JPS608418A - Intake-air temperature regulating device in internal-combustion engine - Google Patents

Intake-air temperature regulating device in internal-combustion engine

Info

Publication number
JPS608418A
JPS608418A JP58116610A JP11661083A JPS608418A JP S608418 A JPS608418 A JP S608418A JP 58116610 A JP58116610 A JP 58116610A JP 11661083 A JP11661083 A JP 11661083A JP S608418 A JPS608418 A JP S608418A
Authority
JP
Japan
Prior art keywords
intake
intake air
passage
cooling
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58116610A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58116610A priority Critical patent/JPS608418A/en
Publication of JPS608418A publication Critical patent/JPS608418A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enhance the output characteristics of an engine, by increasing the opening degree of a control valve for a cooling passage upon high engine load operation initiating supercharging operation. CONSTITUTION:When the supercharged pressure is increased by the operation of an intake-air blower 2 so that the intake-air pressure is changed into its positive value from its negative value, the control voltage of a controller 61 is discharged to the ground, and therefore, a control valve 36 full closes a bypass passage 32 so that all air is introduced into a cooling air passages 34. In the case of that the intake-air pressure is negative, the control valve 36 reciprocally adjusts the flow ratio of intake-air which is branched between the bypass passage 32 (heated by a heat-exchanger 33) and the cooling passage 34 in accordance with the control voltage of the controller 61.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の吸入空気温度調整装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an intake air temperature regulating device for an internal combustion engine.

(実施例) ターボチャージャやその他の給気ブロアなど過給手段を
備えた内燃機関では、過給の際の吸気温度上昇により充
填高率が低下したり、火花点火機関ではノッキングを誘
発したりする問題点が出やすいため、吸気の温度を機関
運転条件に応じて可変制御する吸入空気温度調整装置と
いうものが考えられている。
(Example) In an internal combustion engine equipped with a supercharging means such as a turbocharger or other charge air blower, a rise in intake air temperature during supercharging may reduce the filling ratio, and in a spark ignition engine, this may induce knocking. Because problems tend to occur, an intake air temperature adjustment device that variably controls the intake air temperature according to engine operating conditions has been considered.

従来吸入空気温度調整装置としては、例えば第1図に示
すようなものが、本出願人により実願昭56−4677
号として提案されている。
As a conventional intake air temperature regulating device, for example, the one shown in FIG.
It has been proposed as a number.

第1図で、6はエンジン、1はターボチャージャ、7は
エンジン排ガスにより駆動されるタービン、2はエアク
リーナ8から導入された給気を過給する給気ブロアであ
る。ただし給気ブロア2下流の吸気通路5にスロットル
バルブ9が介装されている。
In FIG. 1, 6 is an engine, 1 is a turbocharger, 7 is a turbine driven by engine exhaust gas, and 2 is an air supply blower that supercharges air introduced from an air cleaner 8. However, a throttle valve 9 is interposed in the intake passage 5 downstream of the air supply blower 2.

1oは単室冷房用の冷却器であり、車内空気から吸熱し
、気化したエバポレータ11内の冷媒(例えばフレオン
)は、エンジン6によりベルト駆動されるクーラコンプ
レッサ12に導入され、圧縮、液化される。そして、コ
ンデン1J13を通り冷却ファン14によって冷却され
た後、いったんリキッドタンク15に溜められ、もとの
冷却器10に循環するようになっている。ただし、液状
の冷媒は絞弁16を通る際、気液化される。
1o is a cooler for cooling a single room, and the refrigerant (for example, Freon) in the evaporator 11 that absorbs heat from the air inside the car and vaporizes is introduced into a cooler compressor 12 driven by a belt by the engine 6, where it is compressed and liquefied. . After passing through the condenser 1J13 and being cooled by the cooling fan 14, the liquid is temporarily stored in the liquid tank 15 and circulated back to the cooler 10. However, when the liquid refrigerant passes through the throttle valve 16, it is vaporized and liquefied.

