JPS608388B2 - Method for preventing water hammer pressure in the nozzle part - Google Patents

Method for preventing water hammer pressure in the nozzle part

Info

Publication number
JPS608388B2
JPS608388B2 JP50114470A JP11447075A JPS608388B2 JP S608388 B2 JPS608388 B2 JP S608388B2 JP 50114470 A JP50114470 A JP 50114470A JP 11447075 A JP11447075 A JP 11447075A JP S608388 B2 JPS608388 B2 JP S608388B2
Authority
JP
Japan
Prior art keywords
valve
fluid pressure
piping
driven valve
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50114470A
Other languages
Japanese (ja)
Other versions
JPS5238638A (en
Inventor
康明 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP50114470A priority Critical patent/JPS608388B2/en
Publication of JPS5238638A publication Critical patent/JPS5238638A/en
Publication of JPS608388B2 publication Critical patent/JPS608388B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Description

【発明の詳細な説明】 本発明は、碍子洗浄装置などにおいて発生しやすい洗浄
開始時のノズル部における水撃現象の防止方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing the water hammer phenomenon in a nozzle section at the start of cleaning, which tends to occur in insulator cleaning equipment and the like.

従来、変電所において多く用いられている固定ノズルを
使用した碍子洗浄装置では、経済的な配管を行うために
、碍子群を数区画から数十区画に分け、区画ごとに区画
弁を設けて碍子群の図りに設けた固定ノズルより注水し
て碍子を水洗するものであって、例えば第1図に示すよ
うに、ポンプーの吐出側に主弁2及び一次側配管3を接
続し、この一次側配管3より変電所内各所の洗浄区画に
分岐配管されかつ被洗浄碍子4のまわりのノズル5に至
る二次側配管6に区画弁7を設けて配管系を構成し、冬
期における配管の凍結損傷を防止するため二次側配管6
の一部に排水弁8を設置して二次側配管6の大気露出部
の残水を排水するようになっている。
Conventionally, insulator cleaning equipment using a fixed nozzle, which is often used in substations, divides the insulator group into several to dozens of sections and installs a section valve in each section in order to perform economical piping. The insulator is washed by injecting water from a fixed nozzle installed in the group. For example, as shown in Fig. 1, the main valve 2 and the primary piping 3 are connected to the discharge side of the pump, and the primary side The piping system is constructed by installing a partition valve 7 on the secondary side piping 6 which is branched from the piping 3 to cleaning compartments at various locations in the substation and reaching the nozzle 5 around the insulator 4 to be cleaned, thereby preventing freezing damage to the piping in winter. Secondary piping 6 to prevent
A drain valve 8 is installed in a part of the secondary pipe 6 to drain residual water from the part of the secondary pipe 6 exposed to the atmosphere.

