JPS608741A - Diaphragm type gas electrode - Google Patents

Diaphragm type gas electrode

Info

Publication number
JPS608741A
JPS608741A JP58117897A JP11789783A JPS608741A JP S608741 A JPS608741 A JP S608741A JP 58117897 A JP58117897 A JP 58117897A JP 11789783 A JP11789783 A JP 11789783A JP S608741 A JPS608741 A JP S608741A
Authority
JP
Japan
Prior art keywords
electrode
membrane
permeable membrane
gas permeable
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58117897A
Other languages
Japanese (ja)
Other versions
JPH0334584B2 (en
Inventor
Katsuo Yoshimura
吉村 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRANUMA SANGYO KK
Original Assignee
HIRANUMA SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRANUMA SANGYO KK filed Critical HIRANUMA SANGYO KK
Priority to JP58117897A priority Critical patent/JPS608741A/en
Publication of JPS608741A publication Critical patent/JPS608741A/en
Publication of JPH0334584B2 publication Critical patent/JPH0334584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To reduce the time for analysis and to improve the accuracy of measurement by bringing a gas permeable membrane into thorough and tight contact with the entire surface of an electrode so that the electrode reaction attains equil. in shorter time. CONSTITUTION:A titled electrode consists of a diaphragm part 20 including a gas-permeable membrane 15 and a holding member, an electrode part 21 including electrodes 13, 14 and a holding member and a fastening means 16. A membrane rest 18 formed of a plastic, etc. is resistant to corrosion and a seal 17 formed of rubber, etc. is elastic and watertight. The membrane 15 held in place by the seal 17 and the rest 18 is elastically supported by frinctional resistance with the seal 17. The tension exerted on the film 15 is absorbed by the elasticity of the seal 17. The membrane 15 maintains always adequate tension and contacts tightly with the surface of a working electrode 13.

Description

【発明の詳細な説明】 この発明は、試料溶液中に溶けたガスを透過膜に通過さ
せた後、電極に接触、反応させ、この時電極で発生する
電流または電圧によって、上記ガスの濃度をめるいわゆ
る隔膜型ガス電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention involves passing a gas dissolved in a sample solution through a permeable membrane, then contacting and reacting with an electrode, and controlling the concentration of the gas by the current or voltage generated at the electrode at this time. The invention relates to a so-called diaphragm-type gas electrode.

試料溶液中に含まれる酸素や塩素、その他のガス濃度を
分析する場合に、これらのガスを透過する膜及びこれと
反応する電極を用いて電位差分析が行われる。第1図は
、この場合に使用される隔膜型ガス電極を示したもので
あって1、支持管1の中に電極棒2を設け、これに作用
電極3と基準電極4を取り付ける。この内、先端側に配
置した作用電極3の表面にガス透過膜5を密着させ、こ
れによって閉鎖された上記支持管1の中に内部液を充た
す。
When analyzing the concentration of oxygen, chlorine, or other gases contained in a sample solution, potential difference analysis is performed using a membrane that permeates these gases and an electrode that reacts with the membrane. FIG. 1 shows a diaphragm type gas electrode used in this case. An electrode rod 2 is provided in a support tube 1, and a working electrode 3 and a reference electrode 4 are attached to it. A gas permeable membrane 5 is brought into close contact with the surface of the working electrode 3 disposed on the tip side, thereby filling the closed support tube 1 with an internal liquid.