この単室冷房用に使用される冷媒を、での循環回路17
の途中に配置されたリキッドタンク15下流から取出し
て吸気ブロア2で加圧される前の給気を冷却するように
、前記冷却器10と並列に給気冷却用の冷却器18が設
けられ、給気ブロア2上流の例えばエアクリーナ8近傍
の吸気通路5に配置される。
The refrigerant used for cooling this single room is circulated in the circulation circuit 17.
A cooler 18 for cooling the supply air is provided in parallel with the cooler 10 so as to cool the supply air taken out from the downstream side of the liquid tank 15 disposed in the middle of the liquid tank 15 and before being pressurized by the intake blower 2. It is arranged in the intake passage 5 upstream of the supply air blower 2, for example, near the air cleaner 8.

この給気冷却用の冷却器18は、車室冷房用の冷却器1
0とほぼ同様に構成され、蛇行状に形成されたエバポレ
ータ11Aと絞り弁16A等を備え、エアクリーナ8か
ら導入される吸気を効率良く冷却するように形成されて
いる。
This cooler 18 for cooling air supply is the cooler 1 for cooling the passenger compartment.
The air conditioner is configured in substantially the same manner as the air cleaner 8, and includes an evaporator 11A formed in a meandering shape, a throttle valve 16A, etc., and is configured to efficiently cool the intake air introduced from the air cleaner 8.

そして、この給気冷却用の冷却器18に、前記リキッド
タンク15からの冷媒をエンジン負荷に応じて選択的に
導入するように、その入口部19に電磁弁20が設置さ
れると共に、この電磁弁20を開閉制御するためのコン
トロールモジュール21が設けられる。
A solenoid valve 20 is installed at the inlet portion 19 of the air supply cooling cooler 18 so as to selectively introduce the refrigerant from the liquid tank 15 according to the engine load. A control module 21 for controlling opening and closing of the valve 20 is provided.

コントロールモジュール21は、エンジン負荷を検出す
る手段として例えばスロワ1へルバルブ9の開度を検出
りるスロットルスイッチ22等からの信号によりスロッ
トルバルブ9の開度が所定開度以上になると、前記電磁
弁20を聞くように制御すると共に、電磁弁20が開状
態のときに、前記リキッドタンク15内の冷媒液量が減
少1°るか、またはその液圧が所定値以下になると、こ
れを検知してクーラコンプレッザ12を作動させ、冷媒
循環を促進させるようにコントロールしている。
When the opening of the throttle valve 9 exceeds a predetermined opening according to a signal from a throttle switch 22 or the like that detects the opening of the throttle valve 9 to the thrower 1 as a means for detecting the engine load, the control module 21 detects the opening of the solenoid valve 9. 20, and when the solenoid valve 20 is in the open state, if the amount of refrigerant in the liquid tank 15 decreases by 1° or the liquid pressure becomes less than a predetermined value, this is detected. The cooler compressor 12 is operated to promote refrigerant circulation.

しかしながら、上記構成によると、熱容聞の大きいエバ
ポレータ11Aにスロットルバルブ9の開度に応じて冷
媒を導入する構成のため、実際に吸入空気温度が上昇し
てから冷却器18が吸気冷却を開始するのでの応答性が
悪く、適正な渇a調整が難しいという問題があった。
However, according to the above configuration, since the refrigerant is introduced into the evaporator 11A, which has a large heat capacity, according to the opening degree of the throttle valve 9, the cooler 18 starts cooling the intake air after the intake air temperature actually rises. There was a problem in that the responsiveness was poor and it was difficult to properly adjust thirst.

(発明の目的) 本発明はこのような問題点に着目してなされたもので、
機関運転条件に対して敏速に吸入空気温度を調整するこ
とを目的とする。
(Object of the invention) The present invention has been made by focusing on such problems.
The purpose is to quickly adjust the intake air temperature according to engine operating conditions.

