JPS6085521A - Sample stage positioning device using differential friction-gear reduction device - Google Patents

Sample stage positioning device using differential friction-gear reduction device

Info

Publication number
JPS6085521A
JPS6085521A JP58192402A JP19240283A JPS6085521A JP S6085521 A JPS6085521 A JP S6085521A JP 58192402 A JP58192402 A JP 58192402A JP 19240283 A JP19240283 A JP 19240283A JP S6085521 A JPS6085521 A JP S6085521A
Authority
JP
Japan
Prior art keywords
cylindrical surface
sample stage
rotation
input shaft
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58192402A
Other languages
Japanese (ja)
Inventor
Naoto Nakajima
直人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58192402A priority Critical patent/JPS6085521A/en
Publication of JPS6085521A publication Critical patent/JPS6085521A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To reduce an error on the shape of a transmitting element and the irregularities of the surface, and to obtain high resolving power of 0.1mum or less by constituting the transmitting element for a positioning device for a sample stage, in which a semiconductor wafer is placed, exposed, baked and transferred, by a friction transmission mechanism without using a gear. CONSTITUTION:A transmitting element for a positioning device for a sample stage on which a semiconductor wafer is placed is constituted as follows. That is, planet rings 23 and 24, diameters thereof each differ, are formed in integral structure through needle roller bearings 30 in an eccentric section (b) between an input shaft 22 and an output shaft 27, and planet rings 28 and 29 are each combined rotatably through the bearings 30 in the same manner even in an eccentric section (c). The planet rings 23 and 28 are inscribed in an inner ring 25 fixed to a casing 21 and the planet rings 24 and 29 in an inner ring 26 unified with the output shaft 27 respectively. Accordingly, the transmitting element, which decelerates the input shaft 22 and transmits the deceleration over the output shaft 27, is constituted by a differential friction-gear reduction device, and the positional displacement and backlash of the stage are reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高精度の減速が可能な差動摩擦車減速装置の
使用にエリ、特に微細ノくターンのLSI製造装置に好
適な試料ステージ位置決め装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to a sample stage positioning device suitable for the use of a differential friction wheel reduction device capable of highly accurate deceleration, and particularly suitable for LSI manufacturing equipment with fine turns. Regarding.

〔発明の背景〕[Background of the invention]

マスクパターンをウエノ・上に露光・焼付し転写を行う
アライナに代表されるLSI製造装置ではウェハ等を載
せている試料ステージを所定の行程内の任意の位置に高
精度で位置決めする必要がある。LSIパターンの微細
化に伴い、試料ステージの位置決め精度も高精度化が必
要であり、位置決め分解能も0.1μm以下の高分解能
が要求される工うになってきた。
In LSI manufacturing equipment, such as an aligner that exposes, prints, and transfers a mask pattern onto a wafer, it is necessary to position a sample stage on which a wafer or the like is mounted with high precision at an arbitrary position within a predetermined process. With the miniaturization of LSI patterns, the positioning accuracy of the sample stage must also be highly accurate, and the positioning resolution has come to be required to be as high as 0.1 μm or less.

従来用いられてきた試料ステージの概略の構造を第1図
に示す。アライナでは;、y2軸に関して試料ステージ
の位置決めが可能な構成のX−yステージを用いている
が、基本的には、第1図で示す構成の1軸に対する位置
決め装置を2対組み合せて使用しているものが大部分で
ある。したがって、第1図に示す1軸について試料ステ
ージの位置決めを行う試料ステージ位置決め装置につい
てその構成・動作、および問題点を説明する。
FIG. 1 shows a schematic structure of a conventionally used sample stage. The aligner uses an X-y stage with a configuration that allows positioning of the sample stage with respect to the y2 axis, but basically it uses a combination of two pairs of positioning devices for one axis as shown in Figure 1. Most of them are Therefore, the structure, operation, and problems of the sample stage positioning device for positioning the sample stage about one axis shown in FIG. 1 will be explained.

試料ステージ3上には、ウェハ2を吸着固定するウェハ
チャック2が設けられ、試料ステージ6内にはナツト4
が固定されている。このナツト4は送りねじ5と噛み合
っており位置決め機構を成している。さらに、試料ステ
ージ3は鋼球列7を介してステージベース8に支持され
ていて(ガイド部材)、第1図の左右方向すなわち送り
ねじ5の軸方向に直動可能な構成となっている。なお、
10はステッピングモータ、9はカップリング、11は
減速機、6は送りねじ5の1端を支持しているボールベ
アリングである。
A wafer chuck 2 for suctioning and fixing the wafer 2 is provided on the sample stage 3, and a nut 4 is installed in the sample stage 6.
is fixed. This nut 4 meshes with the feed screw 5 and forms a positioning mechanism. Furthermore, the sample stage 3 is supported by a stage base 8 via a steel ball array 7 (guide member), and is configured to be capable of linear movement in the left-right direction in FIG. 1, that is, in the axial direction of the feed screw 5. In addition,
10 is a stepping motor, 9 is a coupling, 11 is a speed reducer, and 6 is a ball bearing supporting one end of the feed screw 5.

次イテ、この試料ステージの動作についテ説明する。試
料ステージ3はボール列7を介してステージベース8に
支持されているため、送りねじ5の軸方向に直動可能で
ある。その位置は軸方向はステージベース8に対して固
定でかつ回転可能にボールベアリング6および減速機1
1を介して支持された送りねじ5と、この送りねじ5と
噛み合うナツト4によって決められている。したがって
、送りねじ5を回転させることによって、試料ステージ
3を任意の位置に移動させることが可能である。また、
試料ステージ′5はボール列7を介して支持されている
ため、低い抵抗力で移動可能であり、さらに、送りねじ
5とナツト4として1回転の送り量2鰭のポールねじを
用い、ダブルナツト構造を用いて予圧を与えて、送りね
じ5とナツト4間のガタを防止しているため、送りねじ
5の回転に正確に対応して移動可能である。
Next, we will explain the operation of this sample stage. Since the sample stage 3 is supported by the stage base 8 via the ball row 7, it can move directly in the axial direction of the feed screw 5. Its position is fixed relative to the stage base 8 in the axial direction and rotatably connected to the ball bearing 6 and the reducer 1.
1 and a nut 4 that meshes with the feed screw 5. Therefore, by rotating the feed screw 5, it is possible to move the sample stage 3 to an arbitrary position. Also,
Since the sample stage '5 is supported via the ball row 7, it can be moved with low resistance.Furthermore, a pole screw with a feed rate of 2 fins per revolution is used as the feed screw 5 and nut 4, and has a double nut structure. Since the screw is used to apply preload to prevent looseness between the feed screw 5 and the nut 4, it is possible to move in accordance with the rotation of the feed screw 5 accurately.

一方、ステッピングモータ10はその出力軸を0.9°
間隔で回転停止でき、送りねじ5を直接回転させれば、
試料ステージ位置決め分解能は5μmとなり、著しく精
度が不足する。したがって、試料ステージ位置決め分解
能0.1μmf実現するため、ステッピングモータ10
の回転を減速機11にエリ、′15oに減速して送りね
じ5へ伝達している。減速機110回転むら、ガタはわ
ずかなものでも、試料ステージの位置決めの誤差となる
ため、減速機11には、入力軸と出力軸が正確に一定の
速度比を保ったまま回転し、かつ、ガタが無いことが要
求される。
On the other hand, the stepping motor 10 has an output axis of 0.9°.
If you can stop the rotation at intervals and directly rotate the feed screw 5,
The sample stage positioning resolution is 5 μm, which is significantly insufficient in accuracy. Therefore, in order to achieve a sample stage positioning resolution of 0.1 μmf, the stepping motor 10
The rotation is transmitted to the reducer 11 and the feed screw 5 after being decelerated to '15o. Reducer 110 Even a slight rotational unevenness or play will cause an error in the positioning of the sample stage. It is required that there is no backlash.

第2図に、減速機11の一例を示す。これは、遊星歯車
減速装置であり、入力軸14の偏心部には1体となった
遊星歯車15.16が回転可能に設けられ、さらに、そ
れぞれ、内歯車17.18と噛み合っている。内歯車1
7はケーシング12に固定され、内歯車18は出力軸1
9と1体となっている構成である。20はすべてボール
ペアリングチ6る。この減速機を模式的に示したものが
第6図である。
FIG. 2 shows an example of the speed reducer 11. This is a planetary gear speed reducer, and planetary gears 15 and 16 are rotatably provided on the eccentric portion of the input shaft 14, and are meshed with internal gears 17 and 18, respectively. Internal gear 1
7 is fixed to the casing 12, and the internal gear 18 is connected to the output shaft 1.
It is configured as one unit with 9. All 20 are ball pairings. FIG. 6 schematically shows this reduction gear.