このように排水された配管系において、次回の碍子洗浄
操作を行う場合は、ポンプ1の運転により一次側配管3
に水圧がかかった後に該当区画弁7に関弁指令が与えら
れ、二次側配管6に洗浄水が流れ始めるが、この二次側
配管6内はほとんど空気で満たされているので、末端の
ノズル5に水が到達するまでは区画弁7がこの配管系の
唯一の絞りとなる。このため二次側配管6の圧力はほと
んど大気圧に近く、区画弁7を通る水の流量は区画弁7
をノズルとして大気中に放水する場合の流量に近くなり
、かなりの水量が流れる。このような区画弁7に用いら
れる従釆の流体圧駆動弁では、若干一次側配管3の水圧
変化の影響を受けるとしても第2図に実線で示すように
ほぼ等速度で開弁していくものであるので、二次側配管
6がノズル5まで充水される直前では区画弁7はかなり
の閉口度(第2図01)となり、従ってこのときの流速
(第3図のVI)も非常に大きくなり、ポンプ1の揚水
量は設計値を越えることがある。一般にポンプ11ま設
計値以上の揚水量になるとモーター(図示せず)が過負
荷となったり、ポンプ吸込管でキャピテ−ションを生ず
ることもあって好ましくない。さらにノズル5まで二次
側配管6が充水されたとき、ノズル5が大きな絞りとな
るため流速は瞬間的に減ぜられ、流体圧駆動弁の急閉鎖
による水繋現象に似た異常水圧上昇が起こり、配管系を
損傷することがある。この水圧上昇値は充水直前と直後
の流速の差に比例するため、充水直前の弁開度を適切な
関度に保つことにより、充水直前の流速をある程度以下
に保てば、この水撃圧を許容値以下に押さええることが
できる。さらに充水前の最高流速を低く押さえることに
より、モーターの過負荷及びポンプ吸込管におけるキャ
ビテーションも防止することができる。このため第2図
の破線で示すようにゆっくりと流体圧駆動弁を開けてや
れば、充水時の弁関度(第2図の01)は流体圧駆動弁
を急に開けた場合の充水時の弁関度(第2図の01)に
比べて小さくなる。また充水直前の流速(第3図のVI
)も流体圧駆動弁を急に開けた場合の流速(第3図のV
I)より小さくなる。従って充水前後の流速の差も小さ
くなり、水筆圧を低くすることができる。しかしながら
、この方法では流体圧駆動弁を全開するまでに要する時
間が長くなる上、二次側配管6が充水されてから流体圧
駆動弁が全開になるまでに要する時間も長くなり、その
間は規定圧以下の低い圧力で碍子4に注水され、碍子4
の耐電圧が低下するので好ましくない。従って、流体圧
駆動弁を全開にするまでに要する時間を短く保ち、二次
側配管6充水後の水圧の立上がりを急にし、かつ水撃圧
を低く保つためには第4図又は第6図に示すように非直
線的に開弁すれば良いことがわかる。そこで従来は特殊
な形状の弁体を採用することにより第4図又は第6図に
示すような関弁特性を有する流体圧駆動弁を得ていたが
、これでは関弁特性が固定されてしまい、二次側配管6
の空水量が比較的大きい場合には、例えば第4図の閉口
度03のときに充水されることも起こるので、すべての
場合に水撃圧を許容値以内に押さえることができない欠
点があった。
When performing the next insulator cleaning operation in a piping system that has been drained in this way, the primary side piping 3 is drained by operating the pump 1.
After water pressure is applied to the section valve 7, a valve command is given to the corresponding division valve 7, and the cleaning water starts flowing into the secondary pipe 6, but since the inside of the secondary pipe 6 is almost filled with air, Until the water reaches the nozzle 5, the partition valve 7 is the only restriction in this piping system. Therefore, the pressure in the secondary pipe 6 is almost close to atmospheric pressure, and the flow rate of water passing through the partition valve 7 is
The flow rate is close to the flow rate when water is discharged into the atmosphere using a nozzle, and a considerable amount of water flows. In the slave fluid pressure driven valve used in such a partition valve 7, even if it is slightly affected by changes in water pressure in the primary side piping 3, it opens at an almost uniform speed as shown by the solid line in Fig. 2. Therefore, just before the secondary piping 6 is filled with water up to the nozzle 5, the partition valve 7 becomes very closed (Fig. 2 01), and therefore the flow velocity at this time (VI in Fig. 3) is also very low. The amount of water pumped by the pump 1 may exceed the design value. Generally, if the amount of pumped water exceeds the design value of the pump 11, it is not preferable because the motor (not shown) may be overloaded or capitation may occur in the pump suction pipe. Furthermore, when the secondary piping 6 is filled with water up to the nozzle 5, the nozzle 5 becomes a large constriction and the flow velocity is momentarily reduced, resulting in an abnormal water pressure increase similar to a water bond phenomenon caused by the sudden closing of a fluid pressure driven valve. may occur and damage the piping system. This increase in water pressure is proportional to the difference in flow velocity immediately before and after filling, so by keeping the valve opening at an appropriate level just before filling, this can be achieved by keeping the flow rate below a certain level. Water hammer pressure can be kept below the allowable value. Furthermore, by keeping the maximum flow rate low before filling, it is possible to prevent motor overload and cavitation in the pump suction pipe. Therefore, if the fluid pressure driven valve is opened slowly as shown by the broken line in Figure 2, the valve function during water filling (01 in Figure 2) will be the same as when the fluid pressure driven valve is suddenly opened. It is smaller than the valve control degree (01 in Fig. 2) when the water is wet. Also, the flow velocity just before filling (VI in Figure 3)
) is also the flow velocity when the fluid pressure driven valve is suddenly opened (V in Figure 3).
I) becomes smaller. Therefore, the difference in flow velocity before and after filling with water becomes smaller, and the water pen pressure can be lowered. However, with this method, it takes a long time to fully open the fluid pressure driven valve, and it also takes a long time to fully open the fluid pressure driven valve after the secondary piping 6 is filled with water. Water is injected into the insulator 4 at a low pressure below the specified pressure, and the insulator 4
This is not preferable because the withstand voltage of the material decreases. Therefore, in order to keep the time required to fully open the fluid pressure driven valve short, to make the water pressure rise rapidly after the secondary piping 6 is filled with water, and to keep the water hammer pressure low, it is necessary to It can be seen that the valve should be opened non-linearly as shown in the figure. Conventionally, fluid pressure driven valves with valve characteristics as shown in Figure 4 or Figure 6 have been obtained by adopting a specially shaped valve body, but with this, the valve characteristics are fixed. , secondary side piping 6
If the amount of empty water is relatively large, for example, it may be filled with water at the degree of closure 03 in Fig. 4, so there is a drawback that the water hammer pressure cannot be kept within the permissible value in all cases. Ta.

