JPS6083237A - Compound for optical recording medium - Google Patents

Compound for optical recording medium

Info

Publication number
JPS6083237A
JPS6083237A JP58190932A JP19093283A JPS6083237A JP S6083237 A JPS6083237 A JP S6083237A JP 58190932 A JP58190932 A JP 58190932A JP 19093283 A JP19093283 A JP 19093283A JP S6083237 A JPS6083237 A JP S6083237A
Authority
JP
Japan
Prior art keywords
film
optical recording
substrate
hydrophilic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58190932A
Other languages
Japanese (ja)
Other versions
JPH0427959B2 (en
Inventor
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Hirohide Munakata
博英 棟方
Yoshinori Tomita
佳紀 富田
Takashi Hamamoto
浜本 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58190932A priority Critical patent/JPS6083237A/en
Priority to FR8415708A priority patent/FR2553531B1/en
Priority to DE3437724A priority patent/DE3437724A1/en
Priority to GB08426038A priority patent/GB2149930B/en
Publication of JPS6083237A publication Critical patent/JPS6083237A/en
Priority to US06/870,425 priority patent/US4766047A/en
Priority to US07/062,330 priority patent/US4804613A/en
Publication of JPH0427959B2 publication Critical patent/JPH0427959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/025Non-macromolecular photopolymerisable compounds having carbon-to-carbon triple bonds, e.g. acetylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To form a compound for a high density optical recording medium which can erase recorded information and can be used repeatedly by preparing a photopolymerizable monomer having hydrophilic and hydrophobic groups and at least one unsatd. bond in a molecule. CONSTITUTION:This compound for an optical recording medium is a photopolymerizable monomer having hydrophilic and hydrophobic groups and at least one unsatd. bond in a molecule. The monomer is represented by formula 1, 2 or 3. In the formula 1 and 3, R1 or R1 and R2 have both hydrophilic and hydrophobic moieties, or R1 is hydrophobic in relation to R2, and R2 is hydrophilic in relation to R1. In the formula 2, one among R1, R2 and R3 has both hydrophilic and hydrophobic moieties, or one among R1, R2 and R3 is hydrophobic in relation to the others, and one of the others is hydrophilic.

Description

【発明の詳細な説明】 本発明は、光重合性上ツマ−からなる光記録媒体用化合
物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound for optical recording media comprising a photopolymerizable polymer.

従来より有機化合物を薄膜にして記録層として用いる光
記録媒体については知られており、例えば特t3i4昭
56−16948号公報、特開昭58−125246号
公報にも開示されている。いずれも有機色素を記録層と
し、レーザビームにより記録再生を行なうレーザ記録媒
体に関するものである。特に特開昭58−125246
号公報に開示された媒体は、一般式() で表わされるシアニン糸色系の一1Ii膜を記録九′f
ノとするものである。(I)式で表わされるシアニン系
色素溶液を回転塗布機などを用いて、10(10^す、
下の厚さ、例えば約300 Xの厚さにプラスチック基
板上に塗布し薄膜を形成する。III:内の分子分布、
配回がランダムであると、)゛6照射に伴って膜内で光
の散乱が生じ、微視的にみた場合、各光照射の反に生ず
る化学反応の度合が異なってくる。そこで、記録媒体と
しては、膜内の分子分布、配向が一様に1よっているこ
とが望ましく、また、できる限り膜厚が薄いことが、記
録の正j密R〔化のために要請される。しかしながら、
塗布法による場合、IB%厚においては300 X程度
が限界であり、)1位内の分子分布、配向がランダムで
あることは解決しがたいことであった。
Optical recording media that use a thin film of an organic compound as a recording layer are conventionally known, and are disclosed in, for example, Japanese Patent Publication No. t3i4 1982-16948 and Japanese Patent Application Laid-open No. 1982-125246. All of them relate to laser recording media in which recording layers are made of organic dyes and recording and reproduction are performed using laser beams. Especially JP-A-58-125246
The medium disclosed in the publication records a cyanine thread color type 11Ii film represented by the general formula (9'f).
It is intended to be A cyanine dye solution represented by the formula (I) is coated using a spin coater or the like to coat 10 (10^s)
The film is coated onto a plastic substrate to a thickness of approximately 300×, for example, approximately 300×. III: molecular distribution within;
If the distribution is random, light scattering occurs within the film with the irradiation, and when viewed microscopically, the degree of chemical reaction that occurs in response to each light irradiation differs. Therefore, as a recording medium, it is desirable that the molecular distribution and orientation within the film be uniformly 1, and that the film thickness be as thin as possible, which is required for recording with positive density R. . however,
When using the coating method, the IB% thickness is limited to about 300X, and it is difficult to solve the problem that the molecular distribution and orientation within the first position are random.

レジスト材料の一つとして光量子効率が大でかつ優れた
解像力を有するものとして提案されていたジアセチレン
化合物累積膜が、レジスト材料のみならず、薄膜電気−
光学デバイス、電気−音響−° デバイス、圧・焦電デ
バイス寺にも応用されることが、特開昭56−4222
9号公報、特開昭56−43220号公報などに示され
ている。
A diacetylene compound cumulative film, which has been proposed as a resist material with high photon efficiency and excellent resolution, has been used not only as a resist material but also as a thin film electrical
It was reported in Japanese Patent Application Laid-Open No. 56-4222 that it can be applied to optical devices, electro-acoustic devices, and piezoelectric devices.
No. 9, Japanese Patent Laid-Open No. 56-43220, etc.