作用電極3は、分析しようとするガスによって科学的に
侵されないものが使用され、例えば酸素電極や塩素電極
の場合は、白金、金、銀等の貴金属の他、稀には炭素が
使用されることもある。また、アンモニア電極の場合は
、PH感応ガラス膜が使用される。一方基準電極4は、
上記作用電極3で発生する電流や電圧の相対値をめる基
準となるものであるから、電極電位が安定していて、再
現性の高いものが使用され、例えば、銀−塩化銀電極等
が使用される。また、ガス透過膜5は、試料溶液中に溶
けたガスを選択的に通過させるもので、目的のガスの種
類によってポリエチレン膜、ポリプロピレン膜、弗素樹
脂膜等が使用される。
The working electrode 3 is made of a material that is not chemically attacked by the gas to be analyzed; for example, in the case of an oxygen electrode or a chlorine electrode, precious metals such as platinum, gold, silver, and in rare cases carbon are used. Sometimes. Furthermore, in the case of an ammonia electrode, a PH-sensitive glass membrane is used. On the other hand, the reference electrode 4 is
Since it serves as a standard for calculating the relative values of the current and voltage generated at the working electrode 3, an electrode with stable electrode potential and high reproducibility is used, such as a silver-silver chloride electrode. used. The gas permeable membrane 5 selectively allows gas dissolved in the sample solution to pass therethrough, and a polyethylene membrane, a polypropylene membrane, a fluororesin membrane, or the like is used depending on the type of target gas.

所要の電圧を加えた上記電極を試料溶液に浸すと、同溶
液中に熔けたガスがガス透過膜5を通過し、作用電極3
に接触する。このとき作用電極3の界面では、電荷の授
受を伴ういわゆる電極反応が起り、そのガス濃度に比例
した電流または電位を発生する。従って、上記電極反応
が平衡に達したところで、上記電流や電圧を測定するこ
とにより、試料溶液中のガス濃度をめることができる。
When the electrode to which a required voltage is applied is immersed in a sample solution, the gas dissolved in the solution passes through the gas permeable membrane 5, and the working electrode 3
come into contact with. At this time, a so-called electrode reaction occurs at the interface of the working electrode 3, which involves the exchange of charges, and a current or potential proportional to the gas concentration is generated. Therefore, when the electrode reaction reaches equilibrium, the gas concentration in the sample solution can be determined by measuring the current and voltage.

このような分析に際して上記ガス透過膜5は、微視的に
ごく薄い均一な内部液の層を介して作用電極3に密着し
ていることが必要とされている。ところがこれまでのガ
ス電極では、ガス透過膜5を作用電極3の表面に密着さ
せる場合に、殆ど間膜5の弾性のみに依存しているため
、必ずしも良好な密着状態が得られないという問題があ
る。主として上記のような素材が使用されるガス透過膜
5は、弾性限度が低いものが多く、テンションを与えて
も、成る特定の個所でこれが伸び等の変形として減殺さ
れてしまうことがら、上記弾性が有効に作用しない。そ
してこの変形は、上記テンションを取り去った後もその
まま残ることから、一度使用したガス透過膜5は、また
再び使用することが不可能となる。
For such analysis, the gas permeable membrane 5 needs to be in close contact with the working electrode 3 through a microscopically very thin and uniform layer of internal liquid. However, in conventional gas electrodes, when the gas permeable membrane 5 is brought into close contact with the surface of the working electrode 3, it depends almost only on the elasticity of the interlayer membrane 5, so there is a problem in that good adhesion cannot always be obtained. be. Most of the gas permeable membranes 5 mainly made of the above-mentioned materials have a low elastic limit, and even if tension is applied, this will be attenuated as deformation such as elongation in certain parts, so the elasticity limit is low. does not work effectively. Since this deformation remains even after the tension is removed, the gas permeable membrane 5 that has been used once cannot be used again.

