JPS6081420A - Exhaust manifold of internal-combustion engine - Google Patents

Exhaust manifold of internal-combustion engine

Info

Publication number
JPS6081420A
JPS6081420A JP18947283A JP18947283A JPS6081420A JP S6081420 A JPS6081420 A JP S6081420A JP 18947283 A JP18947283 A JP 18947283A JP 18947283 A JP18947283 A JP 18947283A JP S6081420 A JPS6081420 A JP S6081420A
Authority
JP
Japan
Prior art keywords
exhaust manifold
inner pipe
pipe unit
pipe body
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18947283A
Other languages
Japanese (ja)
Inventor
Yutaka Tazaki
豊 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18947283A priority Critical patent/JPS6081420A/en
Publication of JPS6081420A publication Critical patent/JPS6081420A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To improve an effect of heat insulation and form an exhaust manifold in light weight, by forming the main unit of the exhaust manifold to double construction comprising an inner pipe unit molding ceramic fiber and an outer pipe unit made of aluminum integrally cast into the inner pipe unit. CONSTITUTION:The main unit 10 of an exhaust manifold comprises an inner pipe unit 11, in which ceramic fiber such as silica alumina fiber, alumina fiber and silica fiber is molded, and an outer pipe unit 12 cast outside the inner pipe unit 11 by using an aluminum material. In this way, the main unit 10 of the exhaust manifold can be formed to integral construction of all cylinders by preventing excessive thermal heat from being applied to the inner pipe unit because molten aluminum at a low temperature is used for the outer pipe unit 12 when it is cast.

Description

【発明の詳細な説明】 (技術分野) この発明は、内燃機関の排気マニホールドに関する。[Detailed description of the invention] (Technical field) The present invention relates to an exhaust manifold for an internal combustion engine.

(背景並びに従来技術) 一般に、自動車用多気筒内燃機関においては、その各気
筒の排気口に直接接続するようにして排気マニホールド
(排気多岐管)が用いられることは良く知られてお9、
またこの排気マニホールドは、製造及び組付時の種々の
熱的悪影響全回避したりまたは軽量化をはかるために、
その構造に種々の工夫がなされていることも良く知られ
ている。
(Background and Prior Art) It is well known that in general, multi-cylinder internal combustion engines for automobiles use exhaust manifolds (exhaust manifolds) that are directly connected to the exhaust ports of each cylinder9.
In addition, this exhaust manifold is designed to completely avoid various thermal effects during manufacturing and assembly, and to reduce its weight.
It is also well known that various improvements have been made to its structure.

従来の排気マニホールドとしては、例えば実公昭56−
37047号公報や実開昭57−47713号公報にみ
られるものがあり、このうち後者につき第1図(4)、
■)に示す。
As a conventional exhaust manifold, for example,
There are some that can be seen in Publication No. 37047 and Publication of Utility Model Application No. 57-47713, of which the latter is shown in Figure 1 (4),
■) Shown below.

これは、排気マニホールド本体1を、固体のセラミック
材を用いて所定の多岐管形状に成形してなる内側管体2
と、この内側管体2を一体重に鋳込むようにして鋳造成
形された上記管体2と略相似形の鋳鉄製外側管体3とか
らなる二重管構造に形成すると共に、気筒列方向に3分
割して形成する。
This is an inner pipe body 2 formed by molding an exhaust manifold main body 1 into a predetermined manifold shape using a solid ceramic material.
The inner pipe body 2 is formed into a double pipe structure consisting of the cast iron outer pipe body 3 having a substantially similar shape to the pipe body 2 which is cast in one piece. Divide and form.

これによれば、上記セラミック材の使用により、重量の
重い鋳鉄材料からなる部分の大幅な削減が可能になって
排気マニホールド本体lの軽量化がはかれるのである。
According to this, by using the ceramic material, it is possible to significantly reduce the portion made of heavy cast iron material, and the weight of the exhaust manifold body 1 can be reduced.

一方、排気マニホールド本体1の鋳造時に内側管体2に
加わる熱衝撃や、機関の運転、停止に伴う熱応力、振動
等は、上述した3分割構造により効果的に吸収される。
On the other hand, thermal shocks applied to the inner pipe body 2 during casting of the exhaust manifold main body 1, thermal stress, vibrations, etc. due to engine operation and stoppage are effectively absorbed by the three-part structure described above.

