air bleed passage 34, which starts and opens at the upstream intake passage of the carburetor 6, in the main air bleed 36, and is ejected from the main nozzle 38. .

前記メイン燃料通路32には、スロー燃料通路40を分
岐して設ける。スロー燃料通路40に分流した燃料は、
スローエアブリード通路42で取入れた空気とスローエ
アブリード44で混合し、アイドルポー1−46および
バイパスポート48から噴出する。
The main fuel passage 32 is provided with a branched slow fuel passage 40 . The fuel diverted to the slow fuel passage 40 is
The air taken in by the slow air bleed passage 42 is mixed with the slow air bleed 44, and is ejected from the idle port 1-46 and the bypass port 48.

前記メイン燃料通路32およびスロー燃料通路40には
、それぞれ前記空燃比調整機構16のメイン系補助エア
ブリード通路22およびスロー系補助エアブリード通路
24を連通している。これらメイン系およびスロー系補
助エアブリード通路22・24は、各燃料通路32・4
0に空気を導入すべく、第1図に示す如く気化器6の上
流側吸気通路8に始端開口し、メインおよびスロー燃料
通路32・40に終端開口して設けである。メイン系お
よびスロー系補助エアブリード通路22・24の途中に
設けた前記流量制御弁26は、駆動部50と復帰ばね5
2とにより弁孔54・56に挿抜される棒状の弁体58
・6oを有している。
The main fuel passage 32 and the slow fuel passage 40 communicate with the main auxiliary air bleed passage 22 and the slow auxiliary air bleed passage 24 of the air-fuel ratio adjustment mechanism 16, respectively. These main system and slow system auxiliary air bleed passages 22 and 24 are connected to each fuel passage 32 and 4.
In order to introduce air into the fuel tank 0, as shown in FIG. 1, the carburetor 6 is provided with a starting end opening in the upstream intake passage 8 and a terminal opening opening in the main and slow fuel passages 32 and 40. The flow rate control valve 26 provided in the middle of the main system and slow system auxiliary air bleed passages 22 and 24 is connected to a drive section 50 and a return spring 5.
2 and a rod-shaped valve body 58 that is inserted into and removed from the valve holes 54 and 56.
・Has 6o.

この流量制御弁26の駆動部5oを前記制御回路20で
駆動制御することにより補助エアブリード伍を調整し、
混合気を理論空燃比域に制御する。
The auxiliary air bleed is adjusted by driving and controlling the drive unit 5o of the flow rate control valve 26 by the control circuit 20,
Controls the air-fuel mixture within the stoichiometric air-fuel ratio range.

この理論空燃比域への制御は、所定の高負荷運転状態に
おいては、高負荷運転開始から所定時間経過後解除する
。即ち、気化器6の絞り弁開度により運転状態を検知す
る絞り弁スイッチ62を設ける。絞り弁スイッチ62は
、絞り弁開度の小さい低負荷運転状態ではオンになり、
絞り弁開度の大きい高負荷運転状態ではオフになる。こ
の絞り弁スイッチ62のオンで前記制御回路2oば理論
空燃比域に制御し、オフのときは理論空燃比域への制御
を解除する。この絞り弁スイッチ62の出力を入力し、
制御解除を遅延させるタイマ64を設ける。タイマ64
は、前記内燃機関2が所定の高負荷運転状態を維持して
いるときに、すなわち絞り弁スイッチ62がオフ状態を
継続して入力しているときに前記絞り弁スイッチ62の
オフによる制御解除を所定時間遅延させる。このタイマ
64により所定の高負荷運転の開始から所定時間までは
理論空燃比域に制御し、所定時間経過後は理論空燃比域
への制御を解除して出力を優先させる。
In a predetermined high-load operating state, this control to the stoichiometric air-fuel ratio range is canceled after a predetermined period of time has elapsed from the start of high-load operation. That is, a throttle valve switch 62 is provided that detects the operating state based on the opening degree of the throttle valve of the carburetor 6. The throttle valve switch 62 is turned on in a low load operating state with a small throttle valve opening.
It turns off in high-load operating conditions with a large throttle valve opening. When the throttle valve switch 62 is turned on, the control circuit 2o controls the air-fuel ratio to the stoichiometric range, and when it is turned off, the control to the stoichiometric air-fuel ratio is canceled. Input the output of this throttle valve switch 62,
A timer 64 is provided to delay control release. timer 64
is to release control by turning off the throttle valve switch 62 when the internal combustion engine 2 maintains a predetermined high-load operating state, that is, when the throttle valve switch 62 continues to be in the off state. Delay for a predetermined time. The timer 64 controls the air-fuel ratio to be in the stoichiometric range for a predetermined time from the start of a predetermined high-load operation, and after the predetermined time has elapsed, the control to the stoichiometric air-fuel ratio is canceled and priority is given to the output.