以下、この減速機の動作について説明する。The operation of this reduction gear will be explained below.

まず、入力軸14040回転って、遊星歯車15゜16
は同一速度で自転と公転を同時に行う遊星運動を行う。
First, the input shaft rotates 14,040 times, and the planetary gear rotates 15 degrees and 16 degrees.
performs planetary motion, rotating and revolving at the same speed.

このとき、遊星歯車15.16の歯数がわずかに異るた
め、その周速度にもわずかに差があり、遊星歯車15と
噛み合う内歯車17ヲ固定し、遊星歯車160周速度を
内歯車18に裏って取り出せば、入力軸の回転を大きく
減速して取り出すことができる。遊星歯車15の歯数2
1を80゜遊星歯車16の歯数Z、を72.内歯車17
の歯数Z。
At this time, since the number of teeth of the planetary gears 15 and 16 is slightly different, there is also a slight difference in their circumferential speed. If you turn it upside down and take it out, you can greatly slow down the rotation of the input shaft and take it out. Number of teeth of planetary gear 15: 2
1 is 80°, and the number of teeth Z of the planetary gear 16 is 72. Internal gear 17
Number of teeth Z.

全98.内歯車18の歯数24ヲ90とすれば、減速比
りは =1150 となり、所定の減速比を実現している。
Total 98. If the number of teeth of the internal gear 18 is 24 to 90, the reduction ratio is 1150, realizing a predetermined reduction ratio.

このような内歯車を用いた遊星歯車減速装置は通常の歯
車の減速装置と比較して歯車噛み合い率が約2と大きい
こと、また歯面の接触状態が第4図、第5図で示すよう
に、凸面と凹面の接触であり、接触面積が比較的広いた
め、歯面の不整の影響を受けにくいことの2点の理由が
ら滑らかで変動が少ない減速状態を実現できるものであ
る。
A planetary gear reduction device using such an internal gear has a gear engagement ratio as large as about 2 compared to a normal gear reduction device, and the contact state of the tooth surfaces is as shown in Figs. 4 and 5. Second, since the contact is between a convex surface and a concave surface, and the contact area is relatively large, it is less susceptible to the effects of irregularities on the tooth surface.For these two reasons, a smooth deceleration state with little fluctuation can be realized.

しかし、歯車減速装置であるため、次に示す欠点があっ
た。
However, since it was a gear reduction device, it had the following drawbacks.

1 歯車歯数は整数であるため、任意の減速比を実現す
ることが困難な欠点がある。さらに第4図内のαに示す
円内に示すように、遊星歯車と内歯車の歯数差が減少す
ると、歯形が干渉を起し実現できなくなるため、減速比
としては、おおむね1/400までという限界がある。
1. Since the number of gear teeth is an integer, there is a drawback that it is difficult to realize an arbitrary reduction ratio. Furthermore, as shown in the circle α in Figure 4, if the difference in the number of teeth between the planetary gear and the internal gear decreases, the tooth profiles will interfere and it will no longer be possible to realize the reduction ratio, so the reduction ratio will be approximately 1/400. There is a limit.

2、 歯車の形状誤差により減速比が変動し、試料ステ
ージ位置決め精度が不足する欠点がある。例えば、歯車
の形状誤差は4枚の歯車について総合すれば20μmに
もなり、試料ステージの位置決めにおいて0.25μm
の誤差を生じてしまい、位置決め精度を低下させてしま
う欠点がある。
2. There is a drawback that the reduction ratio fluctuates due to the shape error of the gear, and the sample stage positioning accuracy is insufficient. For example, the shape error of the gears is as much as 20 μm in total for four gears, and the error in the positioning of the sample stage is 0.25 μm.
This method has the drawback of causing errors, which lowers positioning accuracy.

3、 歯面のあらさく凸凹)により減速比が変動し、試
料ステージ位置決め精度が不足する欠点がある。第5図
に示すように、歯車の歯面ば円周方向に対してα=20
°の角度が有るもののほぼ正対してし・る状態に有る。
3. The reduction ratio fluctuates due to the roughness of the tooth surface (roughness and concavity of the tooth surface), and there is a drawback that the positioning accuracy of the sample stage is insufficient. As shown in Fig. 5, the tooth surface of the gear is α=20 in the circumferential direction.
Although there is a degree angle between them, they are almost directly facing each other.

一方、歯面に作用している力は、試料ステージが低抵抗
で動くことから、数N程にすぎず、さらに歯面の曲率半
径がそれぞれQ、p、Qtpと歯車半径に比較して約1
/3と小さいため、歯車接触部分の長さは40μm程度
でしかない。したがって、平均化効果が小さく、歯面の
あらさく凸凹)のうち、周期が80μrnヲ超えるあら
さが全て減速比の変動要因となる。その大きさは例えば
、試料ステージの移動量1μm時に01μmの誤差に相
当するけど発生し、試料ステージ位置決め精度低下の要
因となる。
On the other hand, the force acting on the tooth surface is only about a few N because the sample stage moves with low resistance, and the radius of curvature of the tooth surface is Q, p, and Qtp, which are approximately approximately 1
/3, so the length of the gear contact portion is only about 40 μm. Therefore, the averaging effect is small, and among the roughness and unevenness of the tooth surface, any roughness with a period exceeding 80 μrn becomes a factor of variation in the reduction ratio. For example, the size of the error corresponds to an error of 0.1 μm when the sample stage moves by 1 μm, but it becomes a factor in reducing the accuracy of sample stage positioning.

2、口に示す欠点にエリ、減速比は変動し、第6図に示
すように、入力軸の回転数(角正度)を一定に保ったと
しても、出力軸の回転数(角速度)は微視的に見れば変
動を繰返しこれに伴い、ステッピングモータの1ステツ
プに対する試料ステージの移動量も変動してしまう。し
たがって、試料ステージの位置決め精度も不確定となり
、精度が不足してしまう欠点がある。
2. The reduction ratio fluctuates, and as shown in Figure 6, even if the input shaft rotation speed (angular degree) is kept constant, the output shaft rotation speed (angular velocity) will change. Microscopically, the fluctuations are repeated, and as a result, the amount of movement of the sample stage for one step of the stepping motor also fluctuates. Therefore, the positioning accuracy of the sample stage is also uncertain, and there is a drawback that the accuracy is insufficient.

4、 歯面のしゅう動、バックラッシュに起因する試料
ステージ往復時の相異(ヒステリシス)が太き〜・とい
5欠点がある。バックラッシュというのは、第5図中に
Cで示した歯面の接触していない側に生ずる小さな間隙
であり、歯車に形状誤差が存在するため、この間隙は不
可避なものである。この間隙があるため、歯車減速装置
の出力軸を固定し、入力軸を回転させた時には、第7図
で示すように、特定の回転角内では反力が生じない現象
(ガタ)を生ずしてしまう。このガタが、試料ステージ
のヒステリシスの要因となる。さらに、歯車の歯面にお
いては、噛み合い位置によっては、両歯面の半径方向速
度成分が異なり、したがって、しゆう動を生じている。
4. There is a large difference (hysteresis) during the reciprocation of the sample stage due to tooth surface sliding and backlash. 5. There is a drawback. Backlash is a small gap that occurs on the non-contact side of the tooth surfaces, indicated by C in FIG. 5, and this gap is unavoidable because there is a shape error in the gear. Because of this gap, when the output shaft of a gear reduction gear is fixed and the input shaft is rotated, a phenomenon (backlash) occurs in which no reaction force is generated within a certain rotation angle, as shown in Figure 7. Resulting in. This backlash causes hysteresis of the sample stage. Furthermore, the radial velocity components of the tooth surfaces of the gear differ depending on the meshing position, and therefore shearing motion occurs.

これもまた、試料ステージのヒステリシスの一因となっ
ている。
This also contributes to sample stage hysteresis.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、01μm以下の高精度・高分解能の位
置決め性能を備え、さらに、往復時の試料ステージの位
置ずれ・ガタ(ヒステリシス)を低減した高性能の試料
ステージ位置決め装置を提供することにある。
An object of the present invention is to provide a high-performance sample stage positioning device that has high-precision and high-resolution positioning performance of 0.1 μm or less, and further reduces positional deviation and backlash (hysteresis) of the sample stage during reciprocation. be.