近時においては、ジアセチレン化合物累積膜の製造方法
の改良について特F3FJ昭58−111029号公報
に示されている。かかる発明にて製造された基板上のジ
アセチレン化合物累積膜は紫外線を照射することにより
重合させてジアセチレン化合物重合体膜を作り、或はマ
スキングして紫外線を照射し部分的に重合させ、未重合
部分を除去して図形を作り、薄膜光学デバイスや集積回
路素子として使用される。
Recently, an improvement in the method for producing a diacetylene compound cumulative film has been disclosed in Japanese Patent No. F3FJ No. 111029/1982. The diacetylene compound cumulative film on the substrate produced according to the invention can be polymerized by irradiation with ultraviolet rays to form a diacetylene compound polymer film, or masked and irradiated with ultraviolet rays to partially polymerize and remove the unused material. The overlapping portions are removed to create shapes, which are used as thin film optical devices and integrated circuit elements.

しかし、これらはいずれもジアセチレン化合物に限るも
のであり、薄膜光学デバイスとして使用するときに、一
度記録したものの消去の可能性については述べられてい
ない。
However, all of these are limited to diacetylene compounds, and there is no mention of the possibility of erasing once recorded data when used as a thin film optical device.

本発明の目11’、Iは、記録した’b−報を消去する
ことができる反復使用可能な高密度光記録媒体用の化合
物を提供することにある。
The object of the present invention is to provide a compound for high-density optical recording media that can be used repeatedly and is capable of erasing recorded 'b-information.

本発明の1」的は、次の光記録媒体用の化合物によって
達成される。つまり、本発明の目的は、分子内に親水基
、疎水基および少なくとも1個の不飽和結合を有する光
N<台柱モノマーからなる光記録媒体用化合物により達
成される。
The first objective of the present invention is achieved by the following compound for optical recording media. That is, the object of the present invention is achieved by a compound for an optical recording medium, which has a hydrophilic group, a hydrophobic group, and at least one unsaturated bond in the molecule, and is composed of optical N<post monomer.

本発明の光重合性モノマーは、基板上に単分子膜または
単分子層累積膜を形成し得る。これらの膜を用いて光記
録媒体の記録層を製造することかでさる。
The photopolymerizable monomer of the present invention can form a monomolecular film or a monomolecular layer stack on a substrate. These films can be used to manufacture recording layers of optical recording media.

製造された光記録媒体において記録は、記録層の光重合
性七ツマ−に光を照射して、照射部位において重合反応
を生じさせ、非照射部位と照射部位に重合の有無に基づ
く差を生せしめることによって行なう。次に再生は、こ
の重合によって生じた差を種々の方法で測定することに
よって行なう。
In the manufactured optical recording medium, recording is performed by irradiating the photopolymerizable seven polymers of the recording layer with light to cause a polymerization reaction in the irradiated area, thereby creating a difference between the non-irradiated area and the irradiated area based on the presence or absence of polymerization. Do it by forcing it. Regeneration is then carried out by measuring the difference caused by this polymerization in various ways.

また、記録した情報の除去は加熱による解重合によって
行なう。
Further, the recorded information is removed by depolymerization by heating.

本発明の光重合性モノマーとしては、分子内に親yj<
基、#水基および少なくとも1個の不@和結合を43す
る光重合性モノマーであれば広く使うことができる。
The photopolymerizable monomer of the present invention has parent yj<
A wide variety of photopolymerizable monomers can be used as long as they have 43 groups, #hydroxy groups, and at least one unused bond.

この様な光重合性モノマーは、一般式 (R8)(、[
Ib) 、(III) で表わすことができる。
Such a photopolymerizable monomer has the general formula (R8) (, [
Ib) , (III)

R,−’CH=CH−R2(IIa) nl−CM=CI(−R8−CI−I=CH−R,(I
lb)R,−Cミc−cミC−R2(III)上式(J
la)および(、DI )において、R,部或いは、R
,及びR1部に親水性部位と疎水性部位の両者が存在す
るか、若しくは、R1はR7との関係において疎水性で
あり、R7はRoとの関係において親水性である。上式
(IIb)において、R1+ R2またはR8部のいず
れかに親水性部位と疎水性部位の両者が存在するか、若
しくはR,、R,およびR5部のいずれかが他の部との
関係において疎水性であり、残りの都のいずれかは親水
性である。特に炭素原子数10〜30の長鎖アルキル基
をR1部或いは、R。
R, -'CH=CH-R2(IIa) nl-CM=CI(-R8-CI-I=CH-R, (I
lb) R, -Cmic-cmiC-R2(III) Above formula (J
la) and (, DI), R, part or R
, and both a hydrophilic site and a hydrophobic site are present in the R1 portion, or R1 is hydrophobic in relation to R7 and R7 is hydrophilic in relation to Ro. In the above formula (IIb), both a hydrophilic site and a hydrophobic site are present in either R1+ R2 or R8, or any of R, R, and R5 is It is hydrophobic and any of the remaining cells are hydrophilic. In particular, R1 or R represents a long chain alkyl group having 10 to 30 carbon atoms.

及びR,部、若しくはR1l R2またはR3部の少な
くともいずれかに有する光重合性モノマーが蹟ましい。
A photopolymerizable monomer contained in at least one of the R, R, R1, R2, and R3 parts is dangerous.

