JPS6083026A - Radiation image detector - Google Patents

Radiation image detector

Info

Publication number
JPS6083026A
JPS6083026A JP58190723A JP19072383A JPS6083026A JP S6083026 A JPS6083026 A JP S6083026A JP 58190723 A JP58190723 A JP 58190723A JP 19072383 A JP19072383 A JP 19072383A JP S6083026 A JPS6083026 A JP S6083026A
Authority
JP
Japan
Prior art keywords
image
optical
ray
light
image intensifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190723A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Takahashi
哲彦 高橋
Hisatake Yokouchi
久猛 横内
Keiji Umetani
梅谷 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58190723A priority Critical patent/JPS6083026A/en
Publication of JPS6083026A publication Critical patent/JPS6083026A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays

Abstract

PURPOSE:To attain a high spatial resolution and a high X-ray detection sensitivity and make high-speed read out possible by using an X-ray image intensifier as a device which converts a radiation image to an optical image and stores it. CONSTITUTION:X rays irradiated to a body 1 to be examined are transmitted through the body 1 to be examined and are made incident to an X-ray image intensifier 2 and are made incident to a film 3 which is adjacent to the image intensifier 2 and consists of optical isomerizing fluorescent materials. Since the optical isomerizing fluorescent film 3 converted to have a light emitting property by the optical isomerizing reaction has an absorption spectrum different from that before optical isomerization, it emits light with a read light 4 in the same wavelength range as the absorption spectrum after isomerization. The optical image is converted to position information, which is designated by a scanning signal of the read light 4, and an intensity signal determined by the output of a photodetector 6 and is stored as an image by the known image processing technique and is reproduced. The input diameter of an optical image detector 8 can be made large to a value approximately equal to the input diameter of the X- ray image intensifier 2, and the spatial resolution can be made higher than that of the X ray image intensifier 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本@明は、放射線画像検出装置に関し、特に広範囲にわ
たる強度の放射線画像を高いコントラストで検出するの
に好適な放射線画1象検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a radiation image detection device, and particularly to a radiation image single image detection device suitable for detecting a radiation image with high contrast over a wide range of intensities.

〔発明の背景〕[Background of the invention]

医療用診断に用いられる放射線画像システムとして、従
来、X線イメージインテンシファイア(映像増倍’#)
と、光画像検出器用′P■カメラによシX線画;象葡オ
ンラインで得る方法が広く知られている。
Traditionally, X-ray image intensifiers (image intensifiers) have been used as radiographic imaging systems used for medical diagnosis.
A widely known method is to obtain an X-ray image using an optical image detector's camera.

しかし、この方式では、X線イメージインテンシファイ
アの入力口径と、TVカメラの入力口径の比が約25:
1であるため、TVカメラの空間分解能が70tp/m
(10%変調度)であっても芙際の空間分解能は70/
25=3Ap/mm程度となってしまう。X=イメージ
イ/テンシファイアの空間分解能はsLp/wn(10
%変調匿)でおるので、この性能を発揮できるシステム
を考えるためには、TVカメラの空間分解能を向上させ
るか、または、X線イメージインテンシファイアの入力
口径とTVカメラの入力口径との比を小びくする必要が
ある。しかるに、TVカメラの空間分解能は既に70L
p/rtmと非帛に良く、これ以上の高分解能は、走査
電子ビーム径を絞り切れないため無理と考えられる。X
線イメージインテンシファイアの入力口径は、医療診断
上の必要性から小さくすることができない。TVカメラ
の入力口径を大きくすることも、電子ビーム走歪面の構
造が大面積化に適していないので無理でβる。
However, in this method, the ratio of the input aperture of the X-ray image intensifier to the input aperture of the TV camera is approximately 25:
1, so the spatial resolution of the TV camera is 70 tp/m.
(10% modulation degree), the spatial resolution at the edge is 70/
25 = about 3 Ap/mm. X = Image I/The spatial resolution of the tensifier is sLp/wn (10
Therefore, in order to develop a system that can achieve this performance, it is necessary to improve the spatial resolution of the TV camera, or to improve the ratio of the input aperture of the X-ray image intensifier to the input aperture of the TV camera. It is necessary to tame the situation. However, the spatial resolution of the TV camera is already 70L.
p/rtm, which is fairly good, and higher resolution than this is considered impossible because the diameter of the scanning electron beam cannot be narrowed down. X
The input aperture of a line image intensifier cannot be made small due to medical diagnostic needs. It is also impossible to increase the input aperture of the TV camera because the structure of the electron beam strain plane is not suitable for increasing the area.