〔発明の概要〕[Summary of the invention]

試料ステージの位置決め精度に対する誤差要因は、位置
決め機構内の減速装置の歯車の形状誤差、歯面の不整お
よびパラクララシーの3項目が主要なものである。そこ
で、本発明のように歯車伝達機構を摩擦伝達機構に書き
換えれば伝達要素の形状誤差1表面の不整は著しく低減
でき、さらに、バックラッシュは機構上、存在しないの
で、位置決め精度に対する主要な誤差要因を取り除くこ
とができる。
The three main error factors for the positioning accuracy of the sample stage are the shape error of the gear of the reduction gear in the positioning mechanism, tooth surface irregularity, and paraclarity. Therefore, if the gear transmission mechanism is replaced with a friction transmission mechanism as in the present invention, the shape error 1 surface irregularity of the transmission element can be significantly reduced.Furthermore, since backlash does not exist mechanically, it is a major error factor for positioning accuracy. can be removed.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ 以下、本発明の一実施例分一爽蒼衿を第8,9゜10.
11図により説明する。第8図は、入力軸22゜出力軸
27の中心軸を含む縦断面図、第9図は中心軸に垂直に
取った断面図である。入力軸22の偏心部すには、ニー
ドルローラベアリング30ヲ介して遊星輪25.24が
、偏心部Cには同じくニードルローラベアリング30ヲ
介して遊星輪28゜29がそれぞれ回転可能に組み合さ
れている。ニードルローラベアリング60はいずれも負
すきまとして予圧を与えガタを防止している。ここで遊
星輪26と24は一体構造で直径が異なっている。さら
に、遊星輪23,28はケーシング21に固定された内
輪25に、遊星輪24 、29は出力軸27と一体とな
っている内輪26にそれぞれ内接している構造となって
いる。全体として、入力軸の回転を減速して出力軸へ伝
達する差動摩擦車減速装置を構成していて、第1図の減
速機110位雪位置き換え、位置決め機構内で回転を減
速して伝える伝達要素を成すものである。なお、31は
入力軸22お工び出力軸27ヲ支持しているボールベア
リングである。
Example 1: Below, one example of the present invention with a refreshing blue collar is shown as 8th, 9th and 10th.
This will be explained with reference to FIG. FIG. 8 is a longitudinal sectional view including the central axis of the input shaft 22° and the output shaft 27, and FIG. 9 is a sectional view taken perpendicular to the central axis. Planet wheels 25 and 24 are rotatably combined with the eccentric portion of the input shaft 22 through a needle roller bearing 30, and planet wheels 28 and 29 are rotatably combined with the eccentric portion C through a needle roller bearing 30, respectively. ing. All of the needle roller bearings 60 have negative clearances to apply preload to prevent backlash. Here, the planet wheels 26 and 24 are integrally constructed and have different diameters. Furthermore, the planetary rings 23 and 28 are inscribed in an inner ring 25 fixed to the casing 21, and the planetary rings 24 and 29 are inscribed in an inner ring 26 that is integrated with the output shaft 27, respectively. As a whole, it constitutes a differential friction wheel reduction device that decelerates the rotation of the input shaft and transmits it to the output shaft, and replaces the 110th position of the reducer in Figure 1, and the transmission that decelerates and transmits the rotation within the positioning mechanism. It constitutes an element. Note that 31 is a ball bearing that supports the input shaft 22 and the output shaft 27.

次いて、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

まず、入力軸22が回転すると、遊星輪23はその外周
の1点pで内軸25に接していて摩擦伝達できる構造で
あるため、点Pで絶対速度が零となる遊星運動を行う。
First, when the input shaft 22 rotates, the planetary ring 23 is in contact with the inner shaft 25 at a point p on its outer periphery and has a structure capable of friction transmission, so it performs a planetary motion in which the absolute speed becomes zero at the point P.

このとき、遊星輪26と1体構造の遊星輪24も同一の
遊星運動を行うが、遊星輪23とは直径が異なるため、
内輪26と接している部分の絶対速度は、入力軸22の
偏心部すの中心01が入力軸22の軸心O7の回りを回
転する周速を減速比1′ で減速した速度を示す。この速度を内輪26へ摩擦伝達
により伝え、出力軸27ヲ低速回転させることで、減速
機構としている。入力軸220回転数が出力軸27へ伝
えられるときの減速比器は、遊星輪23の直径k ”+
−遊星輪24の直径k ’21内輪25の内径をDl、
内輪26の内径klJ)t とすると表わすことができ
る。本実施例では、d、=60m 、 d2 = 54
m+ 、 DI = 73.5■、 D、 = 67.
5■とすることで’ =1/’5o Kl”得ている。
At this time, the planetary ring 26 and the planetary ring 24, which are integrally structured, perform the same planetary motion, but since they have a different diameter from the planetary ring 23,
The absolute speed of the portion in contact with the inner ring 26 indicates the speed at which the peripheral speed at which the center 01 of the eccentric portion of the input shaft 22 rotates around the axis O7 of the input shaft 22 is reduced by a reduction ratio of 1'. This speed is transmitted to the inner ring 26 by friction transmission, and the output shaft 27 is rotated at a low speed, thereby forming a speed reduction mechanism. When the input shaft 220 rotation speed is transmitted to the output shaft 27, the reduction gear ratio is the diameter k ''+ of the planetary ring 23.
- Diameter of the planetary ring 24 k '21 The inner diameter of the inner ring 25 is Dl,
It can be expressed as the inner diameter klJ)t of the inner ring 26. In this example, d, = 60 m, d2 = 54
m+, DI = 73.5■, D, = 67.
By setting it as 5■, '=1/'5o Kl'' is obtained.

遊星輪28゜29は、遊星輪23,24による押付力と
逆向きの押付力を発生させることにより、入力軸22お
工び内輪25.26のつり合いを取る作用がある。
The planetary rings 28 and 29 have the effect of balancing the input shaft 22 and the inner rings 25 and 26 by generating a pressing force in the opposite direction to the pressing force produced by the planetary rings 23 and 24.

本実施例によれば以下の効果がある。According to this embodiment, there are the following effects.

1 遊星輪、内輪の径は、内接すると℃・う幾可学的条
件を満たしているならばどのような直径でも減速機とし
て成立できる。したがって任意の減速比を実現すること
が可能という効果がある。さらに、遊星輪2B 、 2
9の直径差は限りなく小さくできるので、例えば’/a
o、oo。
1. The diameter of the planetary ring and inner ring can be any diameter as long as they satisfy the Celsius and radial geometrical conditions when inscribed. Therefore, there is an effect that it is possible to realize an arbitrary reduction ratio. Furthermore, planet wheels 2B, 2
9 can be made infinitely small, so for example '/a
o, oo.

という減速効果の大きなものまで実現できる効果がある
It has the effect of achieving even a large deceleration effect.

2、遊星輪、内輪の形状精度は単純な円柱形であること
から、02μmと歯車よりはるかに高精度にできるため
、減速比の変動を少なくできる効果がある。この結果、
試料ステージ位置決め精度は誤差0.02μm以下と1
桁以上高精度化できる。
2. Since the planetary ring and inner ring have a simple cylindrical shape, they can be made to have a much higher precision of 0.2 μm than a gear, which has the effect of reducing fluctuations in the reduction ratio. As a result,
Sample stage positioning accuracy is less than 0.02μm error.
Accuracy can be increased by more than an order of magnitude.

3、 遊星輪、内輪の摩擦伝達面のあらさく凸凹)に起
因する試料ステージ位置決め誤差が少ないという効果が
ある。すなわち、摩擦伝達面は単純な円柱面であるため
、歯車歯面に対してはるかに滑らかな面(04μm以下
)に加工でき、誤差要因が小さい特徴がある。さらに歯
面と比較すれば、摩擦伝達面に対する押付力は約100
Nと大きく、また、摩擦伝達面の曲率半径が同一直径の
歯車と比較して約6倍と太きいため、摩擦伝達面の接触
部分の長さは600μmと長い。したがって、摩擦伝達
面のあらさく凸凹)は平均化され、減速比の変動はほと
んど生じない。この結果、試料ステージ位置決め精度に
対する誤差は、1μm送り時に0006μm以下と著し
く低減できる効果がある。
3. It has the effect of reducing sample stage positioning errors caused by roughness of the friction transmission surfaces of the planetary ring and inner ring. That is, since the friction transmission surface is a simple cylindrical surface, it can be machined into a much smoother surface (04 μm or less) than the tooth surface of the gear, and has the characteristic of having small error factors. Furthermore, compared to the tooth surface, the pressing force against the friction transmission surface is approximately 100
N is large, and the radius of curvature of the friction transmission surface is about 6 times thicker than that of a gear with the same diameter, so the length of the contact portion of the friction transmission surface is as long as 600 μm. Therefore, the rough unevenness of the friction transmission surface is averaged out, and there is almost no variation in the reduction ratio. As a result, the error in positioning accuracy of the sample stage can be significantly reduced to 0006 μm or less when feeding by 1 μm.