本発明の光重合性モノマーの具体的な例どしては以下の
化合物が例示される。
Specific examples of the photopolymerizable monomer of the present invention include the following compounds.

/ / cH,(CH2) x−Cミc−c=c −(CH,)
 y−COOHR= −(CH3)nCH3 X0= CI−、Br−T I−I Cl0r + −
030,舎CH3。
/ / cH, (CH2) x-Cmi c-c=c - (CH,)
y-COOHR= -(CH3)nCH3 X0= CI-, Br-T I-I Cl0r + -
030, Sha CH3.

−oso2+CI など MiJ記の光束台柱七ツマ−は、長鎖アルキル基を新た
に導入した点を除けば、それ自体公知(文献塩;化学と
工業第32巻第10号 763〜765頁)であるか、
又は、それに類似した第1ケ造を持つ化合物である。故
に公知の方法により合成することがでさる。例えば、炭
素原子数18の長鎖アルキル基(n−オクタデカノイル
基)を有する光重合性オレフィンモノマーである過塩素
HL4− シー n −オクタデカノイル−2,5−ジ
スチリルピラジンΔは以下の方法により合成することが
できる。
-oso2+CI and other light beam pillars written in MiJ are known per se (Reference book; Kagaku to Kogyo Vol. 32, No. 10, pp. 763-765), except that a long-chain alkyl group is newly introduced. mosquito,
Or, it is a compound having a first structure similar thereto. Therefore, it can be synthesized by a known method. For example, the photopolymerizable olefin monomer having a long-chain alkyl group (n-octadecanoyl group) with 18 carbon atoms, perchlorinated HL4-C n-octadecanoyl-2,5-distyrylpyrazine Δ, is as follows: It can be synthesized by a method.

0CH=CH+CH=CH−0−clo?Δ 10.8,9 2.5−ジメチルピラジンと44.5.
17p−クロルベンゼンスルホン酸−!l−オクタデカ
ノイルエステルとを10100m1Dにとかし、窒素雰
囲気下にて1時間加熱還流する。冷却後、過塩素酸ナト
リウム105+を水200m1に溶かした溶液を加える
。析出した固体をエーテルで洗浄した後、メチルアルコ
ール中で再結晶させる。こうして得た、過塩素酸1r4
−nlオクタデカノイル−2,5−ジメチルピラジン 
4.7gとベンズアルデヒド1.04gとを無水酢酸中
で3時間加熱還流し、冷却後メチルアルコール中で再結
晶させてΔを得る(収率40%)。妻↓力他の化合物も
これと同様の手法により合成することができる。
0CH=CH+CH=CH-0-clo? Δ 10.8,9 2.5-dimethylpyrazine and 44.5.
17p-chlorobenzenesulfonic acid-! l-octadecanoyl ester and 10,100 mL of ester were dissolved and heated under reflux for 1 hour under a nitrogen atmosphere. After cooling, a solution of sodium perchlorate 105+ in 200 ml of water is added. After washing the precipitated solid with ether, it is recrystallized in methyl alcohol. Thus obtained perchloric acid 1r4
-nl octadecanoyl-2,5-dimethylpyrazine
4.7 g and 1.04 g of benzaldehyde are heated under reflux in acetic anhydride for 3 hours, cooled, and then recrystallized in methyl alcohol to obtain Δ (yield: 40%). Other compounds can also be synthesized using a similar method.

前記単分子膜または単分子層累積膜を作成する方法とし
ては、例えば、1. Langmuirらの開発したラ
ングミュア・プロジェット法(L B法)を用いる。ラ
ングミュア・プロジェット法は、分子内に親水基と疎水
基を有する4t′1造の分子において、両者のバランス
(両親媒性のバランス)が適度に保たれているとき、分
子は水面上で親水基を下に向けて単分子の層になること
を利用して単分子膜または単分子層の累積膜を作成する
方法である。水面上の単分子層は二次元系の特徴をもつ
。分子がまばらに散開しているときは、一分子当り面1
8 Aと表面圧Hとの間に二次元理想気体の式1、/7
A = kT が成り立ち、“気体膜”となる。ここに、1(はボルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスなどの基板の表面へ
一層ずつ移すことができる。この方法を用いて、単分子
膜または小分子層累積膜は例えば次のようにして製造す
る。
As a method for creating the monomolecular film or monomolecular layer cumulative film, for example, 1. The Langmuir-Prodgett method (LB method) developed by Langmuir et al. is used. The Langmuir-Prodgett method is a 4t'1 molecule that has a hydrophilic group and a hydrophobic group in the molecule, and when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule becomes hydrophilic on the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by using the fact that the group is oriented downward to form a monomolecular layer. A monolayer on the water surface has the characteristics of a two-dimensional system. When molecules are sparsely distributed, one surface per molecule
8 Two-dimensional ideal gas equation 1, /7 between A and surface pressure H
A = kT holds true, and it becomes a "gas film". Here, 1 (is Boltzmann's constant, and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong, resulting in a two-dimensional solid "condensed film (or solid film)." A condensed film is a film made of glass, etc. It is possible to transfer layer by layer onto the surface of the substrate.Using this method, a monolayer or a small-molecular layer cumulative film can be produced, for example, as follows.