(発明の414成) このために本発明は、機関吸気を過圧する過給手段を備
えた内燃機関において、機関吸気通路の途中に、吸気冷
却用熱交換器を介装した冷却用通路と、この冷却用通路
を迂回するバイパス通路とを形成するとともに、前記冷
却用通路とバイパス通路の吸気流量割合を制御する制御
バルブを設け、基本的には前記熱交換器を常時作動させ
る一方、機関の吸気温度ないし圧力等の機関運転条件を
代表する信号値にもとづき、吸気冷却の要求の小さい条
件下ではバイパス通路への吸気流分を増やすように、ま
た吸気冷却が必要な条件下では冷却用通路への吸気流分
を増やすように前記制御バルブを駆動することにより吸
気温度を適正値に制御するように図った。
(414th feature of the invention) For this purpose, the present invention provides, in an internal combustion engine equipped with a supercharging means for overpressurizing engine intake air, a cooling passage in which an intake air cooling heat exchanger is interposed in the middle of the engine intake passage; A control valve is provided to form a bypass passage that detours around this cooling passage and to control the ratio of intake air flow rates between the cooling passage and the bypass passage. Basically, while the heat exchanger is constantly operated, the engine Based on signal values representative of engine operating conditions such as intake air temperature or pressure, the intake air flow to the bypass passage is increased under conditions where intake air cooling is not required, and the intake air flow to the bypass passage is increased under conditions where intake air cooling is required. The intake air temperature is controlled to an appropriate value by driving the control valve to increase the intake air flow to the engine.

(実施例) 以下、添付図面にもとづき、本発明の実施例について説
明する。なお、第1図に示す従来例と同一構成部には同
一符号を付す。
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings. Note that the same components as those in the conventional example shown in FIG. 1 are given the same reference numerals.

第2図に示すように、ターボチャージャ1の給気ブロア
2より下流の吸気通路31の途中にエバポレータ(熱交
換器)35を介装して冷kJ用通路34とする一方、こ
のエバポレータ35を迂回するバイパス通路32を形成
する。両通路32,34の分岐点には制御バルブ36を
設けて両通路32.34の吸気流量を相反的に加減する
ように図る。(この制御バルブ36の開度制御について
後述する。) 冷却用通路34に介装したエバポレータ35は、この場
合車両の車室冷房用のエバポレータ11と並列に、冷却
装置57の冷媒用通路55に接続づる。なお、この車掌
冷房用冷却装置57は冷媒を圧縮、液化するコンプレッ
サ12と冷却ファン14を備えたコンデンサ13とリキ
ッドタンク15とで構成される周知のものである。また
エバポレータ11に向けて冷媒を気液化する絞弁(膨張
弁)16を設【プる。
As shown in FIG. 2, an evaporator (heat exchanger) 35 is interposed in the intake passage 31 downstream of the air supply blower 2 of the turbocharger 1 to form a cold kJ passage 34. A bypass passage 32 is formed. A control valve 36 is provided at the branch point of both passages 32, 34 to control the intake flow rate of both passages 32, 34 reciprocally. (The opening degree control of this control valve 36 will be described later.) The evaporator 35 installed in the cooling passage 34 is connected to the refrigerant passage 55 of the cooling device 57 in parallel with the evaporator 11 for cooling the passenger compartment of the vehicle. Connection zuru. The conductor cooling device 57 is a well-known device that includes a compressor 12 that compresses and liquefies a refrigerant, a condenser 13 equipped with a cooling fan 14, and a liquid tank 15. Further, a throttle valve (expansion valve) 16 is provided toward the evaporator 11 to vaporize the refrigerant.

上記冷却器@57は基本的には常時作動させて吸気冷却
用エバポレータ35を常に冷却状態に置くようにする。
Basically, the cooler @57 is always operated so that the intake air cooling evaporator 35 is always kept in a cooling state.

ただし、寒冷時など環境条件ににつではその作動を停止
するように図ってもよい。
However, the operation may be stopped under environmental conditions such as when it is cold.