本発明のノズル部における水撃圧防止方法は、従来のも
のに見られた前記の諸欠点を解消したもので、流体圧駆
動弁の二次側配管が開弁前には空の状態にあり、しかも
その二次側配管の末端には該配管の断面積より狭い断面
積を持つノズルを有した配管系において、前記流体圧駆
動弁が、一次側配管とピストン室とを連結する一次側導
管を有し、かつピストン室または前記一次側配管と二次
側配管とを二次側導管で連結するとともに、前記一次側
導管および二次側導管の途中に流量調節弁を設けて、関
弁時に流体圧駆動弁の一次側からピストン室内に流入し
ようとする流体を流体圧駆動弁の二次側の圧力に応じて
流体圧駆動弁の二次側に流出させ、ピストン室内の流体
圧がバネの反発力に打ち勝って流体圧駆動弁弁体を下方
に押し下げることによる開弁の速度を流体圧駆動弁の二
次側の圧力に応じて変化させるように構成したものとし
て、該流体圧駆動弁の開弁時に配管系末端のノズル部で
発生する水繋圧を防止可能としたノズル部における水撃
圧防止方法である。
The method for preventing water hammer pressure in a nozzle section of the present invention eliminates the above-mentioned drawbacks found in conventional methods. , and in a piping system having a nozzle at the end of the secondary piping having a cross-sectional area narrower than the cross-sectional area of the piping, the fluid pressure driven valve connects the primary piping and the piston chamber. and connects the piston chamber or the primary side pipe and the secondary side pipe with a secondary side pipe, and provides a flow rate control valve in the middle of the primary side pipe and the secondary side pipe to The fluid that is about to flow into the piston chamber from the primary side of the fluid pressure driven valve is caused to flow out to the secondary side of the fluid pressure driven valve according to the pressure on the secondary side of the fluid pressure driven valve, and the fluid pressure in the piston chamber is reduced by the pressure of the spring. The fluid pressure driven valve is configured so that the opening speed of the fluid pressure driven valve is changed by overcoming the repulsive force and pushing the valve body downward in accordance with the pressure on the secondary side of the fluid pressure driven valve. This is a method for preventing water hammer pressure at a nozzle part that can prevent water connection pressure generated at the nozzle part at the end of a piping system when the valve is opened.