まず光重合性モノマーを溶剤に溶解し、これを水相中に
展開し光重合性モノマーを膜状に析出させる。次にこの
析出物が水相上を自由に拡散して拡がりすぎないように
仕切板(または浮子)を設けて展開面積を制限して膜物
質の集合状態を制御し、その集合状態に比例した表面圧
IIを得る。この仕rorw−を動かし、展開面積を縮
少して膜物質の集合状態を制御し、表面圧を徐々に」二
昇させ、累積膜の製造に適する表面圧IIを段別するこ
とができる。この表面圧を維持しながら静かに清浄なみ
First, a photopolymerizable monomer is dissolved in a solvent, and this is spread in an aqueous phase to precipitate the photopolymerizable monomer in the form of a film. Next, to prevent this precipitate from freely diffusing on the aqueous phase and spreading too much, a partition plate (or float) is installed to limit the area of development and control the state of aggregation of the film substance, and the Obtain surface pressure II. By moving this resistor, the developed area can be reduced to control the aggregation state of the membrane material, and the surface pressure can be gradually raised to a surface pressure II suitable for producing a cumulative membrane. Cleans quietly while maintaining this surface pressure.

板を垂直に上下させることにより単分子++qが基板上
に移しとられる。月シ分子欣は以上で製造されるが、小
分子層累積膜ば、Ill」記の操作を紅・り返すことに
より所望の累積度の噂分子1色寮積119.<が形成さ
・れる。
Single molecules ++q are transferred onto the substrate by vertically raising and lowering the plate. A small molecule layer can be produced in the above manner, but if a small molecule layer cumulative film is to be produced, repeating the operations described in "119" to achieve the desired degree of accumulation. < is formed.

成膜分子は、前記の光重合性モノマーから1種または2
種以上選択される。2種U−ヒの光′;I(舎外モノマ
ーを用いるときは、各2((分子層は1棟の光重合性モ
ノマーよりなる。異なる成膜分子より成る小分子層の組
合せ方法は、例えは2種の光重合性モ/、−7−a 、
 bを、基板側から(ab)n + (ambt)n。
The film-forming molecules include one or two of the above photopolymerizable monomers.
More than one species is selected. 2 types of U-hi light; For example, two types of photopolymerizable mos/, -7-a,
b from the substrate side (ab)n + (ambt)n.

a(b)n (n 、m、 lは1以上の市の;摺数)
など、あるいは全くランダムな順番でZ4積してもよく
、種々の組合せが可能である。使用する光重合性モノマ
ーの特性等によって、組合せ方法は決定される。
a(b)n (n, m, l are 1 or more cities; number of prints)
etc., or Z4 products may be performed in a completely random order, and various combinations are possible. The combination method is determined depending on the characteristics of the photopolymerizable monomers used.

記録層の厚さは30X〜311mが適し”でおり、特に
100 X〜3000 Xが適している。光重合性モノ
マーの種類の選択、累粘度などはこれを考慮して決定さ
れる。
The thickness of the recording layer is suitably 30x to 311 m, particularly 100x to 3000x. The selection of the type of photopolymerizable monomer, cumulative viscosity, etc. are determined with this in mind.

単分子層を基板上に些ずには、上述した垂直浸せき法の
他、水平付着法9回転円筒法などの方法による。水平付
着法は基板を水面に水平に接触させて移しとる方法で、
回転円開法は、円筒型の基体を水面上を回転させて小分
子層を基体表面に移しとる方法である。FiiJ述した
垂直浸せき法では、水面を横切る方向に基数をおろすと
一層めは親水基が基板側に向いた単分子層が基板」二に
形成される。Mif述のように基板な上下させると、各
行程ごとに1枚ずつ単分子層が重なっていく。成膜分子
の向きが引上げ行程と浸せき行程で逆になるので、この
方法によると、各層間は親水基と親水基、疎水基ど疎水
基が向かい合うY型膜が形成される。
In addition to the above-mentioned vertical dipping method, a method such as a horizontal deposition method or a nine-turn cylinder method can be used to form a monomolecular layer on a substrate. The horizontal attachment method is a method in which the substrate is transferred by contacting it horizontally with the water surface.
The rotating circle opening method is a method in which a cylindrical substrate is rotated on the water surface to transfer a small molecule layer onto the surface of the substrate. In the vertical immersion method described in FiiJ, when the base is lowered in the direction across the water surface, a monomolecular layer with the hydrophilic groups facing the substrate in the first layer is formed on the substrate. When the substrate is moved up and down as described by Mif, one monolayer is overlapped with each step. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, according to this method, a Y-shaped film is formed in which hydrophilic groups, hydrophilic groups, hydrophobic groups, and other hydrophobic groups face each other between each layer.

それに対し、水平付着法は、基板を水面に水平に接触き
せて移しとる方法で、疎水基が&板側に向いた単分子層
が基板上に形成される。この方法では、累債しても、成
膜分子の同きのヲで代はなく全ての層において、疎水基
が基板側に向いたX型膜が形成される。反対に全ての層
において親水基が基板側に向いた累積膜は2型膜と呼は
れる。
On the other hand, the horizontal deposition method is a method in which the substrate is brought into horizontal contact with the water surface and transferred, and a monomolecular layer with the hydrophobic groups facing the & plate side is formed on the substrate. In this method, an X-shaped film is formed in which the hydrophobic groups are directed toward the substrate in all layers, even if the film is accumulated. On the other hand, a cumulative film in which all the layers have hydrophilic groups facing the substrate side is called a type 2 film.