このような理由から、Xrdイメージインテンシファイ
アを用いたシステムの高望間分解能化を実現するために
、TVカメラに替わる大口径入力面を持つ光画像検出器
を用いたオンラインX ifM画像検出装置が望まれて
いる。
For these reasons, in order to achieve high viewing resolution in a system using an Xrd image intensifier, an online X ifM image detection device using an optical image detector with a large-diameter input surface instead of a TV camera was developed. is desired.

一方、発明者らは先に、放射線画像を光画像に変換、蓄
積する装置としてX線増感紙を採用し、光画像・演出器
として光異性化蛍光材を用いた放射線画像検出方式を考
案し特許出願した。この方式は所要放射線量の低減化、
高速読出しに適している。また、光異性化蛍光材料を用
いた光画像検出器は、その入力口径を大きくすることも
容易である。しかし、この方式においては、検出可能な
最低Xi量をより下げることが望まれている。
On the other hand, the inventors had previously devised a radiation image detection method that adopted an X-ray intensifying screen as a device for converting and storing radiation images into optical images, and used a photoisomerizable fluorescent material as an optical image/presentation device. A patent application was filed. This method reduces the required radiation dose,
Suitable for high-speed reading. Furthermore, it is easy to increase the input aperture of an optical image detector using a photoisomerizable fluorescent material. However, in this method, it is desired to lower the minimum detectable amount of Xi.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のような従来技術の問題点を解消
し、空間分解能、およびX勝検出感度が高く、かつ高速
読出しの可能な放射線画像検出方式を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art as described above, and to provide a radiation image detection method that has high spatial resolution and high X-win detection sensitivity, and is capable of high-speed readout.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、放射線画像を光画
像に変換、蓄積する装置ぼと、光画像を電気信号に変換
する装置とr有する放射線1−像検出装置において、前
記放射線画像を光画像に変換、蓄積する装置としてX線
イメージインテンシファイアを用い、前日己光画像を電
気信号に変換する装置は光異性化蛍光材料と、読出し用
励起光と、前記光異性化蛍光材料よシ発する蛍光を読取
るだめの光検出器と、前記光異性化蛍光材料を異性化前
の状態に変換し前記光画像を消去する消去用光源とによ
、!lll構成したことに特徴がある。
In order to achieve the above object, the present invention provides a radiation image detection device that includes a device that converts and stores a radiation image into an optical image, and a device that converts the optical image into an electrical signal. An X-ray image intensifier is used as a device for converting and accumulating images, and a device for converting the previous day's self-optical image into an electrical signal uses a photoisomerizable fluorescent material, excitation light for readout, and a signal from the photoisomerizable fluorescent material. By means of a photodetector for reading the emitted fluorescence, and an erasing light source for converting the photoisomerized fluorescent material to the state before isomerization and erasing the optical image! It is characterized by its 1ll structure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一芙施例を図面を用いて説明する。 Hereinafter, one embodiment of the present invention will be described using the drawings.

第3図は、本発明の一夷飾例を示す図である。FIG. 3 is a diagram showing a decorative example of the present invention.

被検体1に照射されたX線は、被検体1を透過後、X線
イメージインテンシファイア2に入射される。このX線
イメージインテンシファイアの縮小率は1であってもか
まわない。また、X線イメージインテン/ファイアは、
X縁全電子に変換し、電場により加速したのち蛍光体に
入射せしめ、X線像を光画像に変化させる工9なもので
あれば如何なる機構でりりでもよい。
The X-rays irradiated onto the subject 1 are incident on the X-ray image intensifier 2 after passing through the subject 1 . The reduction ratio of this X-ray image intensifier may be 1. In addition, X-ray image intensity/fire is
Any mechanism may be used as long as it converts all the electrons into X-edge electrons, accelerates them by an electric field, and then makes them incident on a phosphor to change an X-ray image into a light image.

X線イメージインテンシファイア2に入射されたX線は
、隣接する光異性化面光材料よシ成る膜(以下、この膜
を光)″4性化蛍光膜と呼ぶ)3に入射する。X線イメ
ージインテンシファイア2の出力面と光異性化蛍光膜3
とは一体化してもよい。
The X-rays incident on the X-ray image intensifier 2 are incident on an adjacent film 3 (hereinafter referred to as a "tetramerized fluorescent film") made of a photoisomerizable surface material. Output surface of line image intensifier 2 and photoisomerizable fluorescent film 3
It may be integrated with.

また、X線イメージインテン/ファイア2と光異性化蛍
光膜3との間に光学レンズを設けてもよい。
Further, an optical lens may be provided between the X-ray image inten/fire 2 and the photoisomerizable fluorescent film 3.