この発明による理論空燃比域への制御解除を第3.4図
に従って説明する。第3図において、内燃機関2の運転
時には、絞り弁スイッチ62は100でオン・オフの信
号を出力している。101では、絞り弁スイッチ62が
オフか否か判断する。
The release of control to the stoichiometric air-fuel ratio region according to the present invention will be explained with reference to FIG. 3.4. In FIG. 3, when the internal combustion engine 2 is operating, the throttle valve switch 62 outputs an on/off signal at 100. In step 101, it is determined whether the throttle valve switch 62 is off.

NOであれば内燃機関2は低負荷運転状態なので104
にジャンプし、02センサ18により理論空燃比域に制
御する。
If NO, the internal combustion engine 2 is in a low load operating state, so 104
The air-fuel ratio is controlled to be in the stoichiometric range by the 02 sensor 18.

101でYES、即ち絞り弁スイッチ62がオフになり
所定の高負荷運転状態のときは、102へ進む。102
ではクイマロ4が動作し、クイマロ4で設定した所定時
間内ば02センサ18により理論空燃比域に制御し、排
気ガス有害成分の低減効果を有すJに発揮さゼる。所定
時間を経過すると、103へ進む。103では、所定時
間経過後も絞り弁スイッチ62がオフ、即ち所定の高負
荷運転状態を維持している時に、理論空燃比域への制御
を解除し出力空燃比に制御する。その結果、絞り弁スイ
ッチ62がオンになるまで出力を優先させる。出力空燃
比の制御は、絞り弁スイッチ64がオンになるまで行う
。絞り弁スイッチ64がオンになると104へ進む。絞
り弁スイッチ64のオンでは、内燃機関2は低負荷運転
状態になっている。従って、104では02センサ18
により理論空燃比域に制御し、排気ガス有害成分の低減
効果を有効に発揮させる。
If YES in step 101, that is, the throttle valve switch 62 is turned off and the predetermined high-load operating state is established, the process proceeds to step 102. 102
Then, the Kuimaro 4 operates, and within a predetermined time set by the Kuimaro 4, the 02 sensor 18 controls the air-fuel ratio to the stoichiometric range, and the J that has the effect of reducing harmful components of exhaust gas is exerted. After the predetermined time has elapsed, the process proceeds to step 103. At step 103, when the throttle valve switch 62 is turned off after a predetermined time has elapsed, that is, the predetermined high-load operating state is maintained, control to the stoichiometric air-fuel ratio range is canceled and control is performed to the output air-fuel ratio. As a result, priority is given to the output until the throttle valve switch 62 is turned on. The output air-fuel ratio is controlled until the throttle valve switch 64 is turned on. When the throttle valve switch 64 is turned on, the process proceeds to 104. When the throttle valve switch 64 is on, the internal combustion engine 2 is in a low load operating state. Therefore, in 104, 02 sensor 18
The air-fuel ratio is controlled within the stoichiometric range and the exhaust gas harmful components are effectively reduced.

なお、前記103において、タイマ64による所定時間
経過後に絞り弁スイッチロ2がオンの場合例えば瞬間的
な高負荷の場合は、もちろん出力空燃比に制御すること
なく02センサ18により理論空燃比域に制御する。
In 103 above, if the throttle valve switch 2 is turned on after the predetermined time by the timer 64 has elapsed, for example in the case of momentary high load, the 02 sensor 18 will control the air-fuel ratio to the stoichiometric range without controlling the output air-fuel ratio. Control.