回転円筒法を;、円筒型の基体を水面−Fを回転させて
4i分子層を基体表面に移しとる方法である。
The rotating cylinder method is a method in which a cylindrical substrate is rotated at the water surface -F to transfer a 4i molecular layer onto the surface of the substrate.

単分子層を基板上に移す方法は、これらに限定されるわ
けではなく、犬i!r+積基板を用いる時には、基板ロ
ールから水相中に基板を押し出していく方法などもとり
得る。また、前述した親水栽、疎水基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
さる。
Methods for transferring a monolayer onto a substrate are not limited to these methods, but include dog i! When using an r+ laminated substrate, a method of extruding the substrate from a substrate roll into an aqueous phase can also be used. Furthermore, the orientation of the hydrophilic and hydrophobic groups to the substrate described above is a general rule, and may be changed by surface treatment of the substrate, etc.

作成した光記録媒体に、あるパターンに従ってガンマ線
、X線、紫外線など重合に必要なエメ・ルギーを供給し
うる光を照射すると照射部位において■式に示すように
重合がおこる。
When the prepared optical recording medium is irradiated with light such as gamma rays, X-rays, and ultraviolet rays that can supply the emery energy necessary for polymerization according to a certain pattern, polymerization occurs at the irradiated area as shown in equation (2).

R,R,It、f七。R, R, It, f7.

1 R,112R,R2 又、一般式(III)で表わされるジアセブーレン化合
物については、光照射によって(V)式に示す様に重合
がおこる。
1 R, 112R, R2 Further, with respect to the diaceburene compound represented by the general formula (III), polymerization occurs as shown in the formula (V) by light irradiation.

と l″XR2 これらの反応は互いに隣接する不飽和結合の距離が4X
以下のときおこり得るものであり、先に述べた様な方法
で作成された単分子膜又は、小分子層累粕膜では、同一
層内の隣接分子間又は累積する層の隣接する分子間にお
いて可能である。また、J1i合した後は、暗所下でも
解重合は起こらず、非照射部位は単量体のままであるの
で、第1図に示すように、成るパターンに従った記録が
成される。
and l″XR2 These reactions occur when the distance between adjacent unsaturated bonds is 4X
This can occur in the following cases, and in a monomolecular film or a small-molecular-layer stacked film created by the method described above, it occurs between adjacent molecules in the same layer or between adjacent molecules in cumulative layers. It is possible. Further, after J1i combination, depolymerization does not occur even in the dark, and the non-irradiated region remains monomeric, so recording is performed according to the pattern shown in FIG.

記録された情報の読み取りは例えば可視光の照射によっ
て行なう。すなわち、重合によって単量体時の共役系が
崩れるので、可視光の吸収波長に変化をきたす。最大吸
収波長は低波長側にシフトするので、吸収スペクトル変
化を読みとることにより情報の再生が行われる(第2図
)。従って、この場合には情報の再生は共役系が長い方
が、単量体と重合体の最大吸収波長の変化が大きいので
容易である。
The recorded information is read, for example, by irradiation with visible light. That is, the conjugated system of monomers is destroyed by polymerization, which causes a change in the absorption wavelength of visible light. Since the maximum absorption wavelength shifts to the lower wavelength side, information can be reproduced by reading changes in the absorption spectrum (Figure 2). Therefore, in this case, information reproduction is easier when the conjugated system is longer because the change in the maximum absorption wavelength of the monomer and polymer is larger.

再生は、可視光による吸収スペクトル変化の読み収り以
外にも、単鼠体時と重合後の体積変化をシュリーレン法
により読みとることも可能である。
For reproduction, in addition to reading changes in the absorption spectrum using visible light, it is also possible to read changes in volume in a single mouse and after polymerization using the Schlieren method.

この方法は、単1体時と重合後の体積変化の大きい構造
を有する化合物の分子膜のときには待に適している。ま
た、単分子膜または単分子層累積膜を基板の上に直接で
はなく、基板上にSs 、 ZnO。
This method is suitable for use in the case of a single compound and a molecular film of a compound having a structure with a large volume change after polymerization. In addition, Ss, ZnO are deposited on the substrate rather than the monolayer or monolayer cumulative film directly on the substrate.

CdSなどの光導電体層を形成し、その上に単分子膜ま
たは単分子層累積膜を形成することにより、単量体と重
合体の吸光度の差を電気的に読み収る、ことも可能であ
る。
By forming a photoconductor layer such as CdS and forming a monomolecular film or a monomolecular layer stack on top of it, it is also possible to electrically read the difference in absorbance between the monomer and polymer. It is.

情報の除去は、加熱、例えば300〜450 ℃により
解重合することによって行なう(第6図)。光記録媒体
の反復使用は、情報除去のための加熱により劣化がおこ
るが100回程度まで可能である。
Information is removed by depolymerization by heating, for example at 300-450 DEG C. (FIG. 6). Optical recording media can be used repeatedly up to about 100 times, although deterioration occurs due to heating to remove information.