光異性化蛍光膜3は、例えば、シス型ベリナフトチオイ
ンジゴのように1発光効率が01 もしくは極めて低い
化合物を有する薄膜でアシ、特定の光を照射することに
よシ異性化し、発光効率の高い化合物、例えばト之ンス
型ペリナフトチオインジゴに変化する性質を有する。
The photoisomerizable fluorescent film 3 is, for example, a thin film containing a compound such as cis-type berinaphthothioindigo, which has a luminous efficiency of 0.01 or extremely low, and isomerized by irradiation with a specific light to increase the luminous efficiency. It has the property of converting into highly concentrated compounds, such as tonnose-type perinaphthothioindigo.

X線イメージインテンシファイア2の出力面の蛍光体の
発光スペクトルと光異性化蛍光膜3の異性化(使用)前
の吸収スペクトルとが同一波長範囲になるように両者を
選定する。光異性化反応により発光性に変換された光異
性化蛍光膜3は、光異性化前の吸収スペクトルとは異る
吸収スペクトルを持つので、その異性化後の吸収スペク
トルと同一波長範囲にある読出し光4によ多発光させる
The emission spectrum of the phosphor on the output surface of the X-ray image intensifier 2 and the absorption spectrum of the photoisomerizable phosphor film 3 before isomerization (use) are selected so that they are in the same wavelength range. The photoisomerizable fluorescent film 3 that has been converted into luminescent material by the photoisomerization reaction has an absorption spectrum different from the absorption spectrum before photoisomerization. Light 4 is used to emit multiple lights.

耽出し光4はレーザ光のように集束された光であシ、そ
の光束は約30μmの直径程度が望ましい。
The illuminating light 4 is a focused light such as a laser beam, and the diameter of the luminous flux is preferably about 30 μm.

本芙施′v/uではHe−Neレーザを使用した。この
耽出し光4によシ光異性化蛍光j摸3を走査する。
In this version, a He-Ne laser was used. The photoisomerized fluorescent light 3 is scanned by this illuminating light 4.

抗出し光4の吸収により生じた光異性化蛍光膜3からの
発光は、光検出器6に導かれる。光検出器6の前面にフ
ィルター5を配置し、光異性化蛍光膜3により散乱反射
された読出し光4を遮断し、光異性化蛍光膜3からの発
光のみを光検出器6に導くようにする。
The light emitted from the photoisomerizable fluorescent film 3 caused by absorption of the emitted light 4 is guided to a photodetector 6. A filter 5 is placed in front of the photodetector 6 to block the readout light 4 that has been scattered and reflected by the photoisomerizable fluorescent film 3 and guide only the light emitted from the photoisomerizable fluorescent film 3 to the photodetector 6. do.

以上のようにして被写体1を透過したX線像は、読出し
光4の走査信号によって指定された位置情報と、光検出
器6の出力によって定められた強度信号に変換され、既
知の画像処理技術によ多画像として貯蔵、再生される。
The X-ray image transmitted through the object 1 as described above is converted into position information specified by the scanning signal of the readout light 4 and an intensity signal determined by the output of the photodetector 6, using known image processing techniques. It is stored and reproduced as multiple images.

また、上記使用された光異性化蛍光膜3は、つぎの方法
で再生され、再使用可能となる。すなわち、発光性化合
*(トンンス型ペリナフトチオインジゴ)の吸収スペク
トルをもつ消去用光源7からの光を照射することにより
、発光性化合切は非光光性化合物(シス型ベリナフトチ
オインジゴ)に賀換さ扛る。
Further, the photoisomerizable fluorescent film 3 used above can be recycled and reused by the following method. That is, by irradiating the light from the erasing light source 7 with the absorption spectrum of a luminescent compound* (tons-type perinaphthothioindigo), the luminescent compound is removed from a non-photoactive compound (cis-type berinaphthothioindigo). It will be replaced.

ところで、光画像検出器の空間分解能をAとし、LJイ
メージインテンシファイア2の入力口径と光画像検出器
の入力口径との比をBとすれば、実際に像の存在する空
間での光画像検出器の空間分解能Sは、はぼ 5=AXB ・・・・・・・・・(1)となる。
By the way, if the spatial resolution of the optical image detector is A, and the ratio of the input aperture of the LJ image intensifier 2 to the input aperture of the optical image detector is B, then the optical image in the space where the image actually exists is The spatial resolution S of the detector is 5=AXB (1).