理論空燃比域への制御解除を第4図のタイミング図につ
いて説明する。toからtlまでは、内燃機関2は低負
荷運転状態にあり、従って絞り弁スイッチ64はオンに
なっている。このため、流量制御弁26は、混合気を理
論空燃比(たとえば14.6)域に制御すべく開度を制
御され、排気ガス中の一有害成分たるCO濃度は排気通
路12に設けた三元触媒14と相俟ってほとんど除去さ
れる。
The release of control to the stoichiometric air-fuel ratio region will be explained with reference to the timing diagram of FIG. 4. From to to tl, the internal combustion engine 2 is in a low-load operating state, and therefore the throttle valve switch 64 is on. Therefore, the opening degree of the flow rate control valve 26 is controlled to control the air-fuel mixture within the stoichiometric air-fuel ratio (for example, 14.6), and the concentration of CO, which is one harmful component in the exhaust gas, is controlled by a valve provided in the exhaust passage 12. Together with the original catalyst 14, most of it is removed.

tlから加速等で絞り弁10の開度を増加していくと、
t3で所定の高負荷運転状態になり絞り弁スイッチ62
はオフになる。絞り弁10は、さらに開度を増してt4
以降も全開状態を維持している。そこで、t3で絞り弁
10がオフになったことで動作を開始したタイマ64は
制御解除を遅延させ、t3からt4までの所定時間t2
は混合気を理論空燃比域に制御する。このため、従来は
破線に示す如く高負荷運転開始と同時に混合気の濃化に
よるCO濃度の増加を招いていたが、この発明ではt4
まで理論空燃比域に制御することにより排気ガス浄化範
囲を拡大し、有害成分の低減効果を向上することができ
る。クイマロ4による所定時間t2を経過したt4以降
は、高負荷運転と判断して理論空燃比域への制御を解除
し出力空燃比に制御するので、運転性の悪化を来すこと
もない。なお、瞬間的な高負荷運転では、制御を解除す
ることなく理論空燃比域に制御するので、c。
When the opening degree of the throttle valve 10 is increased due to acceleration etc. from tl,
At t3, the predetermined high-load operating state is reached and the throttle valve switch 62
is turned off. The throttle valve 10 further increases its opening degree to t4.
Since then, it has remained fully open. Therefore, the timer 64, which started operating when the throttle valve 10 was turned off at t3, delays the release of the control for a predetermined time t2 from t3 to t4.
controls the air-fuel mixture to the stoichiometric air-fuel ratio range. For this reason, conventionally, as shown by the broken line, the CO concentration increased due to the enrichment of the air-fuel mixture at the same time as the start of high-load operation, but in this invention, the CO concentration increases at t4
By controlling the air-fuel ratio to within the stoichiometric range, it is possible to expand the exhaust gas purification range and improve the effect of reducing harmful components. After t4 when the predetermined time t2 has elapsed by the Kuimaro 4, it is determined that it is a high-load operation, and control to the stoichiometric air-fuel ratio range is canceled and control is performed to the output air-fuel ratio, so that drivability does not deteriorate. Note that during momentary high-load operation, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio range without canceling the control, so c.

濃度の増加を招くことなく、またむだに燃料を消費する
こともない。
There is no increase in concentration, and there is no needless consumption of fuel.