換言すれば、内側管体2に柔軟性のない固体状セラミッ
ク材を、また外側管体3に融点の高い鋳鉄(鋳造時の溶
湯温度は] 、 500〜1,600°C)を用いるた
め、排気マニホールド本体1の製造時には上述した熱衝
撃が、また組付時には両者2.3の熱膨張係数の違いに
よって上述した熱応力等が内側管体2に作用し、これに
よって内側管体2が破損するのが上述した3分割構造に
よジ未然に回避されるのである。
In other words, since the inner tubular body 2 is made of inflexible solid ceramic material, and the outer tubular body 3 is made of cast iron with a high melting point (molten metal temperature during casting is 500 to 1,600°C), During manufacture of the exhaust manifold main body 1, the above-mentioned thermal shock is applied, and during assembly, the above-mentioned thermal stress etc. acts on the inner pipe body 2 due to the difference in thermal expansion coefficient of 2.3 between the two, which causes damage to the inner pipe body 2. This problem can be avoided by the above-mentioned three-part structure.

ところが、このような従来の内燃機関の排気マニホール
ドにあっては、排気マニホールド本体lが上述したよう
な種々の熱的悪影響を回避するために長手方向に3分割
する構造になっていたため、部品点数の増大で製造並び
に組付工数が増加してコストアップになるという問題点
があった。
However, in such conventional exhaust manifolds for internal combustion engines, the exhaust manifold main body l is divided into three parts in the longitudinal direction in order to avoid various adverse thermal effects as described above, so the number of parts is reduced. There is a problem in that the increase in the number of steps increases manufacturing and assembly man-hours, leading to an increase in costs.

また、内側管体2を形成する固体状セラミック材は気孔
率が低く断熱性が十分でないため(換言すれば、外側管
体3の温反が高くなるため)、外側管体3に耐熱性の高
い鋳鉄等の材料を用いることが不可欠となり、これがア
ルミ材等を用いて徹底した軽量化をはかることができな
い重装な要因となっていた。
In addition, since the solid ceramic material forming the inner pipe body 2 has a low porosity and does not have sufficient heat insulation properties (in other words, the temperature resistance of the outer pipe body 3 becomes high), the outer pipe body 3 is made of heat-resistant material. It became essential to use materials such as expensive cast iron, and this was a factor in the heavy equipment, making it impossible to achieve thorough weight reduction using materials such as aluminum.

(発明の目的) この発明は、このよう々従来の問題点に着目してなされ
たもので、一体構造によるコストダウンとアルミ材の使
用による徹底した軽量化がはかれる排気マニホールドを
提供すること全目的とする。
(Purpose of the Invention) This invention was made by focusing on these conventional problems, and the overall purpose of this invention is to provide an exhaust manifold that can reduce costs due to its integral structure and is completely lightweight due to the use of aluminum material. shall be.

(発明の構成並びに作用) 上記目的を達成するために、この発明では上述したよう
な自動車用多気筒内燃機関の排気マニホールドにおいて
、セラミックファイバ1用いて所定の多岐管形状に成形
してなる内側管体と、この内側管体音一体的に鋳込むよ
うにして鋳造成形された上記管体と略相似形のアルミ製
外側管体とで、二重管構造の排気マニホールド本体を形
成するように構成される。
(Structure and operation of the invention) In order to achieve the above object, the present invention provides an exhaust manifold for an automobile multi-cylinder internal combustion engine as described above, in which an inner pipe is formed using ceramic fiber 1 into a predetermined manifold shape. An exhaust manifold body with a double pipe structure is formed by the inner pipe body and an aluminum outer pipe body having a substantially similar shape to the above-mentioned pipe body, which is cast integrally with the inner pipe body. .

これによれば、熱伝導率の小さいセラミックファイバ製
の内側管体によって高温の排気熱が断熱されるため、外
側管体には融点の低いアルミ利でも十分使用可能となり
、鋳鉄製に比べて大幅に重量が軽減される。
According to this, because the high-temperature exhaust heat is insulated by the inner tube made of ceramic fiber with low thermal conductivity, aluminum with a low melting point can be used for the outer tube, which is significantly more efficient than cast iron. weight is reduced.

また、セラミックファイバ製の内側管体は固体状セラミ
ックより大幅に柔軟性がある一方、アルミ材は上述した
ように鋳鉄に比べて大幅に融点が低い(鋳造時の溶湯温
度は約700°C位である)ため、鋳造時等において内
側管体に発生する熱応力はわずかであり、これにより破
損する心配はないので、一体構造の排気マニホルドが形
成可能となってコストダウンがはかれる。
Additionally, while the ceramic fiber inner tube is much more flexible than solid ceramic, aluminum has a much lower melting point than cast iron (the temperature of the molten metal during casting is approximately 700°C), as mentioned above. ), the thermal stress generated in the inner tube body during casting etc. is small, and there is no risk of damage due to this, making it possible to form an exhaust manifold with an integral structure, thereby reducing costs.