2.3に示す効果にエリ、減速比の変動を低く抑えるこ
とが可能なため、一定の入力軸回転に対する出力軸の回
転数(角速度)は、第10図に示すように、はぼ一様で
あり、したがって、ステッピングモータの1ステツプに
対する試料ステージの移動量も変動が少なくなり、位置
決め精度を高精度化できる。
In addition to the effects shown in 2.3, it is possible to suppress fluctuations in the reduction ratio to a low level, so the rotation speed (angular velocity) of the output shaft for a constant input shaft rotation is approximately uniform, as shown in Figure 10. Therefore, the amount of movement of the sample stage for one step of the stepping motor also has less variation, and the positioning accuracy can be improved.

4、 歯車の歯面のしゅう動、バックラッシュに相当す
るものが摩擦伝達機構には全く存在せず、したがって、
試料ステージの往復時の相異(ヒステリシス)が小さい
という効果がある。すなわち、円柱面の接触による摩擦
伝達を用いているため、バックラッシュのような機構上
のガタは全く存在せず、また、摩擦面で摩擦力以下の力
を伝達している限りしゆう動も生じない。そのため、第
11図に示すように、出力軸を固定したときの入力軸の
回転角と反力(トルク)の関係は、摩擦力の限界以下で
は直線で表わされ、ガタは存在しない。
4. There is nothing in the friction transmission mechanism that corresponds to backlash, which is the sliding movement of the tooth surface of a gear, and therefore,
This has the effect that the difference (hysteresis) during reciprocating of the sample stage is small. In other words, since it uses frictional transmission through the contact of cylindrical surfaces, there is no mechanical backlash such as backlash, and as long as the frictional surface transmits a force that is less than the frictional force, there is no movement. Does not occur. Therefore, as shown in FIG. 11, the relationship between the rotation angle of the input shaft and the reaction force (torque) when the output shaft is fixed is represented by a straight line below the limit of the frictional force, and there is no play.

この結果、試料ステージのヒステリシスも小さく抑え得
る効果がある。また、試料ステージは低い抵抗で移動可
能であるため、送りねじを回転させるのに必要なトルク
も小さく、通常の使用条件下では、すべりを生ずること
はない。
As a result, the hysteresis of the sample stage can also be kept small. Furthermore, since the sample stage can be moved with low resistance, the torque required to rotate the feed screw is small, and no slippage occurs under normal use conditions.

以上述べた効果により、試料ステージの位置決め精度を
高精度化でき、0.02μrIL/ステツプといった高
精度、高分解能の試料ステージ位置決め装置を実現でき
る。
As a result of the above-mentioned effects, the positioning accuracy of the sample stage can be improved, and a sample stage positioning device with high precision and high resolution of 0.02 μrIL/step can be realized.

実施例2゜ 次いで、本発明の他の実施例を第12.13図により説
明する。第12図は、入力軸33.出力軸40の軸心を
含む縦断面図、第16図は軸心に垂直に取った断面図で
ある。かご型の入力軸33には6対の一体形成された遊
星輪?i4,35がニードルローラベアリング41ヲ介
して回転可能に保持されている。遊星輪34 、35の
保持位置は、入力軸33の軸心を中心とする円周を3等
分する位置である。さらに、遊星輪34は、ケーシング
32のテーバ穴部に挿入固定された内輪36に内接し、
回転を摩擦伝達できる。同様に、遊星輪35も、出力軸
40と1体となった内輪3Bに内接し、回転を摩擦伝達
することが可能な構成となっている。内輪3Bの外周の
テーパねじ部には、締付輪39が締付られている。37
は、内輪56t−固定しているボルトであり、42はポ
ールベアリングである。
Embodiment 2 Next, another embodiment of the present invention will be described with reference to FIGS. 12 and 13. FIG. 12 shows the input shaft 33. A vertical cross-sectional view including the axis of the output shaft 40, FIG. 16 is a cross-sectional view taken perpendicular to the axis. 6 pairs of integrally formed planetary wheels on the squirrel-cage input shaft 33? i4, 35 are rotatably held via needle roller bearings 41. The holding positions of the planetary wheels 34 and 35 are positions that equally divide the circumference of the input shaft 33 into three. Further, the planetary ring 34 is inscribed in an inner ring 36 inserted and fixed into a tapered hole of the casing 32,
Rotation can be transmitted through friction. Similarly, the planetary ring 35 is also inscribed in the inner ring 3B that is integrated with the output shaft 40, and is configured to be able to frictionally transmit rotation. A tightening ring 39 is tightened on the tapered threaded portion on the outer periphery of the inner ring 3B. 37
is a bolt fixing the inner ring 56t, and 42 is a pole bearing.

本実施例の減速機構としての動作は、前に述べた実施例
と同一であり、減速機構動作の説明は省略する。本実施
例では、ボルト37ヲ回転させ、内輪36の挿入固定位
置を軸方向に移動させることにより、ケーシング32の
テーパ穴の作用で内輪66ヲ変形させて内径を調節し、
遊星輪34との押付力の調節が可能である。また、同様
に締付輪39の給付位置を変えることにより、テーパね
じの作用で内輪38ヲ変形させて内径を調節し、遊星輪
35との押付力の調整が可能となっている。
The operation of the speed reduction mechanism of this embodiment is the same as that of the previously described embodiment, and a description of the speed reduction mechanism operation will be omitted. In this embodiment, by rotating the bolt 37 and moving the insertion and fixing position of the inner ring 36 in the axial direction, the inner ring 66 is deformed by the action of the tapered hole of the casing 32 and the inner diameter is adjusted.
The pressing force with the planetary ring 34 can be adjusted. Similarly, by changing the delivery position of the tightening ring 39, the inner ring 38 is deformed by the action of the tapered screw to adjust the inner diameter, and the pressing force with the planetary ring 35 can be adjusted.

本実施例によれば、前述の実施例と同様に高精度な減速
機構を実現できる効果がある上に、次の効果がある。
According to this embodiment, in addition to being able to realize a highly accurate speed reduction mechanism as in the above-described embodiments, there are also the following effects.

1゜ 遊星輪を3対備えているため、内輪との接触点が
増加し、平均化作用を増加したことにより、試料ステー
ジ位置決め精度に対する誤差を低減する効果がある。
1° Since three pairs of planetary rings are provided, the number of contact points with the inner ring is increased, and the averaging effect is increased, which has the effect of reducing errors in sample stage positioning accuracy.

2、 遊星輪と内輪との押付力を調整できるため高精度
の伝達を長期間に渡り維持できる効果がある。
2. Since the pressing force between the planetary ring and the inner ring can be adjusted, highly accurate transmission can be maintained over a long period of time.

実施例3゜ 引き続いて、本発明のさらに異なる実施例につ℃・て、
第1鷹図を用いて説明する。第14図は入力軸44.出
力軸50の軸心を含む縦断面を示している。かご型の入
力軸44には、3対の1体形成された遊星輪45.46
がニードルローラベアリング49ヲ介して回転可能に支
持されている。
Example 3 Continuing on to another example of the present invention,
This will be explained using the first hawk diagram. FIG. 14 shows the input shaft 44. A longitudinal section including the axis of the output shaft 50 is shown. The squirrel-cage input shaft 44 has three pairs of planetary wheels 45 and 46 formed in one piece.
is rotatably supported via a needle roller bearing 49.