本発明を図示の実施例にもとづいてさらに詳細に説明す
る。
The present invention will be explained in more detail based on illustrated embodiments.

本発明のノズル部における水撃圧防止方法に用いる流体
圧駆動弁は例えば第1図の区画弁7として用いられるも
ので下記に記載し第8図に示すような構造をとり、第9
図〜第12図に示すような制御回路で制御する。
The fluid pressure driven valve used in the method for preventing water hammer pressure in a nozzle portion of the present invention is, for example, used as the partition valve 7 in FIG. 1, and has a structure as described below and shown in FIG.
It is controlled by a control circuit as shown in FIGS.

この流体圧駆動弁が第9図の制御回路で制御される場合
を例にとって構造と作用を述べる。ポンプ1起動後、第
9図の接点aが閉じると、流量調節弁である電磁弁9の
マグネットMgが励磁され、電磁弁弁体10が第8図の
実線で示した部分に吸引され、一次側配管3すなわち流
体圧駆動弁一次側は導管11及び12を通してピストン
室13と導通される。
The structure and operation of this fluid pressure driven valve will be described by taking as an example the case where this fluid pressure driven valve is controlled by the control circuit shown in FIG. When the contact point a in FIG. 9 closes after the pump 1 is started, the magnet Mg of the solenoid valve 9, which is a flow rate control valve, is excited, and the solenoid valve body 10 is attracted to the part shown by the solid line in FIG. The side pipe 3, ie, the primary side of the fluid pressure driven valve, is communicated with the piston chamber 13 through conduits 11 and 12.