この点の問題を第1図及び第2図によりさらに具体的に
説明すると、一般にこの種の隔膜型ガス電極では、ガス
透過膜5の周囲がOリング7やパツキン8等を介して締
具6と支持管1との間に固定され、この状態で作用電極
3の表面を間膜5に押しつけ、これによって密着させる
構造が採用されている。しかし、この場合に上記Oリン
グ7やパツキン8は、ガス透過膜5の周囲を支持管1と
締具6との間に挟んで固定するに際して、その圧力を緩
衝する機能を持つだけで、間膜5に与えられたテンショ
ンを吸収する機能を殆ど持たない。しかも支持管1と締
具6を締め付けた時だけガス透過膜5を固定し、分解し
た時は、間膜5が自由な状態に置かれることになること
から、間膜5に常に適度なテンションを与えておくこと
が不可能である。
To explain this problem in more detail with reference to FIGS. 1 and 2, in general, in this type of diaphragm gas electrode, the periphery of the gas permeable membrane 5 is connected to the fastener 6 through the O-ring 7, packing 8, etc. and the support tube 1, and in this state, the surface of the working electrode 3 is pressed against the intermembrane 5, thereby making a close contact. However, in this case, the O-ring 7 and the packing 8 only have the function of buffering the pressure when the gas-permeable membrane 5 is sandwiched and fixed between the support tube 1 and the fastener 6. It has almost no function of absorbing the tension applied to the membrane 5. In addition, the gas permeable membrane 5 is fixed only when the support tube 1 and the fastener 6 are tightened, and the intermembrane 5 is left in a free state when disassembled, so that the intermembrane 5 is always maintained with appropriate tension. It is impossible to give

このため、作用電極3をガス透過膜5に押しつけること
によって間膜5に与えられるテンションは、その時の締
め具合に大きく左右され、常に一定の密着状態が得られ
ない。さらにガス透過膜5を作用電極3の表面に完全に
密着させようと、成る程度強く締め付けると、同電極3
の縁部においてテンションが集中的に作用することから
、そこでガス透過膜5の弾性限度を越える応力が発生し
、急激な伸びが生じる。この伸びは弾性限度を越える多
分に塑性的な変形であるから、間膜5が作用電極3表面
に密着するのに必要なテンションを減殺して、上記密着
状態を阻害する。さらに、取り外した後もそのまま残っ
て復元しないため、同じガス透過膜5を再び使用するこ
とが不可能となるのである。
For this reason, the tension applied to the intermembrane 5 by pressing the working electrode 3 against the gas permeable membrane 5 largely depends on the tightness at that time, and a constant state of close contact cannot always be obtained. Furthermore, in order to make the gas permeable membrane 5 completely adhere to the surface of the working electrode 3, the electrode 3 is tightened as tightly as possible.
Since the tension acts intensively at the edge of the gas permeable membrane 5, stress exceeding the elastic limit of the gas permeable membrane 5 is generated there, causing rapid elongation. Since this elongation is largely a plastic deformation that exceeds the elastic limit, it reduces the tension necessary for the membrane 5 to come into close contact with the surface of the working electrode 3, thereby inhibiting the above-mentioned state of close contact. Furthermore, even after removal, the gas permeable membrane 5 remains as it is and is not restored, making it impossible to use the same gas permeable membrane 5 again.

ガス透過膜5が作用電極3の表面に均一に密着しない場
合は、ガス透過膜5と作用電極3表面との間が不均一で
あり、しかもその間に必要以上の溶液が存在することか
ら、上記電極反応が平衡に達するまで長い時間を必要と
する。ガスは、通常試料溶液の中において究めて不安定
な状態で溶けており、このため、時間の経過に伴って早
急に溶液から発散し、その濃度の変化となって現れる場
合が多い。従って、電極反応が平衡に達するまで長い時
間を必要とすることは、分析に長い時間必要とするとい
う時間的な問題だけでなく、これによって得られる分析
結果にも大きな影響を与えることになる。
If the gas permeable membrane 5 does not adhere uniformly to the surface of the working electrode 3, the gap between the gas permeable membrane 5 and the surface of the working electrode 3 is uneven, and moreover, more solution than necessary exists between them. Electrode reactions require a long time to reach equilibrium. Gases are usually dissolved in a sample solution in an extremely unstable state, and therefore they often evaporate rapidly from the solution over time, resulting in a change in its concentration. Therefore, requiring a long time for the electrode reaction to reach equilibrium not only causes a time-related problem of requiring a long time for analysis, but also has a significant impact on the analytical results obtained.