[発明の効果] このようにこの発明によれば、低負荷時は勿論高負荷運
転の開始から所定時間までは理論空燃比域に制御するの
で、排気ガス浄化範囲を拡大して有害成分の低減効果を
向上することができる。また、高負荷運転開始から所定
時間経過後も高負荷運転状態を維持している場合は、理
論空燃比域への制御を解除して出力を優先するので運転
性を向上することができる。一方、瞬間的な高負荷運転
の場合は、所定時間経過後も出力を優先させることなく
理論空燃比域に制御するので、混合気の濃化による排気
ガス有害成分の増加や燃費の悪化を招くこともない。さ
らに、排気ガス浄化範囲の拡大で、浄化装置等補材部品
の許容バラツキ幅を大きくでき、コストダウンを図るこ
とができる。また、この制御装置は、車輌重量や大きさ
に関係なく採用することができる。
[Effects of the Invention] As described above, according to the present invention, the air-fuel ratio is controlled to the stoichiometric range not only during low load but also for a predetermined time from the start of high load operation, thereby expanding the exhaust gas purification range and reducing harmful components. The effect can be improved. Furthermore, if the high-load operating state is maintained even after a predetermined period of time has elapsed from the start of high-load operation, control to the stoichiometric air-fuel ratio region is canceled and priority is given to output, thereby improving drivability. On the other hand, in the case of instantaneous high-load operation, the air-fuel ratio is controlled to the stoichiometric range without prioritizing output even after a predetermined period of time has elapsed, resulting in an increase in harmful components in the exhaust gas due to enrichment of the air-fuel mixture, and worsening of fuel efficiency. Not at all. Furthermore, by expanding the exhaust gas purification range, it is possible to increase the permissible variation width of supplementary parts such as the purification device, and it is possible to reduce costs. Further, this control device can be employed regardless of the weight or size of the vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を示し、第1図は制御装置の概略
説明図、第2図は空燃比調整機構を設けた気化器の部分
断面図、第3図は制御のフローチャートを示す図、第4
図はタイミング図である。 図において、2は内燃機関、6は気化器、10は絞り弁
、16は空燃比調整機構、18は02センサ、20は制
御回路、62は絞り弁スイッチ、64はタイマである。 代理人 弁理士 西 郷 義 美 代理人 弁理士 原 1)幸 男 第1図 第2図
The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic explanatory diagram of a control device, Fig. 2 is a partial sectional view of a carburetor equipped with an air-fuel ratio adjustment mechanism, and Fig. 3 is a diagram showing a control flowchart. Fourth
The figure is a timing diagram. In the figure, 2 is an internal combustion engine, 6 is a carburetor, 10 is a throttle valve, 16 is an air-fuel ratio adjustment mechanism, 18 is an 02 sensor, 20 is a control circuit, 62 is a throttle valve switch, and 64 is a timer. Agent Patent Attorney Yoshimi Saigo Agent Patent Attorney Hara 1) Yukio Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 内燃機関気化器の空燃比を調整する空燃比調整手段を設
け、前記内燃機関の排気系に排気センサを設け、該排気
センサの検知信号により空燃比を理論空燃比域に調整す
べく前記空燃比調整手段を制御する制御手段を設け、前
記内燃機関の運転状態を検知し所定の高負荷運転状態に
おいては前記制御手段の制御を解除する検知手段を設け
、前記内燃機関が所定の高負荷運転状態を維持している
ときに該検知手段による前記制御手段の制御解除を所定
時間遅延させるタイマを設けたことを特徴とする内燃機
関の空燃比制御装置。
An air-fuel ratio adjusting means for adjusting the air-fuel ratio of the internal combustion engine carburetor is provided, an exhaust sensor is provided in the exhaust system of the internal combustion engine, and the air-fuel ratio is adjusted to the stoichiometric air-fuel ratio range based on a detection signal from the exhaust sensor. A control means for controlling the adjustment means is provided, and a detection means is provided for detecting an operating state of the internal combustion engine and releasing control of the control means when the internal combustion engine is in a predetermined high load operating state, and when the internal combustion engine is in a predetermined high load operating state. 1. An air-fuel ratio control device for an internal combustion engine, characterized in that a timer is provided for delaying release of control of the control means by the detection means for a predetermined period when the control means is maintained.
JP19607583A 1983-10-21 1983-10-21 Air-fuel ratio control device in internal-combustion engine Pending JPS6088856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19607583A JPS6088856A (en) 1983-10-21 1983-10-21 Air-fuel ratio control device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19607583A JPS6088856A (en) 1983-10-21 1983-10-21 Air-fuel ratio control device in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6088856A true JPS6088856A (en) 1985-05-18

Family

ID=16351780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19607583A Pending JPS6088856A (en) 1983-10-21 1983-10-21 Air-fuel ratio control device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6088856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100346A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100346A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS58573B2 (en) Fuel supply cylinder number control device
JPS5821097B2 (en) Ninen Kikanno Idol Antei Souchi
JP3805098B2 (en) Engine exhaust gas purification control device
JPH10317946A (en) Exhaust emission control device
JPS6088856A (en) Air-fuel ratio control device in internal-combustion engine
GB2096487A (en) Supplying secondary air to ic engine exhaust
JPS6128033Y2 (en)
JPH09112308A (en) Air-fuel ratio controller for internal combustion engine
JP2639000B2 (en) Oxygen-enriched air control device for oxygen-enriched engine
JPS599074Y2 (en) Pressure-responsive devices in internal combustion engines
JPS6318765Y2 (en)
JPS6121557Y2 (en)
JPS6146198Y2 (en)
JPS6241943A (en) Exhaust gas purifying device in internal combustion engine
JPS5877153A (en) Air-fuel ratio controller in internal-combustion engine
JPS58119949A (en) Air fuel ratio control unit in internal-combustion engine
JP2816438B2 (en) Acceleration control device for internal combustion engine
JPS58163622U (en) Internal combustion engine exhaust gas purification device
JPH04330320A (en) Air suction system
JPS6120275Y2 (en)
JPS5836174B2 (en) Exhaust gas purification device
JPS6142093B2 (en)
JPS60261949A (en) Air-fuel ratio controller for internal-combustion engine
JPS6011215B2 (en) Negative pressure control device for internal combustion engine
JPS62129553A (en) Air-fuel ratio controller