一方、バイパス通路32には、この実施例では熱交換器
33を介装し、この熱交換器33は加熱装置51の熱交
換器45とエンジン冷却水通路72とに循環回路47に
より連通する。冷却水通路72と熱交換器45を連通す
る回路47の途中にはエンジン冷却水を導入するポンプ
46を介装する。なお、70はラジェータ、71はその
冷却ファンである。
On the other hand, in this embodiment, a heat exchanger 33 is interposed in the bypass passage 32, and the heat exchanger 33 communicates with the heat exchanger 45 of the heating device 51 and the engine cooling water passage 72 through a circulation circuit 47. A pump 46 for introducing engine cooling water is interposed in the circuit 47 that communicates the cooling water passage 72 with the heat exchanger 45. Note that 70 is a radiator, and 71 is a cooling fan thereof.

ターボヂト−ジャ1の排気タービン7下流に位置する排
気触媒38のさらに下流の排気通路73は切換バルブ3
9を設(プ、この切換バルブ39をバイパスするように
加熱装置51を配設する。加熱装置51内←は熱交換器
45を介装し、この熱交換器45に排気触媒38を通過
後の排気ガスを導く。
The exhaust passage 73 further downstream of the exhaust catalyst 38 located downstream of the exhaust turbine 7 of the turbocharger 1 is connected to the switching valve 3.
9 is installed, and a heating device 51 is arranged so as to bypass this switching valve 39. A heat exchanger 45 is interposed inside the heating device 51, and the heat exchanger 45 is provided with a heat exchanger 45 after passing through the exhaust catalyst 38. directs exhaust gases.

加熱装置51内には上記熱交換器45の上流に燃焼装置
40を介装する。この燃焼装置40は燃料噛射弁41と
燃焼用空気を供給するブロア42と酸化触媒43とその
予熱ヒータ44とからなる。
A combustion device 40 is installed in the heating device 51 upstream of the heat exchanger 45 . This combustion device 40 includes a fuel injection valve 41, a blower 42 that supplies combustion air, an oxidation catalyst 43, and a preheater 44 for the oxidation catalyst 43.

制御バルブ36と切換バルブ39および燃焼装置40の
作動はコントローラ61等からなる制ti11系統によ
り制御する。
The operations of the control valve 36, the switching valve 39, and the combustion device 40 are controlled by a control system 11 including a controller 61 and the like.

この場合、この制御系統は、冷却用通路34どバイパス
通路32の合流点の吸気温(資)を感知する吸気温セン
サ60と、制御バルブ36上流の吸気圧を感知する吸気
圧センサ58と、循環回路47の熱交換器33より下流
の触W(エンジン冷却水)温度を感知する水温センサ5
9など、機関運転条件を検出づる手段と連係して前記作
動制御を行なう。
In this case, this control system includes an intake temperature sensor 60 that senses the intake air temperature at the confluence of the cooling passage 34 and the bypass passage 32, an intake pressure sensor 58 that senses the intake air pressure upstream of the control valve 36, A water temperature sensor 5 that senses the temperature of engine cooling water downstream of the heat exchanger 33 in the circulation circuit 47
The operation control is performed in conjunction with a means for detecting engine operating conditions, such as 9.

第3図にこの制御系統の一例を示す。これについて説明
すると、関数発生器81は水温センサ59からの水温信
号aを入力して、水温が所定値(例えば90℃)以上の
とき水温に比例し直線的に減少するとともに所定値以下
のとき一定となる設定信号(〕を出力する。差動増幅器
82はこの設定信)3 bと吸気温センサ60からの信
0Cとを入力して両者の差に比例した制御電圧dを出力
する。
FIG. 3 shows an example of this control system. To explain this, the function generator 81 inputs the water temperature signal a from the water temperature sensor 59, and when the water temperature is above a predetermined value (for example, 90°C), it decreases linearly in proportion to the water temperature, and when it is below a predetermined value, it decreases linearly. A constant setting signal () is outputted. The differential amplifier 82 inputs this setting signal 3b and the signal 0C from the intake air temperature sensor 60, and outputs a control voltage d proportional to the difference between the two.