光画像検出器として1゛vカメラを用いた場合は、A=
 70 t p /rtup桂度であシ、B≦1/25
=0.04程度であるので、実間でのTV左カメラ空間
分解能Sの最大は2.81 p/mm程度となる。これ
を示したのが第2図である。
When a 1゛v camera is used as an optical image detector, A=
70 t p /rtup degree, B≦1/25
= approximately 0.04, the maximum spatial resolution S of the TV left camera in real life is approximately 2.81 p/mm. Figure 2 shows this.

本実施しリによる光典性化蛍光ノ換3r主構成要素とす
る光画像検出器8は、その入力面の口径をX線イメージ
インテンシファイア2の入力口径と同じ(すなわち、B
=1j位まで大きくすることができる。葦だ、その空間
分解能Aは抗出し光4のスポット径で叉配さ汎、現在の
技術で15tp/mm程度である。ところで、前述のよ
うにX線イメージインテンシファイア2の空間分解能は
5tp/ mm程度なので、装置全体としてこの程度の
空間分解能′に得るよう光画像検出器8の実部での空間
分解能Sも5tp/mrn以上とするには、光画像検出
器8そのものの空間分解能が157p/rnlnである
場合、光画像検出器8の入力口径はX線イメージインテ
ンシファイア2の入力口径の1/3以上、すなわちB≧
1/3とすれば良い。これを示したのが第3図である。
The optical image detector 8, which has the main component of the photonic fluorescence exchanger 3r according to this embodiment, has the aperture of its input surface the same as the input aperture of the X-ray image intensifier 2 (i.e., B
= 1j. The spatial resolution A is approximately 15 tp/mm with current technology, which is divided by the spot diameter of the emitted light 4. By the way, as mentioned above, the spatial resolution of the X-ray image intensifier 2 is about 5 tp/mm, so the real part spatial resolution S of the optical image detector 8 is also 5 tp/mm in order to obtain this level of spatial resolution for the entire device. /mrn or more, if the spatial resolution of the optical image detector 8 itself is 157p/rnln, the input aperture of the optical image detector 8 should be 1/3 or more of the input aperture of the X-ray image intensifier 2, That is, B≧
It is sufficient to set it to 1/3. Figure 3 shows this.

このように、本実施例では光画像検出器80入力ロ径を
X縁イメージインテンシファイア20入力ロ径と1よば
同程度まで太さくす0ことができ、光画像検出器8の天
面での空間分解能をX1dイメージインテンシフアイア
2の至間分hイIrQよシ大きくすることかでさる。し
たがって、装置全体の梁間分解能はX+Jj?イメージ
インrンシファイア2の望間分屏ntや照射X線管の焦
点の大きさで人定され、元画−・医出器としてTVカメ
ラ金用いた場合よシ空間分)リイ龍が同上する。
In this way, in this embodiment, the diameter of the input terminal of the optical image detector 80 can be reduced to about the same diameter as the input terminal diameter of the X-edge image intensifier 20, and the top surface of the optical image detector 8 can be This can be achieved by increasing the spatial resolution of the X1d image intensifier 2 by an amount greater than that of the IrQ. Therefore, the inter-beam resolution of the entire device is X+Jj? It was determined by the size of the screen of the image insulator 2 and the focal point of the irradiation X-ray tube, and the original image was determined by the size of the focal point of the irradiation X-ray tube. .

また、本災施例で更用した大口径光画像検出器8は、レ
ーザビーム走査によ多画像読出しを行い、また光異性化
蛍光膜3の兄光減衰特注が短いため高速読出しができる
。また、元画1家の消去は、強力な消去光を照射するこ
とによシ短時間で行えるので、短時間間隔による繰返し
欧州が可能となシ、TV左カメラ式の瞬時性を損うこと
はない。
In addition, the large-diameter optical image detector 8, which was used in the disaster example, performs multi-image readout by laser beam scanning, and high-speed readout is possible because the custom-made optical attenuation of the photoisomerizable fluorescent film 3 is short. In addition, since erasing of the original picture can be done in a short time by irradiating a powerful erasing light, it is possible to repeat the erasure at short intervals, thereby impairing the instantaneousness of the TV left camera method. There isn't.