遊星輪45は内輪47に内接し、遊星輪46は内輪48
に内接し、それぞれ回転を摩擦伝達できるようになって
いる。内輪47おLび出力軸50と1体に形成され1こ
内輪48は、ボールベアリング51を介して回転可能に
ケーシング43内に支持されている。さらに、内輪47
内には、ニードルローラベアリング49ヲ介して入力軸
44が回転可能に支持されている。ケーシング43の左
端に突出している入力軸44には鋼製のフランジ59が
固定され、さらに、内輪47の延長部分には鋼製のフラ
ンジ52お工び軸方向にのみ可撓性全盲する非磁性の可
撓板55 、60が固定されている。可撓板56゜60
の外周部には、磁性を有する鋼環54.?S1および摩
擦環55が設えられている。その上で、7ランシ52.
59お工び鋼環54 、61の外側には、ソレノイド5
6 、58が非磁性の支持部材57ヲ介してケーシング
43に固定されて(・て、ソレノイド56に通電するこ
とにより摩擦環55α金ケーシング46の端面から引き
放し、さらに、ソレノイド58の通電により摩擦環55
bをフランジ59に押し付けることが可能な構成になっ
ている。
The planetary ring 45 is inscribed in the inner ring 47, and the planetary ring 46 is inscribed in the inner ring 48.
It is inscribed in the , and each rotation can be transmitted through friction. The inner ring 48 , which is formed integrally with the inner ring 47 L and the output shaft 50 , is rotatably supported within the casing 43 via a ball bearing 51 . Furthermore, the inner ring 47
An input shaft 44 is rotatably supported therein via a needle roller bearing 49. A steel flange 59 is fixed to the input shaft 44 protruding from the left end of the casing 43, and a steel flange 52 is attached to the extension of the inner ring 47. A non-magnetic flange 52 is provided which is flexible only in the axial direction and completely blind. Flexible plates 55 and 60 are fixed. Flexible plate 56°60
At the outer periphery of the magnetic steel ring 54. ? S1 and a friction ring 55 are provided. On top of that, 7 ranshi 52.
59 There is a solenoid 5 on the outside of the steel rings 54 and 61.
6 and 58 are fixed to the casing 43 via a non-magnetic support member 57 (by energizing the solenoid 56, the friction ring 55α is pulled away from the end face of the gold casing 46, and further by energizing the solenoid 58, the friction Ring 55
b can be pressed against the flange 59.

本実施例の動作を続いて説明する。The operation of this embodiment will be explained next.

まず、ソレノイド56,58を通電しないとき、本実施
例は、可撓板47の弾性力に工ってケーシング46に摩
擦環55αが押付けられていることがら、可撓板47と
接続されている内輪47は回転できず固定状態にあり、
一方、摩擦環55bとフランジ59は接触していないこ
とから入力軸44は回転可能な状態にあり、したがって
、前述の実施例と同様に減速機構として動作する。すな
わち入力軸440回転は、遊星輪45の直径t”cLt
、遊星輪46の直径をdl、内輪47の内径’t7)t
、内輪48の内径kl)2とすると、次式で示す減速比
t(本実施例ではi = 1/ioO)で減速され、出
力軸50へ伝達される。
First, when the solenoids 56 and 58 are not energized, the present embodiment uses the elastic force of the flexible plate 47 to press the friction ring 55α against the casing 46, so that the friction ring 55α is connected to the flexible plate 47. The inner ring 47 cannot rotate and is in a fixed state.
On the other hand, since the friction ring 55b and the flange 59 are not in contact with each other, the input shaft 44 is in a rotatable state, and thus operates as a speed reduction mechanism similarly to the previous embodiment. That is, the rotation of the input shaft 440 corresponds to the diameter t"cLt of the planetary ring 45.
, the diameter of the planetary ring 46 is dl, the inner diameter of the inner ring 47 't7)t
, the inner diameter of the inner ring 48 (kl)2, the speed is reduced by a reduction ratio t (in this example, i = 1/ioO) expressed by the following equation, and is transmitted to the output shaft 50.

iX d2 i = 1−□ ・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(31d、、xD。
iX d2 i = 1-□ ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(31d,, xD.

一方、ソレノイド56,58 を両方とも通電した状態
では、摩擦環55αはケーシング46から引き放され、
摩擦環55αはフランジ59に押イ」けられるため、内
輪47は入力軸44と接続され同一回転を行う。このと
き、遊星輪45.$6は内輪47と入力軸44が同一の
回転数で回転しているため入力軸44に固定支持された
状態となり、したがって、遊星輪46と接している内接
軸48には入力軸44と同一の回転が伝達される。すな
わち、本実施例は、ソレノイド56.58を通電した状
態では減速しないで等速の回転を入力軸44から出力軸
50へ伝達する伝達機構として動作する。
On the other hand, when both solenoids 56 and 58 are energized, the friction ring 55α is pulled away from the casing 46,
Since the friction ring 55α is pushed by the flange 59, the inner ring 47 is connected to the input shaft 44 and rotates at the same time. At this time, the planetary ring 45. Since the inner ring 47 and the input shaft 44 are rotating at the same rotation speed, $6 is fixedly supported by the input shaft 44. Therefore, the input shaft 44 and the inscribed shaft 48 in contact with the planetary ring 46 are The same rotation is transmitted. That is, the present embodiment operates as a transmission mechanism that transmits uniform rotation from the input shaft 44 to the output shaft 50 without decelerating when the solenoids 56 and 58 are energized.

なお、差動摩擦車減速機構を等速の回転伝達機構として
動作させる方法としては、減速機構としては固定されて
いる内輪47ヲ回転可能にした後、入力軸44に遊星輪
45,46が固定支持された状態にする方法でおれば、
との工5な方法でも良い。す力わち、本実施例で示した
入力軸44と内輪47ヲ接続する方法の他、エリ直接的
に入力軸44と内輪48もしくは出力軸50ヲ接続する
方法、内輪47,48 tl−接続する方法、あるいは
、入力軸44と遊星輪45,46 ’il接続する方法
を用いても等速の減速機構として動作させることができ
る。さらに、遊星輪45,46と内輪47.48の転勤
を固定し保持する方法も使用できる。
In addition, as a method for operating the differential friction wheel speed reduction mechanism as a constant-velocity rotation transmission mechanism, the fixed inner ring 47 of the speed reduction mechanism is made rotatable, and then the planet wheels 45 and 46 are fixedly supported on the input shaft 44. If there is a way to make it
It is also possible to use a simple method. In other words, in addition to the method of connecting the input shaft 44 and the inner ring 47 shown in this embodiment, there is also a method of directly connecting the input shaft 44 and the inner ring 48 or the output shaft 50, and a method of directly connecting the input shaft 44 and the inner ring 48 or the output shaft 50. Alternatively, the input shaft 44 and the planetary wheels 45, 46'il may be connected to each other to operate as a constant speed reduction mechanism. Furthermore, it is also possible to use a method of fixing and retaining the displacement of the planetary rings 45, 46 and the inner rings 47, 48.

次いて、試料ステージ位置合せ時の動作について説明す
る。本実施例の差動摩擦車減速装置も、第1図に示す試
料ステージ位置決め装置内の減速キ11の位置に設置し
て使用する。送りねじとしては、1回転当りの送り量2
箇のダブルナツト構成で予圧を加えたボールねじを用い
、ステッピングモータとしては、ステップ角0.66゜
のものを用いている。まず、試料ステージの大まかな位
置決め時には、第14図において、ソレノイド56.5
8に通電して鋼環54j61 fフランジ52 、59
へ引き寄せ、フランジ59と摩擦環55hとの摩擦力に
より円輪47が入力軸44と同一回転するようにする。
Next, the operation at the time of positioning the sample stage will be explained. The differential friction wheel speed reduction device of this embodiment is also used by being installed at the position of the speed reduction key 11 in the sample stage positioning device shown in FIG. As a feed screw, the feed amount per revolution is 2.
A preloaded ball screw with a double nut configuration is used, and the stepping motor has a step angle of 0.66°. First, when roughly positioning the sample stage, use the solenoid 56.5 in Fig. 14.
8 and steel ring 54j61 f flange 52, 59
The circular ring 47 is caused to rotate at the same time as the input shaft 44 due to the frictional force between the flange 59 and the friction ring 55h.

この状態で、ステッピングモータ金回転すれば、等速で
回転が送りねじに伝達されるため、位置決め分解能は2
μm/5tepとなるが、ステッピングモータの最高速
度(50にパルス/5ee)では100 m / se
eという高速の移動速度が得られる。次いて、試料ステ
ージの精密な位置決めを行う場合には、最初にソレノイ
ド56への通電を停止し、可撓板53の弾力で摩擦環5
5αをケーシング46の端面に押付け、内輪47ヲケー
シング43に対して回転しないように保持する。その後
、ソレノイド58への通電を停止し、可撓板60の弾力
で摩擦環55hkフランジ59から引き放し入力軸44
が単独で回転できる工うにする。この状態でステッピン
グモータを回転させれば、ステッピングモータの回転は
’/100に減速されて送りねじへ伝達されるため試料
ステージ位置決め分解能は0.02μmとなり高分解能
の位置決め性能が得られる。
In this state, if the stepping motor rotates, the rotation will be transmitted to the feed screw at a constant speed, so the positioning resolution will be 2.
μm/5tep, but at the maximum speed of the stepping motor (50 pulses/5ee) it is 100 m/se
A high moving speed of e is obtained. Next, when performing precise positioning of the sample stage, first stop energizing the solenoid 56 and use the elasticity of the flexible plate 53 to move the friction ring 5
5α is pressed against the end face of the casing 46 to hold the inner ring 47 so as not to rotate relative to the casing 43. Thereafter, the energization to the solenoid 58 is stopped, and the elasticity of the flexible plate 60 pulls the friction ring 55hk away from the flange 59, and the input shaft 44
The machine should be able to rotate independently. If the stepping motor is rotated in this state, the rotation of the stepping motor is decelerated to '/100 and transmitted to the feed screw, so that the sample stage positioning resolution becomes 0.02 μm and high-resolution positioning performance is obtained.