光重合性ぞツマ−の単分子膜または単分子層累積膜を形
成する基板は特に限定されないが、基板表面に界面活性
物質が付着していると、単分子層を水面から移しとる時
に、単分子膜が乱れ、良好な単分子膜または単分子層累
積膜ができないので基板表面が清浄なものを使用する必
要がある。使、用することのできる基板の例としては、
ガラス。
The substrate on which a photopolymerizable monomolecular film or monomolecular layer cumulative film is formed is not particularly limited, but if a surfactant is attached to the surface of the substrate, the monomolecular layer may be removed from the water surface. Since the molecular film is disturbed and a good monomolecular film or monomolecular layer stack cannot be formed, it is necessary to use a substrate with a clean surface. Examples of substrates that can be used include:
glass.

アルミニクムなどの金属、プラスチック、セラミックな
どスフ:挙げられる。
Examples include metals such as aluminum, plastics, ceramics, etc.

基板上の単分子膜または単分子層累積膜は、十分に強く
固定されており基板からの剥離、剥落を生じることはほ
とんどないが、接着力を強化する目的で、基板と単分子
膜または単分子層累積膜の間に接着層を設けることもで
きる。さらに単分子層形成条件、例えば水相の水素イオ
ン濃度、イオン種、あるいは表面圧の選択等によっても
接着力を強化することもできる。
The monomolecular film or monomolecular layer stack on the substrate is sufficiently strongly fixed and rarely peels or peels off from the substrate. An adhesive layer can also be provided between the molecular layer stacks. Furthermore, the adhesive strength can also be strengthened by selecting the monomolecular layer formation conditions, such as the hydrogen ion concentration of the aqueous phase, the ionic species, or the surface pressure.

単分子膜または単分子層累積膜の上に保護膜を設けるこ
とは、単分子膜または単分子層累積膜の化学的安定性を
向上させるためには、好ましいことであるが、成膜分子
の逆捩によって保護膜は設けても設けなくてもよい。
Providing a protective film on a monomolecular film or a monomolecular layer stack is preferable in order to improve the chemical stability of the monomolecular film or monolayer stack; Depending on the reverse twist, a protective film may or may not be provided.

以下に本発明の実施例及び応用例を示して四に具体的に
説明する。
Examples and application examples of the present invention will be shown below and specifically explained in Section 4.

実施例1 2.5−ジスチリルピラジンのピラジン環上にn−オク
タデカノイル基を尋人した四級塩Aを成膜分子とし、表
面圧を一定に保ちながら表面が十分に清浄で親水性とな
っているガラスジん仮を水中に静かに上下させて単分子
11)′f!:を基t/i−t:に移しとり、単分子膜
および5 、10 、20 、30 、50 、70 
Example 1 A film-forming molecule was quaternary salt A in which an n-octadecanoyl group was added to the pyrazine ring of 2.5-distyrylpyrazine, and the surface was sufficiently clean and hydrophilic while keeping the surface pressure constant. Gently lower the glass resin into the water to make a single molecule 11)'f! : was transferred to the base t/i-t:, and a monomolecular film and 5, 10, 20, 30, 50, 70
.

100層に累積した単分子層系7蹟1j・4を記録層と
する光記録媒体を製造した。生成1i2>はピラジン環
側か基板に接している。
An optical recording medium having a recording layer of 100 layers of monomolecular layer system 7-layer 1j.4 was manufactured. The formation 1i2> is in contact with the pyrazine ring side or the substrate.

参考例1 実施例1で作成した光記録媒体にパターンに従ってX線
照射を行ない、式■の椋な重合を行ない情報を記録した
Reference Example 1 The optical recording medium prepared in Example 1 was irradiated with X-rays according to a pattern to perform the simple polymerization of formula (2) and record information.

Δ (VI) (過酸化塩イオンは成膜時に水相側に溶解する。)この
方法によれば、特に5〜70層に累積した記録層を有す
る光記録媒体は分子単位程度の高密度記録が可能であっ
た。
Δ (VI) (Peroxide ions are dissolved in the aqueous phase during film formation.) According to this method, an optical recording medium having a cumulative recording layer of 5 to 70 layers can record at a high density on the order of molecular units. was possible.

記録した情報を波長420 nmP可視光により再生し
たところS/N比よく再生が可能であった。
When the recorded information was reproduced using visible light having a wavelength of 420 nm, reproduction was possible with a good S/N ratio.

この光記録媒体を300℃に加熱し消去し、加熱後再び
パ・ターンに従ってX線照射を行ない情報を記録した。
This optical recording medium was heated to 300° C. for erasure, and after heating, X-ray irradiation was performed again according to the pattern to record information.

以上より、実施例1の光記録媒体は分子単位程度の11
5密度記録が可能である上、反復使用しうるものであっ
た。
From the above, the optical recording medium of Example 1 has 11
Not only was it capable of 5-density recording, but it could also be used repeatedly.

実施例2 H8COOCCH−CH+CH二CHC00(CHJI
7 CH3化合物見を成膜分子とし、実施例1と同様な
基板上に単分子膜を移しとる操作を繰り返し、10゜2
0 、50 、1.00 、200 、300 、40
0 、500層の累積の単分子層累積膜を製造した。
Example 2 H8COOCCH-CH+CH2CHC00 (CHJI
7 Using the CH3 compound as the film-forming molecule, repeat the operation of transferring the monomolecular film onto the same substrate as in Example 1.
0, 50, 1.00, 200, 300, 40
A monolayer stack of 0.500 layers was fabricated.