そして前記ピストン室13内に所定の給水がされ、これ
により流体圧駆動弁弁体15に下方向にかかる流体圧駆
動弁一次側の水圧力がバネ16の反発力に打ち勝って流
体圧駆動弁17は開き始める。流体圧駆動弁18の閥度
がある程度(第4図の02)になったところでタイマー
T(第9図)が働き接点tが閉じ、流量調節弁である電
磁弁17のマグネットMg2が励磁され、電磁弁17は
関弁され、二次側配管6すなわち流体圧駆動弁二次側は
導管18を通してピストン室13と導通される。このと
き流体圧駆動弁二次側の圧力は流体圧駆動弁一次側の圧
力に比べて非常に小さいため、ピストン室13に流入す
る水は導管18を通って流体圧駆動弁二次側5へ流出し
てしまう。ピストン室13に流入する水量と流出する水
量を流量調節弁である手段弁19及び20により調整す
ることにより、ピストン室13の水の増加量を零にする
ことができ、このとき流体圧駆動弁は中間開の位置で停
止する。さらに時間が経過し、二次側配管6が/ズル5
(第1図)まで充水されると瞬間的に流量が減じ、流体
圧駆動弁二次側の圧力は急に上昇する。このためピスト
ン室13から流体圧駆動弁二次側に流出する水の量も減
じてピストン室13内の水が増加し、流体圧駆動弁は急
速に開き始める。この結果第4図に示すように開弁特性
となる。この場合の流速変化は第5図に示すような特性
となる。第5図によれば、第3図の実線で示した場合に
比べ、二次側配管6の充水前後の流速変化が非常に少な
くなるため、水撃圧が少なくなることがわかる。また弁
全開までに要する時間及び二次側配管6に充水後弁全開
に至るまでに要する時間も長くなることもない。なお、
一次側配管3や二次側配管6中を流れる流体の流量を調
節するための流量調節弁は手動弁でも電磁弁でもよいが
、タイムリーに流量調節が出来る点で電磁弁である方が
好ましい。第10図の回路により制御される場合には、
タイマーTのかわりにリミットスィツチーにより弁停止
開度を決めるもので、流体圧駆動弁5の動作は第9図の
回路により制御される場合と同じである。第11図の回
路により制御される場合には、接点aが閉じると、電磁
弁9のマグネットMg1と電磁弁17のマグネットMg
2が同時に励磁され、一次側配管3とピストン室13及
びピストン室13と二次側配管6はそれぞれ導管11,
12,18を介して導通される。
Then, a predetermined amount of water is supplied into the piston chamber 13, and as a result, the water pressure on the primary side of the fluid pressure driven valve applied downward to the fluid pressure driven valve valve body 15 overcomes the repulsive force of the spring 16, and the fluid pressure driven valve 17 begins to open. When the pressure of the fluid pressure driven valve 18 reaches a certain level (02 in Fig. 4), the timer T (Fig. 9) is activated and the contact t is closed, and the magnet Mg2 of the electromagnetic valve 17, which is a flow control valve, is energized. The electromagnetic valve 17 is closed, and the secondary side piping 6, ie, the secondary side of the fluid pressure driven valve, is communicated with the piston chamber 13 through a conduit 18. At this time, the pressure on the secondary side of the fluid pressure driven valve is very small compared to the pressure on the primary side of the fluid pressure driven valve, so the water flowing into the piston chamber 13 passes through the conduit 18 and flows to the secondary side 5 of the fluid pressure driven valve. It will leak out. By adjusting the amount of water flowing into and out of the piston chamber 13 using means valves 19 and 20, which are flow rate control valves, it is possible to reduce the increase in the amount of water in the piston chamber 13 to zero. stops at the intermediate open position. Further time passes, and the secondary piping 6/Zuru 5
When the water is filled to the level shown in Figure 1, the flow rate decreases instantaneously, and the pressure on the secondary side of the fluid pressure driven valve suddenly increases. For this reason, the amount of water flowing out from the piston chamber 13 to the secondary side of the fluid pressure driven valve is also reduced, the water in the piston chamber 13 increases, and the fluid pressure driven valve begins to open rapidly. As a result, the valve opening characteristic as shown in FIG. 4 is obtained. The flow velocity change in this case has characteristics as shown in FIG. According to FIG. 5, compared to the case shown by the solid line in FIG. 3, it can be seen that the change in flow velocity before and after filling the secondary side pipe 6 with water is extremely small, so that the water hammer pressure is reduced. Further, the time required to fully open the valve and the time required to fully open the valve after filling the secondary pipe 6 with water do not become long. In addition,
The flow rate control valve for adjusting the flow rate of fluid flowing through the primary side piping 3 and the secondary side piping 6 may be a manual valve or a solenoid valve, but a solenoid valve is preferable because it allows timely flow rate adjustment. . When controlled by the circuit shown in Figure 10,
The valve stop opening degree is determined by a limit switch instead of the timer T, and the operation of the fluid pressure driven valve 5 is the same as when it is controlled by the circuit shown in FIG. When controlled by the circuit shown in FIG. 11, when contact a closes, magnet Mg1 of solenoid valve 9 and magnet Mg of solenoid valve 17
2 are simultaneously excited, and the primary pipe 3 and the piston chamber 13 and the piston chamber 13 and the secondary pipe 6 are connected to the conduit 11, respectively.
12 and 18.

このとき流体圧駆動弁一次側11からピストン室13の
流入する水量とピストン室13から流体圧駆動弁二次側
へ流出する水量を手動弁19及び20により適切に調整
することによって適切な関弁速度とすることができる。
このことは適用される配管系の状態に合わせて適切に開
弁速度を調整でき、従っていかなる配管系においても閥
弁時に発生する水撃圧を確実に防止できる。二次側配管
6が充水されるとピストン室13から流出する水量が少
なくなるため、閥弁速度は充水前に比べて速くなる。第
11図の回路で制御された流体圧駆動弁の関弁特性を第
6図に示しその流速特性を第7図に示す。
At this time, the amount of water flowing into the piston chamber 13 from the primary side 11 of the fluid pressure driven valve and the amount of water flowing out from the piston chamber 13 to the secondary side of the fluid pressure driven valve are adjusted appropriately using the manual valves 19 and 20, thereby establishing an appropriate barrier. It can be speed.
This allows the valve opening speed to be adjusted appropriately according to the condition of the piping system to which it is applied, and therefore, water hammer pressure generated when the valve is closed can be reliably prevented in any piping system. When the secondary pipe 6 is filled with water, the amount of water flowing out from the piston chamber 13 is reduced, so the valve speed becomes faster than before filling. FIG. 6 shows the valve characteristics of the fluid pressure driven valve controlled by the circuit shown in FIG. 11, and FIG. 7 shows its flow velocity characteristics.