本実施例に工れば、前々述の実施例で示した効果の他に
、モータの回転を高速・低速の2系統の伝達経路を経て
送りねじに伝え、試料ステージの位置決めを行うため、
100町−という高速の移動速度と試料ステージ位置決
め分解能0802μmという高分解能全両立できる効果
がある。
If this embodiment is implemented, in addition to the effects shown in the previous embodiments, the rotation of the motor is transmitted to the feed screw through two transmission paths, high speed and low speed, and the sample stage is positioned.
It has the effect of achieving both a high moving speed of 100 mm and a high resolution of sample stage positioning resolution of 0802 μm.

すなわち、駆動モータの回転を単一の伝達経路で送りね
じへ伝えていた場合、試料ステージの移動速度として1
00 ax /sec k設定すると、位置決め分解能
は2μmとなり、精度が不足する一方位置決め分解能と
して0.02μmを設定すると、移動速度が1協/1I
ecとごく低速になり、性能が不足してしまう。これに
対して、本実施例では、2系統の伝達経路を経て送りね
じを回転させるため、高速の移動速度と高分解能の位置
決め性全両立できる効果がある。
In other words, if the rotation of the drive motor is transmitted to the feed screw through a single transmission path, the movement speed of the sample stage is 1.
If you set 00 ax/sec, the positioning resolution will be 2 μm, which is insufficient accuracy, but if you set the positioning resolution to 0.02 μm, the moving speed will be 1 y/1 I.
ec, it becomes extremely slow and lacks performance. On the other hand, in this embodiment, since the feed screw is rotated through two transmission paths, it is possible to achieve both high moving speed and high resolution positioning.

実施例4゜ 本発明のさらに異なる実施例について、第15゜16図
を用いて説明する。試料ステージ62は鋼球列66を介
して直動可能にステージベース76に支持されている。
Embodiment 4 Another embodiment of the present invention will be described with reference to FIGS. 15 and 16. The sample stage 62 is supported by a stage base 76 via an array of steel balls 66 so as to be movable in a linear manner.

さらに、試料ステージ62には、位置決め部材64が固
定されている。位置決め部材64の両わきには、停止部
材74がステージベース73に固定され設けられている
。その上、この位置決め部材64および停止部材74ヲ
挾むように、転動輪65が総計4本設けられている。転
動輪65はニードルコーラベアリング66ヲ介して保持
部材67に回動可能なように保持され、円柱面り、Lで
それぞれ位置決め部材64および停止部材74と回転を
直線運動に変える摩擦伝達が可能である。円柱面り、L
の径は1チ異なり、それに相当するだけ位置決め部材6
4と停止部材74の厚さも異なっている。他方、保持部
材67は、ナツト68および送りねじ69によって位置
が規制されている。送りねじ69はボールベアリング7
0を介してステージベース76に回転可能でかつ軸方向
には移動しないように支持されていて、送りねじ69は
カンプリング71ヲ介してステッピングモータ72に工
り回転できる構成となっている。
Furthermore, a positioning member 64 is fixed to the sample stage 62. Stop members 74 are fixed to the stage base 73 and provided on both sides of the positioning member 64. Furthermore, a total of four rolling wheels 65 are provided to sandwich the positioning member 64 and the stop member 74. The rolling wheel 65 is rotatably held by a holding member 67 via a needle cola bearing 66, and can perform friction transmission with the positioning member 64 and stop member 74 at the cylindrical surface and L, respectively, to convert rotation into linear motion. be. Cylindrical surface, L
The diameter of the positioning member 6 differs by 1 inch, and the positioning member 6
4 and the thickness of the stop member 74 are also different. On the other hand, the position of the holding member 67 is regulated by a nut 68 and a feed screw 69. The feed screw 69 is a ball bearing 7
The feed screw 69 is rotatably supported by the stage base 76 via the stage base 76 so as not to move in the axial direction.

次いて、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

まず、保持部材67の軸方向(第15図で左右方向)の
位置はナツト68お工び送りねじ69によって位置決め
され、その分解能は2μmである。
First, the position of the holding member 67 in the axial direction (horizontal direction in FIG. 15) is determined by a nut 68 and a feed screw 69, and its resolution is 2 μm.

保持部材67に保持された転動輪65は停止部材74と
摩擦伝達しうる関係にあり、保持部材が移動しなければ
回転せず、したがって、転動輪65と摩擦伝達関係にあ
る位置決め部材64も保持部材67が移動しなければ移
動しない。一方、ステッピングモータ72ヲ回転させ、
保持部材67ヲ軸方向に動かせば、転動輪65は停止部
材上を転がる。このとき、位置決め部材と接している部
分の円柱面の絶対速度は、円柱面りが円柱面りよりも1
%だけ直径が小さいため、保持部材67の移動速度の’
/100の速度となり、この速度が摩擦伝達により、位
置決め部材64へ伝えられ、さらに、試料ステージ62
の移動速度となる。この位置決め部材64.転動輪65
.保持部材67お裏び停止部材74は全体として差動式
歯車減速装@金成し、送りねじ69お工びナツト68に
よる変位’に’/looに縮小して試料ステージ62に
伝える動作を行う。試料ステージ62の位置決め分解能
は002μmとなる。
The rolling wheel 65 held by the holding member 67 is in a frictionally transmitting relationship with the stop member 74, and will not rotate unless the holding member moves. Therefore, the positioning member 64, which is in a frictionally transmitting relationship with the rolling wheel 65, is also held. If the member 67 does not move, it will not move. Meanwhile, the stepping motor 72 is rotated,
When the holding member 67 is moved in the axial direction, the rolling wheel 65 rolls on the stop member. At this time, the absolute speed of the cylindrical surface in contact with the positioning member is 1
Since the diameter is smaller by %, the moving speed of the holding member 67 is
/100, and this speed is transmitted to the positioning member 64 by frictional transmission, and further to the sample stage 62.
The moving speed is . This positioning member 64. Rolling wheel 65
.. The holding member 67 and the stop member 74 are made of a differential gear reduction gear as a whole, and the displacement by the feed screw 69 and nut 68 is reduced to '/loo' and transmitted to the sample stage 62. The positioning resolution of the sample stage 62 is 002 μm.

本実施例に工れば、前々々述の実施例の説明で示した工
うに、伝達要素の形状精度の高精度化および伝達面のあ
らさの低減ならびに接触面積の増加による平均化作用の
増加により高精度の減速を行える差動摩擦車減速装置を
、直接変位の縮小機構として用いているので、0.02
μmという高分解能を備えた試料ステージ位置決め装置
を実現できる効果がある。
If this embodiment is implemented, the shape accuracy of the transmission element will be increased, the roughness of the transmission surface will be reduced, and the averaging effect will be increased by increasing the contact area, as shown in the explanation of the embodiments mentioned before. A differential friction wheel reduction device that can achieve high-precision deceleration is used as a direct displacement reduction mechanism, so the
This has the effect of realizing a sample stage positioning device with a high resolution of μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次の効果がある。 According to the present invention, there are the following effects.

t 遊星輪、内輪の径は、内接するという条件を満足す
ればどのような直径でも減速機として成立するため、任
意の減速比が実現可能であるほか、例えば’/40,0
00といった減速効果の大きなものまで実現可能である
という効果がある。
t The diameter of the planetary ring and the inner ring can be any diameter as long as it satisfies the condition that they are inscribed, so any reduction ratio can be achieved, and for example '/40,0
This has the advantage that it is possible to achieve a large deceleration effect such as 0.00.

2、伝達面の形状が単純な円柱面であり、歯車と比較し
て高精度かつ滑らかに加工することが可能なため、減速
比の変動が少なく、位置決め時の誤差が0.02μm以
下と1桁以上高精度な試料ステージ位置決め装置を実現
できる効果がある。
2. The shape of the transmission surface is a simple cylindrical surface, which can be machined with higher precision and smoothness compared to gears, so there is less variation in the reduction ratio and the error during positioning is less than 0.02 μm. This has the effect of realizing a sample stage positioning device with an order of magnitude higher accuracy.