参考例2 実施例2で作成した光記録媒体にパターンに従って紫外
線照射を行ない照射部位に於いて重合を行ない情報を記
録した。
Reference Example 2 The optical recording medium prepared in Example 2 was irradiated with ultraviolet rays according to a pattern, polymerization occurred at the irradiated areas, and information was recorded.

記録した情報をシュリーレン法により、単F5゛休と重
合体の体積変化を測定することにより読み取ったところ
、特に10〜200層の1模について良好な読みとりを
行なうことができた。
When the recorded information was read by the schlieren method by measuring the change in volume of the monomer F5 and the polymer, good readings could be made especially for one sample of 10 to 200 layers.

実施例2の光記録媒体は高密1W記録、良好なpj生が
可能な上、参考例1と同様に反復使用しつるものであっ
た。
The optical recording medium of Example 2 was capable of high-density 1W recording and good pj production, and could be used repeatedly as in Reference Example 1.

実施例3 実施例1と同様にして、第1表に示す光tfI′合性モ
ノマーを用いて光記録媒体を製造した。
Example 3 In the same manner as in Example 1, an optical recording medium was manufactured using the optical tfI'-combining monomer shown in Table 1.

第1表 参考例3 実施例3で製造した光記録媒体に第2表に示した光を用
いて記録し、再生をhっだ。いずれも分子単位程度の高
密度記録が可能で、しかも、記録後の媒体を加熱するこ
とにより参考例1と同様に反復使用が可能であった。
Table 1 Reference Example 3 Recording was performed on the optical recording medium manufactured in Example 3 using the light shown in Table 2, and reproduction was performed for hours. In each case, high-density recording on the order of molecular units was possible, and in addition, repeated use was possible in the same manner as in Reference Example 1 by heating the medium after recording.

実施例4 成膜分子として CH3(CH2)、?!n’:pcH=cH−@)−’
cm=cH−@y見 見 用いて単分子層累積膜を製造した。2をクロロポルムに
溶解し、溶液を水相中に展開し、Cを膜状に析出させた
。同様にして厄をクロロポルムに溶解し、溶液を凪とは
別の水槽に展開し、尼を膜状に析出させた。表面圧を一
定に保ちながら表面が十分に清浄で親水性となっている
ガラス基板を見の水槽中に静かにおろして見の単分子膜
を基板上コ に移しとった。次に旦の水槽中におろして乃の単分子膜
を基板上に移しとった。この操作を繰り・違して、記録
層の膜厚50〜3000 Xの光記録媒体を作成した。
Example 4 CH3 (CH2) as a film forming molecule, ? ! n': pcH=cH-@)-'
A monomolecular layer cumulative film was prepared using cm=cH-@y. 2 was dissolved in chloroporum, and the solution was developed in an aqueous phase to precipitate C in the form of a film. In the same way, Nagi was dissolved in chloroporum, the solution was spread in a tank separate from Nagi, and Nagi was precipitated in a film. While keeping the surface pressure constant, a glass substrate whose surface was sufficiently clean and hydrophilic was gently lowered into a water tank, and the monomolecular film was transferred onto the substrate. Next, the monomolecular film was transferred onto a substrate by lowering it into a water bath. By repeating this operation, optical recording media with recording layers having thicknesses of 50 to 3000× were produced.

参考例4 実施例4で作成した光記録(媒体にパターンに従つてX
線照射を行ない情報を記録した。記録した情報を波長4
20 nmの可視光により再生したところ稿に記録層の
1し)厚が300〜3000 Xの光記録媒体において
s/N比よく再生が可能であった。
Reference Example 4 Optical recording created in Example 4 (X is printed on the medium according to the pattern)
Ray irradiation was performed and information was recorded. The recorded information is transmitted to wavelength 4.
When reproduced using 20 nm visible light, reproduction was possible with a good S/N ratio on an optical recording medium with a recording layer thickness of 300 to 3000×.

この光記録媒体を350℃に加熱し情報を除去し、その
後再びパターンに従ってX線照射を行ない情報を記録し
た。
This optical recording medium was heated to 350° C. to remove information, and then X-ray irradiation was performed again according to the pattern to record information.

以上より、実施例4の光記録媒体は、分子単位程度の高
密度記録が可能で、しかも、反復使用が可能であった。
From the above, the optical recording medium of Example 4 was capable of high-density recording on the order of molecular units, and moreover, could be used repeatedly.

実施例5 実施例4と同様にして第6表に示す光重合性モノマーの
組合せを用いて光記録媒体を製造した。
Example 5 An optical recording medium was produced in the same manner as in Example 4 using the combinations of photopolymerizable monomers shown in Table 6.