(実施例) 以下、この発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図(4)、[F]) 、 (C)に示すように、捷
ず排気マニホールド本体10は全気筒分が一体構造で形
成される。
As shown in FIGS. 2(4), [F]) and (C), the exhaust manifold body 10 for all cylinders is integrally formed.

更に、この排気マニホールド本体10は内側管体11と
外側管体12との二重管構造で形成される。
Furthermore, this exhaust manifold main body 10 is formed with a double pipe structure including an inner pipe body 11 and an outer pipe body 12.

上記内側管体11は、セラミックファイバを用いて所定
の多岐管形状に成形される一方、外側管体12はアルミ
材を用いて上記内側管体11を一体的に鋳込むようにし
て該管体11七略相イυ形に鋳造成形される。
The inner tube 11 is formed into a predetermined manifold shape using ceramic fiber, while the outer tube 12 is made of aluminum and is integrally cast with the inner tube 11. It is cast into a roughly A υ shape.

上記内側管体11を成形するセラミックファイバの材質
として、シリカ・アルミナファイバ、アルミナファイバ
及びシリカファイバ等が用いしれると共に、その性状の
一例をあげると下記のものとなり、このような成形体は
曲げ強さに代表されるように強度、剛性と硬さをもち綿
状のファイバとは全く異るものである。
Silica/alumina fiber, alumina fiber, silica fiber, etc. are used as the material of the ceramic fiber used to form the inner tube body 11, and examples of their properties are as follows. It has strength, rigidity, and hardness, and is completely different from cotton-like fiber.

また、上記内側管体11は、シリカ系水溶液春バインダ
ーを含浸させた薄いペーパ状のセラミツクファイバを何
枚も積層して成形するペーパ積層法またはセラミックフ
ァイバを浮遊させた水溶液の中に金網の型を入れてサク
ションにより成形する真空成形法を用いて半割りまたは
一体品として成形する。
The inner tubular body 11 may be formed by a paper lamination method in which a number of thin paper-like ceramic fibers impregnated with a silica-based aqueous solution spring binder are laminated or molded, or by a wire mesh mold in an aqueous solution in which ceramic fibers are suspended. It is molded into halves or as a single piece using a vacuum forming method in which the material is placed in the mold and formed using suction.

尚、真空成形法を用いると、金網の型に接する側すなわ
ち排気ガス通路側が高密度となり排気ガスによるファイ
バのむくれ等に対して耐久性をもつと共に、アルミ材の
外側管体12との接合部は幾分軟質となるので熱応力の
吸収に有利である。
Note that when the vacuum forming method is used, the side of the wire mesh that contacts the mold, that is, the exhaust gas passage side, has a high density, making it durable against swelling of the fibers due to exhaust gas, and the joint with the aluminum outer tube body 12. Since it is somewhat soft, it is advantageous in absorbing thermal stress.

また、ベーパ積層法を用いると均質な密度となり強度が
高くなるという利点がある。
Furthermore, the vapor lamination method has the advantage of providing a homogeneous density and increasing strength.

このように本実施例では、排気マニホールド本体10(
外側管体12)の鋳造時には、従来の鋳鉄に比べて大幅
に温度の低い700°C付近のアルミの溶湯音用いるこ
とになるので、内側管体11との温度落差が略半分に減
少し、さらに内側管体11を従来の固体状セラミックよ
p大幅に柔軟性のあるセラミックファイバの成形体とし
たため、内側管体11に発生する熱応力はわずかなもの
となり、内側管体11の破損を防止できる。
In this way, in this embodiment, the exhaust manifold main body 10 (
When casting the outer tubular body 12), molten aluminum at a temperature of around 700°C, which is much lower than conventional cast iron, is used, so the temperature difference with the inner tubular body 11 is reduced by approximately half, Furthermore, since the inner tube 11 is made of a molded ceramic fiber that is much more flexible than conventional solid ceramics, the thermal stress generated in the inner tube 11 is minimal, preventing damage to the inner tube 11. can.

換言すれば、排気マニホールド本体10i全気筒一体構
造で形成でさ、部品点Vの減少で製造並びに組付工数が
削減されてコストダウンがはかれる。
In other words, since the exhaust manifold main body 10i is formed of an integrated structure for all cylinders, the number of parts V is reduced, so the manufacturing and assembly man-hours are reduced, and costs are reduced.

尚、以下に代表的な固体セラミックの熱衝撃による破損
限界温度落差を示す。
The critical temperature drop for failure due to thermal shock of typical solid ceramics is shown below.