この場合にも二次側配管充水前後流速変化は少なく、従
って水繋圧も低くできる。また弁全開に要する時間も長
くなることはなく、充水後の水圧の立上がりも急である
。また導管18に電磁弁17を設けずに、第12図に示
す制御回路を用いて制御しても、第6図に示す関弁特性
を得ることができる。
In this case as well, there is little change in the flow velocity before and after filling the secondary pipe with water, and therefore the water connection pressure can also be lowered. Furthermore, the time required to fully open the valve is not long, and the water pressure rises quickly after filling with water. Furthermore, even if the conduit 18 is not provided with the electromagnetic valve 17 and is controlled using the control circuit shown in FIG. 12, the valve characteristics shown in FIG. 6 can be obtained.

閥弁は、接点aを開くことにより電磁弁9の弁体10が
第8図の破線で示した位置に移動し、ピストン室13は
大気と導通して大気圧となるため、ピストン14は水圧
によって上方に押し上げられることにより達成される。
By opening the contact point a, the valve body 10 of the solenoid valve 9 moves to the position shown by the broken line in FIG. This is achieved by being pushed upward by the

なお前記の実施例では、導管18によりピストン室13
と流体氏駆動弁二次側とを導通したが、導管12と流体
圧駆動弁二次側とを導管18により直接導通してもよい
。さらに実施例では流体を水で示したが、水以外のどの
ような液体でもよい。以上述べたように本発明のノズル
部における水肇庄防止方法は、開弁時において発生しや
すいノズル部における水肇庄を低下させ、さらにポンプ
の過負荷、ポンプ吸込管におけるキャビテーションを防
止するため、ポンプ及びモーターに無理を生じさせるこ
とがなく、かつ配管材料の仕様を低下させて経済的な配
管設計を可能にするため、産業の発達に寄与するところ
が大きい。
In the above embodiment, the piston chamber 13 is connected to the piston chamber 13 by the conduit 18.
Although the conduit 12 and the secondary side of the fluid pressure driven valve are electrically connected to each other through the conduit 18, the conduit 12 and the secondary side of the fluid pressure driven valve may be electrically connected to each other. Furthermore, although water is used as the fluid in the embodiments, any liquid other than water may be used. As described above, the method for preventing water build-up in a nozzle section of the present invention is to reduce water build-up in the nozzle section, which is likely to occur when the valve is opened, and further to prevent pump overload and cavitation in the pump suction pipe. This method greatly contributes to the development of industry because it enables economical piping designs without straining the pumps and motors, and by lowering the specifications of piping materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は碍子洗浄装置配管系の説明図、第2図、第4図
、第6図は流体圧駆動弁10の弁関度と時間の関係のグ
ラフで第2図は従来形の流体圧駆動弁のものを示し、第
4図、第6図は本発明に用いる流体圧駆動弁のものを示
し、第3図、第5図、第7図はそれぞれ第2図、第4図
、6図のものの流速と時間の関係を示すグラフ、第8図
は本発明に用いる流体圧駆動弁の構造の一実施例の説明
図、第9図〜第lq図ま本発卵こ用し、る流体圧駆動弁
の制御回路の実施例の説明図である。 1…・・・ポンプ、2…・・・主弁、3…・・・一次側
配管、4・・・・・・碍子、5・・・・・・ノズル、6
・・・・・・二次側配管、7・…・・区画弁、8…・・
・排水弁、9,17・・・・・・電磁弁、10・・・・
・・電磁弁弁体、11,12,18・・・・・・導管、
13・・・・・・ピストン室、14・・・・・・ピスト
ン、15・・・・・・流体圧駆動弁弁体、16・・・・
・・バネ、19,20・・…・手動弁、Mg1,Mg2
・…・・マグネット、a,t……接点、T……タイマー
、1……リミットスイッチ。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第、0図 第11図 第12図