この発明は、隔膜型ガス電極における上記のような問題
点を解消すべくなされたものであって、特殊な電極構造
によってガス透過膜を電極表面の全面に亙って完全に密
着させ、これによってその間に溶液の均一な薄層を形成
させて、電極反応がより短時間に平衡に達するようにし
、もって分析時間の短縮とその測定精度の向上を図ると
共に、併せてガス透過膜の再利用を可能としたものであ
る。以下この発明の構成を第3図と第4図に示す一実施
例に基づき、詳細に説明する。
This invention was made to solve the above-mentioned problems with diaphragm-type gas electrodes, and uses a special electrode structure to completely adhere the gas permeable membrane to the entire surface of the electrode. During this time, a uniform thin layer of solution is formed, allowing the electrode reaction to reach equilibrium in a shorter time, thereby shortening analysis time and improving measurement accuracy, as well as allowing the gas permeable membrane to be reused. This made it possible. The configuration of the present invention will be explained in detail below based on an embodiment shown in FIGS. 3 and 4.

図示の実施例における隔膜型ガス電極は、ガス透過膜1
5及びその保持部材を含んだ隔膜部20と、電極13.
14及びその保持部材を含んだ電極部21並びにこれら
両部材を連結する締具16とからなっている。
The diaphragm type gas electrode in the illustrated embodiment includes a gas permeable membrane 1
5 and its holding member, and the electrode 13.
14, an electrode section 21 including its holding member, and a fastener 16 for connecting these two members.

隔膜部20は、円筒形の膜受18の一方の端面にガス透
過膜15を張り、その周囲を同膜受18とシール17と
の間に挟んで固定したものであり、さらにシール17の
外周にはシール枠22が嵌め込まれている。膜受18は
、プラスチック等、耐蝕性があり、ある程度変形しに(
い材料で作られており、その外周側には、全周に亙って
突条23が周設されている。シール17は、ゴム等、弾
性と水密性のある材料により、上記膜受18の外周形状
に対応して作られたもので、同膜受18の一方の端部側
から嵌め込むことによってその外周に被せる。シール枠
22は、シール17の形状に対応して作られたL字形の
もので、膜受18と同様、プラスチック等の材料で作ら
れ、ガス透過膜15を張った側の端部からシール17の
外周に嵌め込まれる。
The diaphragm section 20 is constructed by applying a gas permeable membrane 15 to one end surface of a cylindrical membrane receiver 18, sandwiching the periphery of the gas permeable membrane 15 between the membrane receiver 18 and the seal 17, and fixing the outer periphery of the seal 17. A seal frame 22 is fitted into the. The membrane receiver 18 is made of plastic, etc., which is corrosion resistant and does not deform to some extent (
It is made of a soft material, and a protrusion 23 is provided around the entire circumference of the outer circumferential side. The seal 17 is made of an elastic and watertight material such as rubber, and is made to correspond to the outer circumferential shape of the membrane receiver 18. The seal 17 is fitted from one end of the membrane receiver 18 to the outer circumference. to cover. The seal frame 22 is L-shaped and is made to correspond to the shape of the seal 17. Like the membrane receiver 18, it is made of a material such as plastic. is fitted around the outer periphery of the

上記シール17と膜受18に挟まれたガス透過膜15は
、特にシール17との摩擦抵抗によって固定される。こ
のため、予めガス透過膜15に成る程度のテンションを
与えておくことにより、このテンションが、上記シール
17によって弾性的に保持される。
The gas permeable membrane 15 sandwiched between the seal 17 and the membrane receiver 18 is fixed particularly by frictional resistance with the seal 17. Therefore, by applying tension in advance to the extent that the gas permeable membrane 15 forms, this tension is elastically maintained by the seal 17.

電極部21は、中空の支持管11の中心に電極棒12を
設け、この電極棒12の先端側に作用電極13を、これ
より基端側に基準電極14をそれぞれ設けたものである
。支持管11の先端外周面には、ねじ25が切られ、こ
れが上記締具16の内周側に切られたねじ26と螺合で
きるようになっている。
The electrode section 21 includes an electrode rod 12 provided at the center of a hollow support tube 11, a working electrode 13 provided at the distal end of the electrode rod 12, and a reference electrode 14 provided at the proximal end thereof. A thread 25 is cut on the outer circumferential surface of the distal end of the support tube 11, and can be screwed into a thread 26 cut on the inner circumferential side of the fastener 16.