3 伝達面の接触面積が歯車減速装置と比較して10倍
以上も大きく、平均化効果も大きいことから、減速比の
変動が少なく、位置決め精度を高精度化した試料ステー
ジ位置決め装置全実現できる効果がある。
3. The contact area of the transmission surface is more than 10 times larger than that of a gear reduction gear, and the averaging effect is also large, so there is less variation in the reduction ratio and the sample stage positioning device achieves high positioning accuracy. There is.

4、 伝達機構内のバックラッシュあるいはしゅう動と
いった誤差要因が機構上全く存在しないため、試料ステ
ージの往復時の経路差が少ない高精度な試料ステージ位
置決め装置を実現できる効果がある。
4. Since there are no mechanical error factors such as backlash or sliding within the transmission mechanism, it is possible to realize a highly accurate sample stage positioning device with little path difference during reciprocating of the sample stage.

5、 モータの回転を高速・低速2系統の伝達経路で位
置決め部材(送りねじ等)へ伝えることができるため、
試料ステージの移動速度の高速化(100■/5ec)
と位置決め分解能の微細化(0,02μm)を同時に実
現できる効果がある。
5. Motor rotation can be transmitted to positioning members (feed screws, etc.) through two high-speed and low-speed transmission paths.
Faster movement speed of sample stage (100cm/5ec)
This has the effect of simultaneously achieving finer positioning resolution (0.02 μm).

6、 直線状の変位を高精度に縮小(1/、oo )す
る縮小機構としても用いることで、高分解能(0,02
μ77L)の試料ステージ位置決め装置を実現゛′でき
る効果がある。
6. High resolution (0,02
This has the effect of realizing a sample stage positioning device for µ77L).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料ステージ位置決め装置の概要を示す縦断面
図、第2図は差動式歯車減速機の構成を示す縦断面図、
第3図は差動式歯車減速機の原理図、第4図は内歯車の
歯面の干渉を示す図、第5図は内歯車の歯面の接触状況
を示す1第6図は歯車減速機の出力軸の瞬間的な回転速
度(角速度)全入力軸の回転角について示した線図、第
7図は歯車減速機の出力軸を固定した状態での入力軸の
回転角とトルクの関係を示す線図、第8図は本発明の第
1の実施例を示す差動摩擦車減速装置の構成を示す縦断
面図、第9図は第8図の軸に垂直な断面図、第10図は
同じく本発明の第1の実施例を示す差動摩擦車減速装置
の出力軸の瞬間的な回転速度(角速度)を入力車の回転
角について示した線図、第11図は同じく本発明の第1
の実施例を示す差動摩擦車減速装置の出力軸を固定した
状態での入力軸の回転角とトルクの関係を示す線図、第
12図は本発明の第2の実施例を示す差動摩擦車減速装
置の構成を示す縦断面図、第16図は第12図の軸に垂
直な断面図、第14図は本発明の第3の実施例を示す差
動摩擦車減速装置の構成を示す縦断面図、第15図は本
発明の第4の実施例を示す差動摩擦車減速装量全変位縮
小機構として用いた試料ステージ位置決め装置の概要を
示す縦断面図第16図は第15図のA−A断面図である
。 22・・・・・・・・・・・・・・・入力軸 23,2
4・・・・・・遊星輪25・・・・・・・・・・・・・
・・内輪(固定側)26・・・・・・・・・・・・・・
・内輪(可動側)27・・・・・・・・・・・・・・・
出力軸 28.29・・・・・・遊星輪30・・・・・
・・・・・・・・・・ニードルローラベアリング33・
・・・・・・・・・・・・・・入力軸 34.35・・
−・・遊星輪36・・・・・・・・・・・・・・・内輪
(固定側)38・・・・・・・・・・・・・・・内輪(
可動側)40・・・・・・・・・・・・・・・出力軸4
1・・・・・・・・・・・・・・・ニードルローラベア
リング44・・・・・・・・・・・・・・・入力軸 4
5,46・・・・・・遊星輪47・・・・・・・・・・
・・・・・内輪(入力側)48・・・・・・・・・・・
・・・・内輪(出力側)49・・・・・・・・・・・・
・・・ニードルローラベアリング50・・・・・・・・
・・・・・・・出力軸 52・川−・・・・・・フラン
ジ53・・・・・・・・・・・・・・・可撓板 54・
・・間・・・・・鋼環55・・・・・・・・・・・・・
・・摩擦環 56.58・曲・ソレノイド59・・・・
・・則・・…フランジ 6o…・・・・・・…可撓板6
1・・・・・・・・・・・・・・・鋼環64・・・・・
・・・・・・・・・・位置決め部材65・・・・・・・
・・・・・・・・転動輪66…………・・・ニードルロ
ーラベアリング67・・・・・・・・・・・・・・・保
持部材 74・・・・・・・・・・・・停止部財駕 2
 図 虱 3図 +9 〒4目 第 0図 人7:l軸日鉱鷹 第7固 車 8 図 2 イ 31ノー 猶9図 児10図 第11図 卑 1z図 第13叱
Fig. 1 is a longitudinal cross-sectional view showing an overview of the sample stage positioning device, Fig. 2 is a longitudinal cross-sectional view showing the configuration of the differential gear reducer,
Figure 3 is a diagram of the principle of a differential gear reducer, Figure 4 is a diagram showing the interference between the tooth surfaces of the internal gear, and Figure 5 is a diagram showing the contact situation of the tooth surfaces of the internal gear.1 Figure 6 is the gear reduction A diagram showing the instantaneous rotation speed (angular velocity) of the output shaft of the machine and the rotation angle of all input shafts. Figure 7 shows the relationship between the rotation angle and torque of the input shaft when the output shaft of the gear reducer is fixed. FIG. 8 is a longitudinal sectional view showing the configuration of a differential friction wheel speed reduction device according to the first embodiment of the present invention, FIG. 9 is a sectional view perpendicular to the axis of FIG. 8, and FIG. 10 11 is a diagram showing the instantaneous rotational speed (angular velocity) of the output shaft of the differential friction wheel reduction device according to the first embodiment of the present invention with respect to the rotation angle of the input wheel. FIG. 1
FIG. 12 is a diagram showing the relationship between the rotation angle of the input shaft and the torque when the output shaft of the differential friction wheel speed reduction device is fixed, and FIG. 12 shows the differential friction wheel according to the second embodiment of the present invention. FIG. 16 is a vertical cross-sectional view showing the configuration of the speed reduction device, FIG. 16 is a cross-sectional view perpendicular to the axis of FIG. 15 is a vertical cross-sectional view showing an outline of a sample stage positioning device used as a differential friction wheel reduction gear total displacement reduction mechanism according to a fourth embodiment of the present invention. FIG. It is an A sectional view. 22・・・・・・・・・・・・Input shaft 23,2
4... Planet wheel 25...
・・Inner ring (fixed side) 26・・・・・・・・・・・・・・
・Inner ring (movable side) 27・・・・・・・・・・・・・・・
Output shaft 28.29... Planet wheel 30...
・・・・・・・・・Needle roller bearing 33・
・・・・・・・・・・・・・・・Input shaft 34.35・・
−・・Planet ring 36・・・・・・・・・・・・・・・Inner ring (fixed side) 38・・・・・・・・・・・・・・・Inner ring (
Movable side) 40・・・・・・・・・・・・Output shaft 4
1・・・・・・・・・・・・・・・Needle roller bearing 44・・・・・・・・・・・・・・・Input shaft 4
5,46... Planet wheel 47...
...Inner ring (input side) 48...
...Inner ring (output side) 49...
...Needle roller bearing 50...
・・・・・・Output shaft 52・River−・・・・・・Flange 53・・・・・・・・・・・・Flexible plate 54・
・・Between・・Steel ring 55・・・・・・・・・・・・・
・・Friction ring 56.58・Curved・Solenoid 59・・・・
...Rules...Flange 6o...Flexible plate 6
1... Steel ring 64...
・・・・・・・・・Positioning member 65・・・・・・・
......Rolling wheel 66...Needle roller bearing 67...Holding member 74...・Suspended department property 2
Figure 3 + 9 Figure 4 Figure 0 Person 7: l Axis Nikko Taka No. 7 Hard Car 8 Figure 2

Claims (1)