Figure 1 is an explanatory diagram of the insulator cleaning equipment piping system, Figures 2, 4, and 6 are graphs of the relationship between the valve function and time of the fluid pressure driven valve 10, and Figure 2 is a diagram of the conventional fluid pressure driven valve 10. Figures 4 and 6 show hydraulically driven valves used in the present invention, and Figures 3, 5, and 7 are Figures 2, 4, and 6, respectively. Figure 8 is a graph showing the relationship between flow velocity and time; Figure 8 is an explanatory diagram of an embodiment of the structure of a fluid pressure driven valve used in the present invention; Figures 9 to 1q are used for this purpose. It is an explanatory view of an example of a control circuit of a fluid pressure driven valve. 1...Pump, 2...Main valve, 3...Primary side piping, 4...Insulator, 5...Nozzle, 6
...Secondary side piping, 7...Division valve, 8...
・Drain valve, 9, 17...Solenoid valve, 10...
... Solenoid valve body, 11, 12, 18... Conduit,
13... Piston chamber, 14... Piston, 15... Fluid pressure driven valve body, 16...
...Spring, 19,20...Manual valve, Mg1, Mg2
...Magnet, a, t...contact, T...timer, 1...limit switch. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9, Figure 0 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 1 流体圧駆動弁の二次側配管が開弁前には空の状態に
あり、しかもその二次側配管の末端には該配管の断面積
より狭い断面積を持つノズルを有した配管系において前
記流体圧駆動弁が、一次側配管とピストン室とを連結す
る一次側導管を有し、かつピストン室または前記一次側
配管と二次側配管とを二次側導管で連結するとともに、
前記一次側導管および二次側導管の途中に流量調節弁を
設けて、開弁時に流体圧駆動弁の一次側からピストン室
内に流入しようとする流体を流体圧駆動弁の二次側の圧
力に応じて流体圧駆動弁の二次側に流出させ、ピストン
室内の流体圧がバネの反発力に打ち勝って流体圧駆動弁
弁体を下方に押し下げることによる開弁の速度を流体圧
駆動弁の二次側の圧力に応じて変化させるように構成さ
れ、該流体圧駆動弁の開弁時に配管系末端のノズル部で
発生する水撃圧を防止可能としたことを特徴とするノズ
ル部における水撃圧防止方法。
1 In a piping system in which the secondary piping of a fluid pressure driven valve is empty before the valve is opened, and the secondary piping has a nozzle at its end that has a cross-sectional area narrower than the cross-sectional area of the piping. The fluid pressure driven valve has a primary conduit that connects the primary piping and the piston chamber, and connects the piston chamber or the primary piping and the secondary piping with a secondary conduit,
A flow control valve is provided in the middle of the primary side conduit and the secondary side conduit, and when the valve is opened, the fluid that is about to flow into the piston chamber from the primary side of the fluid pressure driven valve is adjusted to the pressure on the secondary side of the fluid pressure driven valve. The fluid pressure in the piston chamber overcomes the repulsive force of the spring and pushes the fluid pressure driven valve body downward, thereby increasing the opening speed of the fluid pressure driven valve. A water hammer in a nozzle section configured to vary according to the pressure on the next side, and capable of preventing water hammer pressure generated at the nozzle section at the end of the piping system when the fluid pressure driven valve is opened. Pressure prevention method.
JP50114470A 1975-09-22 1975-09-22 Method for preventing water hammer pressure in the nozzle part Expired JPS608388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50114470A JPS608388B2 (en) 1975-09-22 1975-09-22 Method for preventing water hammer pressure in the nozzle part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50114470A JPS608388B2 (en) 1975-09-22 1975-09-22 Method for preventing water hammer pressure in the nozzle part