このような部材を組立ててガス電極として構成するには
、締具16を使用し、これと電極部21との間に隔膜部
20を挟んで固定する。電極部21の支持管11先端と
、上記締具16にはそれぞれ段部26.27が設けられ
ており、この間にシール枠22を介して隔膜部20のシ
ール17を挟み、この状態で上記ねじ25.26を合わ
せて締め付ける。この時、支持管11と一体的に固定さ
れている電極棒12も隔膜部20に対して相対的に押し
下げられるため、その先端に設けられた作用電極13が
ガス透過膜15に押しつけられ、その表面が間膜15に
密着する。
In order to assemble such a member and configure it as a gas electrode, a fastener 16 is used and the diaphragm portion 20 is sandwiched and fixed between the fastener 16 and the electrode portion 21. Step portions 26 and 27 are provided at the tip of the support tube 11 of the electrode portion 21 and the fastener 16, respectively, and the seal 17 of the diaphragm portion 20 is sandwiched between them via the seal frame 22, and in this state, the screw is inserted. Match 25 and 26 and tighten. At this time, the electrode rod 12, which is integrally fixed to the support tube 11, is also pushed down relative to the diaphragm section 20, so the working electrode 13 provided at its tip is pressed against the gas permeable membrane 15, The surface is in close contact with the intermembrane 15.

この状態においては、支持管11.膜受22及び締具1
6の間にシール17が介在され、これが締め付けられる
ことから、上記各部材の間が完全にシールされる。一方
この時、ガス透過IIi!15は、膜受22とシール1
7との間にあってその周囲が固定されているものの、全
く自由度がない状態で固定されている訳ではなく、シー
ル17によって弾性的に支持されている。このため、作
用電極13を押しつけることによって、ガス透過膜15
に加えられたテンションが上記シール17の弾性によっ
て吸収される。
In this state, the support tube 11. Membrane receiver 22 and fastener 1
A seal 17 is interposed between the members 6 and is tightened, so that the spaces between the above-mentioned members are completely sealed. On the other hand, at this time, gas permeation IIi! 15 is a membrane receiver 22 and a seal 1
7 and its periphery is fixed, but it is not fixed with no degree of freedom, but is supported elastically by the seal 17. Therefore, by pressing the working electrode 13, the gas permeable membrane 15
The tension applied to the seal 17 is absorbed by the elasticity of the seal 17.

既に述べたように、ガス透過H*15は、多くの場合弾
性限度が低く、これを越える応力が発生すると急激に変
形し、これが間膜15の持つテンションを減殺するため
、作用電極13表面との密着状態が阻害される。しかし
、上記組立状態においては、ガス透過膜15において不
足する弾性をシール17が補って上記テンションを吸収
するので、過度の応力が発生せず、間膜15は弾性限度
の範囲で変形する。このため、ガス透過膜15は富に適
度なテンションを保持し、これによって作用電極13の
表面に完全に密着する。
As already mentioned, the gas permeation H*15 often has a low elastic limit, and when stress exceeding this limit is generated, it deforms rapidly. The adhesion state of the is inhibited. However, in the assembled state, the seal 17 compensates for the insufficient elasticity in the gas permeable membrane 15 and absorbs the tension, so that no excessive stress is generated and the membrane 15 deforms within its elastic limit. For this reason, the gas permeable membrane 15 maintains a very appropriate tension, thereby completely adhering to the surface of the working electrode 13.