【特許請求の範囲】 1、 試料ステージとガイド部材と位置決め機構工り成
る試料ステージ位置決め装置において円柱面を備えた部
材を同軸上に2個配置し、円柱面を持つ回転部材をこの
円柱面を備えた部材の両方と同時に接して遊星運動を行
い、かつ、回転を摩擦伝達し得る工うに設け、さらに、
入力軸の回転を回転部材の公転として伝達する部材を備
えていて、回転部材の円柱面を備えた部材相方との接触
点における絶対速度の差が円柱面を備えた2個の部材が
備えか訃朴が1峡→円柱面回転の周速差として摩擦伝達
される差動摩擦車減速装置を、一方の円柱面を備えた部
材を出力軸と接続した上で他らの円柱面を備えた部材を
固定して位置決め機構内に設けたことを特徴とする差動
摩擦車減速装置を用いた試料ステージ位置決め装置0 2、試料ステージとガイド部材と位置決め機構工り成る
試料ステージ位置決め装置において円柱面を備えた部材
を同一軸上に2個配置し円柱面を持つ回転部材をこの円
柱面を備えた部材の両方と同時に接して遊星運動を行い
、かつ、回転を摩擦伝達し得るように設け、さらに、入
力軸の回転を回転部材の公転として伝達する部材を備え
ていて、回転部材の円柱面を備えた部材相方との接触点
における絶対速度の差が円柱面を備えた2個の部材が備
える円柱面回転の周速差として摩擦伝達される差動摩擦
車減速装置を、一方の円柱面を備えた部材を出力軸と接
続した上で、他方の円柱面を備えた部材を回転可能と固
定の状態に切り換える手段と、少なくとも以下に記す手
段の一つを合せて付加して、位置決め機構内に設けたこ
とを特徴とする差動摩擦車減速装置を用いた試料ステー
ジ位置決め装置。 (1) 入力軸または入力軸の回転を回転部材の公転と
して伝達する部材9回転可能と固定の状態に切り換え可
能な円柱面を備えた部材お工び出力軸あるいは出力軸に
接続された円柱面を備える部材のうちの2者を一時的に
接続して等速で回転させる手段 (2) 円柱面を備える部材の少なくともどちらか一方
と回転部材との間の転勤を一時的に固定する手段 (3) 入力軸の回転全回転部材の公転に伝達する部材
と回転部材との間の回転全一時的に固定する手段 3、 試料ステージとガイド部材と位置決め機構より成
る試料ステージ位置決め装置において直線状の停止部材
および移動部材を平行に配置し、さらに、この停止部材
および移動部材と直径が異なる部分で同時に接し転勤可
能な転動部材を停止部材お工び移動部材の直線移動と転
動部材の回転を摩擦伝達可能に設け、転動部材を転動さ
せたとき生ずる転動部材が停止部材と移動部材に接して
いる部分の絶対速度の差が、停止部材と移動部材の速度
差として摩擦伝達される差動摩擦車減速装置を、停止部
材をステージベースに固定し、移動部材を試料ステージ
に接続して設けたことを特徴とする差動摩擦車減速装置
ヲ用いた試料ステージ位置決め装置。
[Claims] 1. In a sample stage positioning device consisting of a sample stage, a guide member, and a positioning mechanism, two members each having a cylindrical surface are arranged coaxially, and a rotating member having a cylindrical surface is connected to the cylindrical surface. Provided in a device capable of simultaneously contacting both of the provided members to perform planetary motion and frictionally transmit rotation;
It is equipped with a member that transmits the rotation of the input shaft as the revolution of the rotating member, and the difference in absolute speed at the point of contact between the rotating member and the member having a cylindrical surface is determined by the difference between the two members each having a cylindrical surface. A differential friction wheel speed reduction device in which friction is transmitted as a circumferential speed difference between the rotation of a cylindrical surface and a member with one cylindrical surface is connected to the output shaft, and then the member with the other cylindrical surface is connected to the output shaft. A sample stage positioning device using a differential friction wheel speed reducer characterized by being fixed and provided in a positioning mechanism 2, A sample stage positioning device comprising a sample stage, a guide member, and a positioning mechanism, which has a cylindrical surface. A rotary member having a cylindrical surface is arranged on the same axis, and a rotating member having a cylindrical surface is simultaneously in contact with both of the members having a cylindrical surface to perform planetary motion and frictionally transmit rotation, and further, A cylindrical column comprising a member that transmits the rotation of an input shaft as revolution of the rotating member, and the difference in absolute speed at the point of contact between the rotating member and the member having a cylindrical surface is the difference between the two members each having a cylindrical surface. In a differential friction wheel speed reduction device where friction is transmitted as a circumferential speed difference between surface rotations, one member with a cylindrical surface is connected to the output shaft, and the other member with a cylindrical surface is rotatable and fixed. 1. A sample stage positioning device using a differential friction wheel speed reduction device, characterized in that the positioning mechanism is provided with a means for switching between the two and at least one of the following means. (1) A member that transmits the input shaft or the rotation of the input shaft as the revolution of the rotating member 9 A member that has a cylindrical surface that can be switched between rotatable and fixed states; an output shaft or a cylindrical surface connected to the output shaft; Means (2) for temporarily connecting two of the members having a cylindrical surface and rotating them at a constant speed; Means for temporarily fixing the rotation between at least one of the members having a cylindrical surface and the rotating member ( 3) Means for temporarily fixing the entire rotation of the input shaft and the rotation between the rotating member and the member that transmits the revolution of the rotating member. A stopping member and a moving member are arranged in parallel, and a rolling member that is movable and in contact with the stopping member and the moving member at the same time at different diameters is constructed as a stopping member to achieve linear movement of the moving member and rotation of the rolling member. is provided so that frictional transmission is possible, and the difference in absolute speed between the parts of the rolling member that is in contact with the stopping member and the moving member, which occurs when the rolling member is rolled, is frictionally transmitted as a speed difference between the stopping member and the moving member. 1. A sample stage positioning device using a differential friction wheel reduction device, characterized in that the differential friction wheel reduction device is provided with a stopping member fixed to a stage base and a moving member connected to a sample stage.
JP58192402A 1983-10-17 1983-10-17 Sample stage positioning device using differential friction-gear reduction device Pending JPS6085521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192402A JPS6085521A (en) 1983-10-17 1983-10-17 Sample stage positioning device using differential friction-gear reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192402A JPS6085521A (en) 1983-10-17 1983-10-17 Sample stage positioning device using differential friction-gear reduction device

Publications (1)

Publication Number Publication Date
JPS6085521A true JPS6085521A (en) 1985-05-15

Family

ID=16290714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192402A Pending JPS6085521A (en) 1983-10-17 1983-10-17 Sample stage positioning device using differential friction-gear reduction device

Country Status (1)

Country Link
JP (1) JPS6085521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024637A (en) * 1989-05-24 1991-06-18 Louis Guichard Automatic mechanical transmission apparatus with continuous variation of the transmission ratio from an infinite ratio up to a ratio less then 1/1
US8313713B2 (en) 2004-06-17 2012-11-20 Ortho-Clinical Diagnostics, Inc. Stabilizing a cuvette during measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024637A (en) * 1989-05-24 1991-06-18 Louis Guichard Automatic mechanical transmission apparatus with continuous variation of the transmission ratio from an infinite ratio up to a ratio less then 1/1
US8313713B2 (en) 2004-06-17 2012-11-20 Ortho-Clinical Diagnostics, Inc. Stabilizing a cuvette during measurement

Similar Documents

Publication Publication Date Title
JPS622064A (en) Differential reduction gear mechanism of rolling ball type
JP2719921B2 (en) Tooth profile of face gear, method of generating the tooth profile, and differential reduction gear using the tooth profile
US3597990A (en) Zero-lash right-angle movement
JPH04272552A (en) Differential reduction gear of rolling ball type
JPS60256643A (en) Speed reducer
US20190331199A1 (en) Multi-crankshaft cycloidal pin wheel reducer
WO1992009820A1 (en) Roller bearing clutch
JPS6085521A (en) Sample stage positioning device using differential friction-gear reduction device
JP2011141035A (en) Planetary gear type reduction gear with magnetic torque limiter
JPH0553979B2 (en)
JP2001182798A (en) Feed screw unit and feed device provided therewith
JP4561133B2 (en) Friction transmission
JPH02173452A (en) Rolling differential screw feed mechanism
JPS62220748A (en) Controlling transmission
JPS58156748A (en) Speed reducer with anti-backlash bearing
JP3220154U6 (en) Multi Crankshaft Cycloid Pin Gear Reducer
JPS61117043A (en) High-precision feeding apparatus using feed rod
JPH044347A (en) Planetary roller type speed reducer
JP2003224091A (en) Chemical mechanical polishing equipment
JPS60222640A (en) Planetary gear reduction mechanism
JPH022659B2 (en)
JPH0241839A (en) Spindle mechanism for accelerator utilizing steel ball
JP2863529B2 (en) Rolling ball type transmission
JPS63167167A (en) Rolling ball type differential transmission mechanism
JPH11315893A (en) Coriolis motion gear device and actuator