比較器83は吸気圧センサ58からの信号eを入力して
吸気圧が正圧のときONとなりトランジスタ84に信号
fを出力して制tlII電圧dをアースηる。
The comparator 83 inputs the signal e from the intake pressure sensor 58 and turns ON when the intake pressure is positive, outputting a signal f to the transistor 84 and grounding the control tlII voltage d.

比較器85は水温信号aを入力して水温が所定値(例え
ば80℃)以下のときONとなり信号qを出力づ°る。
A comparator 85 inputs the water temperature signal a and turns ON when the water temperature is below a predetermined value (for example, 80° C.) and outputs a signal q.

切換バルブ39はこの信号Qにもとづいて開閉する。比
較器86は水温信号aを入力して水温が所定1(例えば
60℃)以下のときONとなり信号りを出力する。加算
器87は上記信号9と信号りが共にONとなったときに
ONとなり信Q iを出力する。燃焼機40はこの信号
iにもとづいて作動する。
The switching valve 39 opens and closes based on this signal Q. The comparator 86 inputs the water temperature signal a and turns ON when the water temperature is below a predetermined value (for example, 60° C.) and outputs a signal. The adder 87 turns on when both the signal 9 and the signal 1 turn on, and outputs the signal Qi. The combustor 40 operates based on this signal i.

次に作用について説明する。Next, the effect will be explained.

給気ブロア2の作動で過給圧が増大して吸気圧が負圧か
ら正圧に、変わるとコントローラ61の制御電圧dがア
ースに流れて制御バルブ36はバイパス通路32を全閉
し、全吸入空気を冷却用通路34に導く。これにより吸
入空気は冷媒が循環して冷却状態にあるエバポレータ3
5により速やかに冷却される。
When the boost pressure increases due to the operation of the air supply blower 2 and the intake pressure changes from negative pressure to positive pressure, the control voltage d of the controller 61 flows to the ground, and the control valve 36 completely closes the bypass passage 32 and completely closes the bypass passage 32. The intake air is guided to the cooling passage 34. As a result, the intake air is cooled by the refrigerant circulating in the evaporator 3.
5, it is quickly cooled down.

これに対して、吸気圧が負圧の場合、制御バルブ3Gは
コン1〜ローラ61の制御電圧dにもとづいてバイパス
通路32と冷却用通路34とに分岐する吸気のイれぞれ
の流量割合を相反的に調節する。バイパス通路32を通
過する吸気は媒体くエンジン冷却水)が循環する熱交換
器33により加熱されている。一方冷却用通路34を通
過する吸気は媒体が循環するエバポレータ35により冷
却されている。上記それぞれの吸気は吸気マニホールド
4の上流で合流して混合し、制御バルブ36の開度に応
じた温度に調整される。
On the other hand, when the intake pressure is negative, the control valve 3G controls the flow rate of each of the intake air branched into the bypass passage 32 and the cooling passage 34 based on the control voltage d of the controller 1 to the roller 61. reciprocally adjust. The intake air passing through the bypass passage 32 is heated by a heat exchanger 33 in which a medium (engine cooling water) is circulated. On the other hand, the intake air passing through the cooling passage 34 is cooled by an evaporator 35 in which a medium circulates. The above-mentioned respective intake airs meet and mix upstream of the intake manifold 4, and the temperature is adjusted according to the opening degree of the control valve 36.

つまり、最終的にエンジン6に供給される吸気の温度を
制御バルブ36の冷却用通路34またはバイパス通路3
2に対する相反的な開度制御により調整し、吸気温度を
相対的に高める必要のある条件下では冷却用通路34に
対するバイパス通路32の開度を増して(全吸気中の低
温吸気流量の割合を高温吸気流量よりも減らして)、所
留の吸気温度を得るのである。
In other words, the temperature of the intake air finally supplied to the engine 6 is controlled by the cooling passage 34 of the control valve 36 or the bypass passage 3.
2, and under conditions where it is necessary to relatively increase the intake air temperature, the opening of the bypass passage 32 relative to the cooling passage 34 is increased (the proportion of the low-temperature intake air flow rate in the total intake air is increased). (lower than the high-temperature intake air flow rate) to obtain the stationary intake air temperature.