また、このようにして発生した変形は、外力を取り去る
ことによって元の状態に復元するいわゆる弾性変形であ
るから、電極部21.隔膜部20及び締具16を分解し
てガス透過膜からテンションを取り去ることによってま
た元の状態に復元する。特に、分解によって、シール1
7も復元することから、その弾性によって当初与えられ
たテンションがそのまま復元することになる。
Further, since the deformation that occurs in this manner is so-called elastic deformation that returns to its original state by removing the external force, the electrode portion 21. By disassembling the diaphragm portion 20 and the fastener 16 and removing tension from the gas permeable membrane, it is restored to its original state. In particular, by disassembly, seal 1
7 is also restored, so the tension initially applied due to its elasticity is restored as it is.

以上のようにしてこの発明によれば、作用電極13に対
してガス透過膜15が完全に密着されると共に、使用後
間膜15をまた再び原状に復元させることができる。こ
のため、分析の能率とその精度の向上を図ることができ
ると共に、ガス透過膜15の再度の利用が可能となる。
As described above, according to the present invention, the gas permeable membrane 15 is brought into complete contact with the working electrode 13, and the interstitial membrane 15 can be restored to its original state after use. Therefore, the efficiency and accuracy of analysis can be improved, and the gas permeable membrane 15 can be used again.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、隔膜型ガス電極の従来例を示す要
部断面図、第3図は、この発明の一実施例を示す要部断
面図、第4図は、一部分解して示した半断面斜視図であ
る。 13−作用電極 15−ガス透過膜 17−・・シール 18・−膜受 2〇−隔膜部 21−電極部 23−突条 特許出願人 平沼産業株式会社 代理人 弁理士 北條和由 手続補正書 特許庁長官若杉和夫殿 16 事件の表示 昭和58年特許願第117897号 2、発明の名称 隔膜型ガス電極 3、補正をする者 事件との関係 特許出願人 住所 茨城県水戸市元吉田町1739M氏名(名称) 
平沼産業株式会社 代表価役平沼千春 4、代理人 (1)明細書第9頁第9〜10行目に「段部26.2T
Jとあるのを、[段部27.28Jと補正致します。 (2)第3図に符合「26」が2つある内、別添の図面
写に未配する通り一方を「28」と補正致しまず。
1 and 2 are sectional views of main parts showing a conventional example of a diaphragm type gas electrode, FIG. 3 is a sectional view of main parts showing an embodiment of the present invention, and FIG. 4 is a partially exploded view. FIG. 13-Working electrode 15-Gas permeable membrane 17-Seal 18-Membrane receiver 20-Diaphragm part 21-Electrode part 23-Protrusion Patent applicant Hiranuma Sangyo Co., Ltd. agent Patent attorney Kazuyoshi Hojo procedural amendment patent Mr. Kazuo Wakasugi, Commissioner of the Agency 16 Indication of the case Patent Application No. 117897 of 1982 2 Name of the invention Diaphragm type gas electrode 3 Relationship with the case Patent applicant Address 1739M Motoyoshida-cho, Mito City, Ibaraki Prefecture Name ( name)
Hiranuma Sangyo Co., Ltd. CEO Chiharu Hiranuma 4, Agent (1) On page 9, lines 9-10 of the statement, “Danbe 26.2T
The text "J" will be corrected to "stepped section 27.28J." (2) Although there are two numbers "26" in Figure 3, one has not been corrected to "28" as it is not shown in the attached drawing.

Claims (1)