参考例5 実施例5で製造した光記録媒体に、第6表に示した光を
用いて記録し、再生を行なった。いずれも分子単位程度
の高密IW記録が可能で、しかも記録後の媒体を加熱す
ることにより参考例4と同様に反復使用が可能であった
Reference Example 5 Recording was performed on the optical recording medium manufactured in Example 5 using the light shown in Table 6, and reproduction was performed. In each case, high-density IW recording on the order of molecular units was possible, and repeated use was possible in the same manner as in Reference Example 4 by heating the medium after recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光重合性モノマーを用いた光記録媒体
へあ情報の記録を示した説明図、第2図は記録した情報
の読み取りを示した説明図、第6図は情報の除去を示し
た説明図である。 R8・・・親水基 R2・・・疎水基 1 ・・・基板 2 ・・・光(X線など) 6・・・重合 4 ・・・可視光 手続補正書(自発) 昭和59年 9月 1;日 特許庁長官 殿 1、19件の表示 昭和58年 特許願 第19093
2号2、発明の名称 光記録媒体用化合物 3、補正をする者 一=I−件との関係 特許出願人 (+00)キャノン株式会社 4−代 理 人 住所 東京都港区赤坂1丁目9番20号5S16興和ビ
ル8階 5、補正の対象 り1細書の発明の詳細な説明の柵 6、補正の内容 (1)明細占第17頁第10行の「基板をおろず」を「
基板を水中から引き上げる」に補正する。
Figure 1 is an explanatory diagram showing the recording of information on an optical recording medium using the photopolymerizable monomer of the present invention, Figure 2 is an explanatory diagram showing the reading of recorded information, and Figure 6 is an explanatory diagram showing information removal. FIG. R8...Hydrophilic group R2...Hydrophobic group 1...Substrate 2...Light (X-rays, etc.) 6...Polymerization 4...Visible light procedure amendment (voluntary) September 1980 1 ; Director General of the Japan Patent Office 1, Display of 19 cases 1982 Patent Application No. 19093
No. 2 No. 2, Name of the invention Compound for optical recording media 3, Person making the amendment = I- Relationship with the matter Patent applicant (+00) Canon Co., Ltd. 4- Agent Address 1-9 Akasaka, Minato-ku, Tokyo No. 20, 5S16, 8th floor, 5th floor, Kowa Building, subject to amendment 1 Detailed explanation of the invention in the specification 6, contents of the amendment (1) ``Remove the board'' in line 10 on page 17 of the specification
"Pull the board out of the water."

Claims (1)

【特許請求の範囲】 1、分子内に親水基、疎水基および少なくとも1個の不
飽和結合を有する光重合性モノマーからなる光記録媒体
用化合物。 2、fiJ記光型光重合性モノマー素原子数10〜3゜
の長鎖アルキル基を有するオンフィンモノマーであるこ
とを特徴とする特許請求の範囲第1項記載の光記録媒体
用化合物。
[Claims] 1. A compound for optical recording media comprising a photopolymerizable monomer having a hydrophilic group, a hydrophobic group, and at least one unsaturated bond in the molecule. 2. fiJ photopolymerizable monomer The compound for optical recording media according to claim 1, which is an onfin monomer having a long chain alkyl group having an elementary atom number of 10 to 3 degrees.
JP58190932A 1983-10-14 1983-10-14 Compound for optical recording medium Granted JPS6083237A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58190932A JPS6083237A (en) 1983-10-14 1983-10-14 Compound for optical recording medium
FR8415708A FR2553531B1 (en) 1983-10-14 1984-10-12 PHOTOPOLYMERIZABLE MONOMER FOR OPTICAL RECORDING MEDIUM AND MEDIUM CONTAINING SAME
DE3437724A DE3437724A1 (en) 1983-10-14 1984-10-15 RECORDING MATERIAL FOR OPTICAL RECORDING AND OPTICAL RECORDING METHOD USING THIS RECORDING MATERIAL
GB08426038A GB2149930B (en) 1983-10-14 1984-10-15 Optical recording medium and optical recording process using such medium
US06/870,425 US4766047A (en) 1983-10-14 1986-06-04 Optical recording medium and optical recording process using such medium
US07/062,330 US4804613A (en) 1983-10-14 1987-06-09 Optical recording medium and optical recording process using such medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190932A JPS6083237A (en) 1983-10-14 1983-10-14 Compound for optical recording medium

Publications (2)

Publication Number Publication Date
JPS6083237A true JPS6083237A (en) 1985-05-11
JPH0427959B2 JPH0427959B2 (en) 1992-05-13

Family

ID=16266079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190932A Granted JPS6083237A (en) 1983-10-14 1983-10-14 Compound for optical recording medium

Country Status (1)

Country Link
JP (1) JPS6083237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684210A (en) * 1992-09-04 1994-03-25 Yosuke Matsumoto Recording material, information recording and erasing device and information recording system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684210A (en) * 1992-09-04 1994-03-25 Yosuke Matsumoto Recording material, information recording and erasing device and information recording system

Also Published As

Publication number Publication date
JPH0427959B2 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
US4804613A (en) Optical recording medium and optical recording process using such medium
JPS6083237A (en) Compound for optical recording medium
JPS6085448A (en) Optical recordidng medium
JPH0452934B2 (en)
JPS60121442A (en) Photosensitive record memory medium and recording/ reproducing method
JPH0458615B2 (en)
JPS6083238A (en) Optical recording medium
JPS60239740A (en) Recording medium
JPS60241928A (en) Film forming method
JPS60239741A (en) Recording medium
JPS61143190A (en) Recording medium
JPS60239743A (en) Recording medium
JPS60239282A (en) Recording medium
JPS60241929A (en) Film forming method
JPH0259789B2 (en)
JPS60239742A (en) Recording medium
JPS61137779A (en) Recording medium
JPS61143186A (en) Recording medium
JPS61156120A (en) Recording medium
JPS61239988A (en) Recording medium
JPS61143185A (en) Recording medium
JPS61180237A (en) Recording medium
JPH0447632B2 (en)
JPS62140886A (en) Optical recording medium
JPS61137774A (en) Recording medium