」−記エンジン6に供給する吸気温度、つまり制御バル
ブ36の開度は、エンジン6の特性や使用目的に応じて
予め運転状態との関係で適正値となるJ:うに制御系統
を設定しておくわけであるが、一般には上述したように
して、吸気温度が著しく1臂する過給時に冷却用通路3
4を全開して積極的に吸気温度を低下させ、それ以外の
部分負荷時には制御バルブ36のバイパス通路32側へ
の開度を増ずことにより、過冷却とならない程度に吸気
温度を維持するように図れば足りる。
- The intake air temperature supplied to the engine 6, that is, the opening degree of the control valve 36, is set to an appropriate value in advance in relation to the operating state according to the characteristics of the engine 6 and the purpose of use. Generally speaking, as mentioned above, the cooling passage 3 is closed during supercharging when the intake air temperature is extremely high.
4 is fully opened to actively lower the intake air temperature, and at other partial loads, the opening degree of the control valve 36 to the bypass passage 32 side is increased to maintain the intake air temperature to the extent that supercooling does not occur. It is enough if you aim for it.

ところで、熱交換器33を循環する媒体温度が低い場合
、コントローラ61の出力する信号gにもとづく切換バ
ルブ39の作動によりエンジン排気ガスを加熱装置51
に導き、熱交換器33を通過Jる媒体が加熱されるので
あるが、エンジン6の低温始動時等、更に低い所定値を
越えて媒体温度が低下したときは、コントローラ61の
信号iにもとづき燃焼器40が作動して加熱装置51の
熱交換器45に燃焼カスを噴射し、媒体湿度を上昇させ
る。
By the way, when the temperature of the medium circulating in the heat exchanger 33 is low, the engine exhaust gas is transferred to the heating device 51 by operating the switching valve 39 based on the signal g output from the controller 61.
The medium passing through the heat exchanger 33 is heated. However, when the medium temperature drops beyond a lower predetermined value, such as when starting the engine 6 at a low temperature, the The combustor 40 operates and injects combustion residue into the heat exchanger 45 of the heating device 51, increasing the humidity of the medium.

このため、機関冷機始動性を向上し、また暖機時間を短
縮することができる。
Therefore, engine cold startability can be improved and warm-up time can be shortened.

第4図に示す他の実施例においては、燃焼装置40をバ
イパス通路32に設りる。
In another embodiment shown in FIG. 4, a combustion device 40 is installed in the bypass passage 32.

燃焼装置40は燃料噴射弁41とこれにエアクリーナ8
から燃焼用空気を導入する通路75とからなる。
The combustion device 40 includes a fuel injection valve 41 and an air cleaner 8.
and a passage 75 through which combustion air is introduced.

上記構成にJ:れば、エンジン6の吸入負圧を利用して
燃焼用空気を供給するため、構造が比較的簡単になり、
またバイパス通路32に直接燃焼ガスを導入するため、
熱交換率が高く、したがって暖機時間を更に短縮するこ
とができる。
If the above configuration is adopted, combustion air is supplied using the intake negative pressure of the engine 6, so the structure is relatively simple.
In addition, in order to introduce combustion gas directly into the bypass passage 32,
The heat exchange rate is high, so the warm-up time can be further shortened.