さらに、放射線画像を光画像に変換、蓄積する装置とし
てX線イメージインテンシファイア2を用いることによ
シ、光異性化蛍光膜3に入射する光の頻度は、単にX線
増感紙でX線を光に変換した場合にくらべ100倍8腿
でるることから、X線に対する感度も非常に艮くなシ、
検出可能な最低X線量を小さくすることができる。
Furthermore, by using the X-ray image intensifier 2 as a device for converting and accumulating radiation images into optical images, the frequency of light incident on the photoisomerizable fluorescent film 3 can be controlled by simply using an X-ray intensifying screen. The sensitivity to X-rays is also very low, as it is 100 times more sensitive than when converting rays to light.
The minimum detectable X-ray dose can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明し/こように、本発明によれば、空間分解能、
およびX線検出感度が高く、かつ高速読出しの可能な放
射線画像構出装置を央現することができる。
As explained above, according to the present invention, the spatial resolution,
In addition, a radiographic image composition device with high X-ray detection sensitivity and high-speed readout can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による放射祿幽稼恢出装匝の原理を説明
するだめの図、第2図は従来の光画像検出器の系間での
空間分解能を示す図、第3図は本発明の一実施例による
光画像検出器の夷面での空間分解能を示す図である。
Figure 1 is a diagram for explaining the principle of the radiation detector according to the present invention, Figure 2 is a diagram showing the spatial resolution between the systems of a conventional optical image detector, and Figure 3 is a diagram of the present invention. FIG. 3 is a diagram showing the spatial resolution of the optical image detector according to an embodiment of the invention in the plane of the image plane.

Claims (1)

【特許請求の範囲】[Claims] 1、放射線画像を光画像に変換、蓄積する装置と、光1
111i像を或気旧号に変換する装置とを有する放射線
画像検出装置において、前記放射線画像を光画像に変換
、蓄積する装置としてX線イメージインテンシファイア
を用い、前記光画像を電気信号に変換する装置は光異性
化蛍光材料と、挽出し用励起光と、前記光異性化蛍光材
料より発する蛍光を読取るための光検出器と、前記光異
性化蛍光材料を異性化前の状態に変換し前記光画像を消
去する消去用光源とにより構成したことを待機とする放
射線画像検出装置。
1. A device that converts and stores radiation images into optical images, and light 1.
In a radiation image detection device having a device for converting a 111i image into an old name, an X-ray image intensifier is used as a device for converting and storing the radiation image into an optical image, and the optical image is converted into an electrical signal. The device includes a photoisomerizable fluorescent material, excitation light for extraction, a photodetector for reading fluorescence emitted from the photoisomerizable fluorescent material, and a device that converts the photoisomerizable fluorescent material to a state before isomerization. A radiation image detecting device configured as a standby device and comprising an erasing light source for erasing the optical image.
JP58190723A 1983-10-14 1983-10-14 Radiation image detector Pending JPS6083026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190723A JPS6083026A (en) 1983-10-14 1983-10-14 Radiation image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190723A JPS6083026A (en) 1983-10-14 1983-10-14 Radiation image detector

Publications (1)

Publication Number Publication Date
JPS6083026A true JPS6083026A (en) 1985-05-11

Family

ID=16262738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190723A Pending JPS6083026A (en) 1983-10-14 1983-10-14 Radiation image detector

Country Status (1)

Country Link
JP (1) JPS6083026A (en)

Similar Documents

Publication Publication Date Title
US4852137A (en) Imaging of light-opaque specimens by transmission of radiation therethrough
JPH0563064B2 (en)
JPS5915843A (en) Radiation analysis of structure
US6404848B1 (en) X-ray image radiographing method and X-ray image radiographing apparatus
JPS59232337A (en) Reading method of radiant ray image information
US4816690A (en) Method and apparatus for radiation image recording and read-out including control of read-out in accordance with irradiation field definition
US5352896A (en) High energy radiation detector including a radiation to light converter having baffle plates extending toward a light detector
US3515870A (en) X-ray system for superimposing the image of a reference object and an x-ray image
JPS6083026A (en) Radiation image detector
JPS58213274A (en) Radiant ray picture information reading method
JPS5974545A (en) Reading method of radiation picture
Goetze et al. Direct Viewing and Rapid Photographic Recording of X‐Ray Diffraction Patterns
US20030086522A1 (en) X-ray image storage unit and readout device, and subtraction angiography method employing same
JPH0693075B2 (en) Radiation image recording and reading method
Goetze et al. Recent applications of transmission secondary emission amplification
JPH09138203A (en) Inspection apparatus for x-ray fluorescent image
JPS5867241A (en) Apparatus for reading out radioactive image information
JPS59117057A (en) Radioactive ray image converter
McClain et al. Digital Imaging–Real-Time, Computed, and Digital Radiography
JPS6180235A (en) Noise erasing device for accumulative phosphor sheet
JPH0558213B2 (en)
JPS5867242A (en) Apparatus for reading out radioactive image information
JPS6088934A (en) Radiation image detector
JPS6011836A (en) Radiation image converter
JPH0616397B2 (en) Electron microscope image recording / reading device