Publications (2)

Publication Number Publication Date
JPS5238638A JPS5238638A (en) 1977-03-25
JPS608388B2 true JPS608388B2 (en) 1985-03-02

Family

ID=14638529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50114470A Expired JPS608388B2 (en) 1975-09-22 1975-09-22 Method for preventing water hammer pressure in the nozzle part

Country Status (1)

Country Link
JP (1) JPS608388B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068886A1 (en) * 2004-01-20 2005-07-28 Fujikin Incorporated Method for water hammer-less opening of fluid passage, chemical supply method using the same, and water hammer-less opening device
US8020574B2 (en) 2002-12-19 2011-09-20 Tadahiro Ohmi Method for closing fluid passage, and water hammerless valve device and water hammerless closing device used in the method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184695U (en) * 1974-12-26 1976-07-07
JPS54118625A (en) * 1978-03-08 1979-09-14 Yk Trading Kk Support tool of rotary cutter
JPS5939023B2 (en) * 1978-11-29 1984-09-20 ワイケ−トレ−デイング株式会社 Cutter of impact type cutting machine
DE3279389D1 (en) * 1981-09-02 1989-03-02 Macdonald Pneumatics Improvements in scabbling apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948237U (en) * 1972-08-01 1974-04-26

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020574B2 (en) 2002-12-19 2011-09-20 Tadahiro Ohmi Method for closing fluid passage, and water hammerless valve device and water hammerless closing device used in the method
WO2005068886A1 (en) * 2004-01-20 2005-07-28 Fujikin Incorporated Method for water hammer-less opening of fluid passage, chemical supply method using the same, and water hammer-less opening device
US7849869B2 (en) 2004-01-20 2010-12-14 Fujikin Incorporated Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
US8047225B2 (en) 2004-01-20 2011-11-01 Fujikin Incorporated Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
US8714188B2 (en) 2004-01-20 2014-05-06 Fujikin Incorporated Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used

Also Published As

Publication number Publication date
JPS5238638A (en) 1977-03-25

Similar Documents

Publication Publication Date Title
JPS608388B2 (en) Method for preventing water hammer pressure in the nozzle part
US4524794A (en) Air release and anti-siphon valve
US4865528A (en) Method and arrangement for starting an hydraulic diaphragm pump against load
US3647319A (en) Pumping equipment
US4195968A (en) Liquid level control
CN1330898C (en) Fault detector for hydraulic mortor and hydraulic driving vehicle
DE10111739A1 (en) pump unit
US2810350A (en) Automatic pumping system
US2081860A (en) Pumping system
GB2303178A (en) Centrifugal pump priming systems
US1988296A (en) Pump valve control
JP2000027788A (en) Method for operating vertical shaft pump, and vertical shaft pump
US3702744A (en) Oil transportation system
US3543880A (en) Two stage refrigeration compressor having automatic oil drain for the first stage suction chamber
US2305648A (en) Submersible motor structure
US2855945A (en) Flow-rate responsive switching-valve for hydraulic circuits
US3335747A (en) Float-actuated level control means with quick closing and opening characteristics in a non-modulated system
CN206723023U (en) A kind of mine water pump automatic control device
Lescovich The control of water hammer by automatic valves
US1141114A (en) Controller for fluid-pressure-actuated devices.
US3845508A (en) Water closet control system
US1289429A (en) Pump-controller.
US6189856B1 (en) Pressure release valve
JPS58148277A (en) Rotary hydraulic machinery carrying exhaust valve
US3688791A (en) Siphon system