第5図に示ずさらに他の実施例はバイパス通路32の途
中に排気触媒38を覆設する熱交換部76を設りる一方
、排気マニホールド37には燃料噴射弁1111と燃焼
用空気を供給するブロア42とからなる燃焼器40を設
けた例である。バイパス通路32の熱交換部76より下
流には、排気触媒38により加熱された吸入空気の温度
を感知するセンサ59を備え、コントローラ61はこの
センサ59からの信号を入力して吸入空気温度が所定値
より低い場合に燃焼器40を作動させる。これにより排
気マニホールド37内でつくられる燃焼ガスは排気ター
ビン7を経て排気触媒38を過熱し、排気触媒38のま
わりを流れる吸気を過熱する。
In yet another embodiment not shown in FIG. 5, a heat exchanger 76 is provided in the middle of the bypass passage 32 to cover the exhaust catalyst 38, while the exhaust manifold 37 is supplied with fuel injection valves 1111 and combustion air. This is an example in which a combustor 40 consisting of a blower 42 is provided. A sensor 59 that detects the temperature of the intake air heated by the exhaust catalyst 38 is provided downstream of the heat exchange section 76 of the bypass passage 32, and the controller 61 inputs the signal from this sensor 59 to adjust the intake air temperature to a predetermined value. If the value is lower than the value, the combustor 40 is activated. The combustion gas produced in the exhaust manifold 37 passes through the exhaust turbine 7 and superheats the exhaust catalyst 38, thereby superheating the intake air flowing around the exhaust catalyst 38.

上記構成によれば、排気系統を燃焼器40の一部として
利用できるため、構造の簡素化が図れ、また燃焼器40
を発熱量の大きいものとすることが可能となる。
According to the above configuration, since the exhaust system can be used as a part of the combustor 40, the structure can be simplified, and the exhaust system can be used as a part of the combustor 40.
It becomes possible to make the heat generation value large.

(発明の効果) 以−Lを要覆るに、本発明によれば、原則として常時作
動する冷却用熱交換器を介装した冷却用通路とこれを迂
回するバイパス通路とを機関吸気通路の途中に形成し、
各通路の開度を制御バルブを介して機関運転条件に応じ
て相反的に増減し、殊に過給が開始される高負荷時には
冷却用通路側への制御バルブ開度を増して吸気を積極的
かつ速やかに冷却するようにしたので、加速時等の過渡
的条件下でも常に適正温度の吸気を機関に供給でき、従
って出力性能および火花点火機関における耐ノツキング
性を確実に向上できるという効果が生じる。
(Effects of the Invention) In summary, according to the present invention, in principle, a cooling passage in which a cooling heat exchanger that operates constantly is interposed and a bypass passage that bypasses the cooling heat exchanger are installed in the middle of the engine intake passage. formed into;
The opening degree of each passage is reciprocally increased or decreased according to the engine operating conditions via the control valve, and the opening degree of the control valve to the cooling passage side is increased to actively intake air, especially at high loads when supercharging starts. As the intake air is cooled efficiently and quickly, intake air at the appropriate temperature can always be supplied to the engine even under transient conditions such as during acceleration, and this has the effect of reliably improving output performance and knocking resistance in spark ignition engines. arise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の概略構成図である。第2図は本発明の
実施例を示す概略構成図、第3図はコントローラのブロ
ック図である。第4図、第5図はそれぞれ他の実施例を
示す概略構成図である。 2・・・給気ブロア、6・・・エンジン、32・・・バ
イパス通路、33・・・熱交換器、34・・・冷却用通
路、35・・・]−バボレータ(熱交換器)、36川制
(〕IIパルプ、40・・・燃焼器、51・・・加熱装
置、57・・・冷W装[,61・・・コンl−ローラ。 特許出願人 日産自動車株式会社 第1図 第2図 1 (
FIG. 1 is a schematic diagram of a conventional example. FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram of a controller. FIGS. 4 and 5 are schematic configuration diagrams showing other embodiments, respectively. 2... Air supply blower, 6... Engine, 32... Bypass passage, 33... Heat exchanger, 34... Cooling passage, 35...]-vaborator (heat exchanger), 36 river system (] II pulp, 40... combustor, 51... heating device, 57... cold W unit [, 61... controller roller. Patent applicant Nissan Motor Co., Ltd. Figure 1 Figure 2 1 (

Claims (1)