【特許請求の範囲】 1、作用電極の表面にガス透過膜を密着させ、これを試
料溶液の中へ浸し、同溶液に溶けたガスを上記ガス透過
膜に浸透させて、これを上記電極に接触、反応せしめ、
この時電極に発生する電流または電圧によりその濃度を
めるようにした隔膜型ガス電極において、先端に作用電
極を設けた電極部と、ガス透過膜を張った隔膜部とを備
え、隔膜部において、管状の膜受の一方の端面にガス浸
透膜を張り、間膜の周囲を上記膜受とこの外周側に嵌め
込んだ弾性のある管状のシールとの間に挟んで固定し、
ねじ等の締結手段によってこの隔膜部を上記電極部に連
結すると共に、作用電極の表面を上記ガス透過膜に押し
つけて密着させたことを特徴とする隔膜型ガス電極。 2、膜受の外周に突条を周設し、これに被せたシールを
電極部と締具の間に挟み込んで締め付けるようにした特
許請求の範囲第1項記載の隔膜型ガス電極。
[Claims] 1. A gas permeable membrane is brought into close contact with the surface of the working electrode, immersed in a sample solution, and the gas dissolved in the solution is allowed to permeate the gas permeable membrane and applied to the electrode. contact, reaction,
A diaphragm-type gas electrode whose concentration is increased by the current or voltage generated in the electrode at this time includes an electrode part with a working electrode at its tip, and a diaphragm part covered with a gas permeable membrane. , a gas permeable membrane is placed on one end surface of a tubular membrane holder, and the periphery of the membranous membrane is sandwiched and fixed between the membrane holder and an elastic tubular seal fitted on the outer periphery of the membrane holder,
A diaphragm-type gas electrode characterized in that the diaphragm part is connected to the electrode part by a fastening means such as a screw, and the surface of the working electrode is pressed against the gas permeable membrane so as to be brought into close contact with the gas permeable membrane. 2. The diaphragm type gas electrode according to claim 1, wherein a protrusion is provided around the outer periphery of the membrane holder, and a seal placed over the protrusion is sandwiched between the electrode portion and the fastener to be tightened.
JP58117897A 1983-06-29 1983-06-29 Diaphragm type gas electrode Granted JPS608741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117897A JPS608741A (en) 1983-06-29 1983-06-29 Diaphragm type gas electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117897A JPS608741A (en) 1983-06-29 1983-06-29 Diaphragm type gas electrode

Publications (2)

Publication Number Publication Date
JPS608741A true JPS608741A (en) 1985-01-17
JPH0334584B2 JPH0334584B2 (en) 1991-05-23

Family

ID=14722910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117897A Granted JPS608741A (en) 1983-06-29 1983-06-29 Diaphragm type gas electrode

Country Status (1)

Country Link
JP (1) JPS608741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091947A1 (en) * 2020-10-27 2022-05-05 株式会社堀場アドバンスドテクノ Diaphragm-type sensor and measurement system using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091947A1 (en) * 2020-10-27 2022-05-05 株式会社堀場アドバンスドテクノ Diaphragm-type sensor and measurement system using same

Also Published As

Publication number Publication date
JPH0334584B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
US5932175A (en) Sensor apparatus for use in measuring a parameter of a fluid sample
US4263115A (en) Ion-selective electrode device for polarographic measurement of oxygen
JP2527827B2 (en) Calibration device for calibration of sensor
US4390406A (en) Replaceable outer junction double junction reference electrode
US4463593A (en) Apparatus for monitoring the partial pressure of gases
JP2009122112A (en) Electrolyte cartridge unit for electrochemical sensor
JPH0225142B2 (en)
WO1994004912A1 (en) Chlorine sensor
JPS608741A (en) Diaphragm type gas electrode
JPH09178691A (en) Electrochemical sensor
US4655900A (en) Method for treating electrodes and improved electrochemical cell
CA2250469C (en) A polarographic sensor
GB2114304A (en) Electrochemical, membrane sensor
JP2002039984A (en) Diaphragm fixing method for diaphragm electrode, diaphragm cartridge, and the diaphragm electrode
USRE31299E (en) Ion-selective electrode device for polarographic measurement of oxygen
CA2593815A1 (en) Amperometric sensor comprising counter electrode isolated from liquid electrolyte
US5223123A (en) Method for making a polarographic oxygen sensor
JP5344305B2 (en) Diaphragm electrode
JPS60162950A (en) Method for fitting gas transmission film of gas sensor
SE8306050D0 (en) SENSOR OF CHEMICAL ANALYSIS
JP2003202315A (en) Diaphragm cartridge
EP0039136A2 (en) Electrode device, method for its preparation, and dispersion useful in the method
JP2000074872A (en) Controlled potential electrolysis type gas sensor
EP0175732A1 (en) Electrochemical assembly
KR200368779Y1 (en) A dissolved oxygen sensor contained an air cleaner