【特許請求の範囲】[Claims] 機関吸気を加圧する過給手段を備えた内燃機関において
、機関吸気通路の途中に、吸気冷却用熱交換器を介装し
た冷却用通路と、この冷却用通路を迂回するバイパス通
路を形成するとともに、前記冷却用通路とバイパス通路
の吸気流量を相反的に増減制御する制御バルブと、機関
運転条件を代表する信号値に応じて該機関運転条件毎に
吸気温度を所定の設定値となるように前記制御バルブを
駆動する制御系統を設けたことを特徴とする内燃機関の
吸入空気温度調整装置。
In an internal combustion engine equipped with a supercharging means for pressurizing engine intake air, a cooling passage in which an intake air cooling heat exchanger is interposed and a bypass passage that bypasses this cooling passage are formed in the middle of the engine intake passage. , a control valve that reciprocally controls the increase/decrease of the intake air flow rate in the cooling passage and the bypass passage, and a control valve that controls the intake air temperature to a predetermined set value for each engine operating condition in accordance with a signal value representative of the engine operating condition. An intake air temperature regulating device for an internal combustion engine, comprising a control system for driving the control valve.
JP58116610A 1983-06-28 1983-06-28 Intake-air temperature regulating device in internal-combustion engine Pending JPS608418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116610A JPS608418A (en) 1983-06-28 1983-06-28 Intake-air temperature regulating device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116610A JPS608418A (en) 1983-06-28 1983-06-28 Intake-air temperature regulating device in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS608418A true JPS608418A (en) 1985-01-17

Family

ID=14691427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116610A Pending JPS608418A (en) 1983-06-28 1983-06-28 Intake-air temperature regulating device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS608418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038725A (en) * 1988-12-02 1991-08-13 Hitachi, Ltd. Intake manifold of internal combustion engine
US6769411B2 (en) 2002-09-23 2004-08-03 Sandor C. Fabiani Nozzle air injection system for a fuel-injected engine
WO2019073769A1 (en) * 2017-10-10 2019-04-18 株式会社デンソー Intake air cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038725A (en) * 1988-12-02 1991-08-13 Hitachi, Ltd. Intake manifold of internal combustion engine
US6769411B2 (en) 2002-09-23 2004-08-03 Sandor C. Fabiani Nozzle air injection system for a fuel-injected engine
WO2019073769A1 (en) * 2017-10-10 2019-04-18 株式会社デンソー Intake air cooling system

Similar Documents

Publication Publication Date Title
US5740786A (en) Internal combustion engine with an exhaust gas recirculation system
US7654312B2 (en) Heating and/or cooling system for a motor vehicle
US6167703B1 (en) Internal combustion engine with VTG supercharger
US4207848A (en) Charging air heat-exchanger installation
US20040221577A1 (en) Thermoelectric generating device
US5076248A (en) Internal combustion engine with preheating of the intake air, and method of operating the engine
US20040055320A1 (en) Air-conditioning unit with additional heat transfer unit in the refrigerant circuit
JPH11200955A (en) Exhaust gas reflux device
KR20130069820A (en) Apparatus for utilizing waste heat from internal combustion engine
JPS5840645B2 (en) Supercharging device for internal combustion engines
JPS6119443B2 (en)
JPH0534490B2 (en)
US20160348620A1 (en) Assembly including a heat engine and an electric compressor configured to heat the air-fuel mixture
JP2016000971A (en) Internal combustion engine system with supercharger
US10655529B2 (en) Engine system
US4830098A (en) Air conditioner system for automobiles
US9435252B2 (en) Active conditioning system of a gaseous fluid intake of an internal combustion engine
US3728856A (en) Air-cooled internal combustion engine with super-charging, especially multi-fuel internal combustion engine
JPS608418A (en) Intake-air temperature regulating device in internal-combustion engine
JP3329123B2 (en) Diesel engine intake temperature control system
JPS6052290B2 (en) Intake air cooler for internal combustion engine with supercharger
JPH10325368A (en) Egr gas cooling device
JPS62247123A (en) Intake air cooling device for internal combustion engine
JPS58150024A (en) Intake-air temperature control device in internal-combustion engine
JPH0526049A (en) Supercharging control device for mechanical supercharger