また、本実施例では内側管体11がセラミックファイバ
製であるため、従来の固体セラミック製より熱伝導率が
小さいので、排気ガスが冷却されず排気路に設けた触媒
の浄化効率が向上する一方、外側管体12を加熱昇温さ
せないので外側管体12に融点の低いアルミ材を用いる
ことを十分可能としている。
In addition, in this embodiment, since the inner pipe body 11 is made of ceramic fiber, its thermal conductivity is lower than that of conventional solid ceramics, so the exhaust gas is not cooled and the purification efficiency of the catalyst provided in the exhaust path is improved. Since the outer tubular body 12 is not heated, it is possible to use an aluminum material with a low melting point for the outer tubular body 12.

尚、以下にセラミック及び比較のため空気の熱伝導率と
、機関高負荷運転時(排気ガス温度750〜850°C
)の排気マニホールド本体10における内側管体11と
外側管体12との境界面の温度を示す。
The following is the thermal conductivity of ceramic and air for comparison, and the temperature during high engine load operation (exhaust gas temperature 750 to 850°C).
) shows the temperature at the interface between the inner pipe body 11 and the outer pipe body 12 in the exhaust manifold main body 10.

このようにして、外側管体12にアルミ材が使用可能と
なる結果、鋳鉄製の従来例に比べて排気マニホールド本
体10の重量が大幅に軽減され、機関の軽量化がはかれ
る。
In this way, aluminum material can be used for the outer tube body 12, and as a result, the weight of the exhaust manifold body 10 is significantly reduced compared to the conventional example made of cast iron, and the weight of the engine can be reduced.

次に、第3図はこの発明の第2実施例を示すもので、セ
ラミックファイバー製の内側管体11の内周面にコーテ
ィング層(セラミックファイノ;硬化層)13を施し、
長期間使用による繊維のほつれ、飛散を防止するように
した例である。つまり、内側管体11を形成するセラミ
ックファイノ々は、従来の固体セラミックはど密度が高
くないため、長期間使用すると熱応力の繰返し、排気ガ
スの脈動圧や振動等のため排気ガスと接する面から繊維
が剥離脱落することがあり、これ全上記コーティング層
13で防止するのである。
Next, FIG. 3 shows a second embodiment of the present invention, in which a coating layer (ceramic fin: hardened layer) 13 is applied to the inner circumferential surface of an inner tube body 11 made of ceramic fiber.
This is an example of preventing fibers from fraying and scattering due to long-term use. In other words, the ceramic fins forming the inner tube body 11 do not have a high density like conventional solid ceramics, so if used for a long period of time, they will come into contact with exhaust gas due to repeated thermal stress, pulsating pressure of exhaust gas, vibration, etc. The fibers may peel off from the surface, and this is prevented by the coating layer 13 described above.

尚、上記コーティング層13は、シリカ系水溶液のディ
ピング捷たは酸化アルミニウム(Aj’203)のプラ
ズマコーティング等で形成されると共に、ディピング水
溶液の濃度もしくは浸す時間などを調整してその厚さが
選定される。
The coating layer 13 is formed by dipping a silica-based aqueous solution or plasma coating with aluminum oxide (Aj'203), and its thickness is selected by adjusting the concentration of the dipping aqueous solution or the immersion time. be done.

(発明の効果) 以上説明したようにこの発明によれば、排気マニホール
ド本体を、セラミックファイノくのby、形体からなる
内側管体と、この内側管体を一体的に鋳込むようにして
鋳造成形された上記′d体と略相似形のアルミ製外側管
体との二重管構造で形成するようにしたので、鋳造時等
において内側管体に過大な熱応力が加わることがなくな
って排気マニホールド本体を全気筒一体構造とすること
が可能となり、製造並びに取付工数の削減でコストダウ
ンがはかれると共に、アルミ材の使用により徹底した軽
量化がはかれるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the exhaust manifold main body is formed by casting the inner pipe body made of a ceramic fine material and the inner pipe body by integrally casting the inner pipe body. Since it is formed with a double pipe structure of the above-mentioned 'd body and an aluminum outer pipe body of approximately similar shape, excessive thermal stress is not applied to the inner pipe body during casting etc., and the exhaust manifold body This makes it possible to have all cylinders in one piece, which reduces costs by reducing manufacturing and installation man-hours, and makes it possible to achieve a thorough weight reduction by using aluminum.

また、内側管体の断熱効果が筒〈排気ガスの温度低下が
小さくなるため、排気路の触媒による排気浄化効率が向
上するという利点もある。
In addition, the heat insulating effect of the inner tube reduces the temperature drop in the exhaust gas, which has the advantage of improving the efficiency of exhaust gas purification by the catalyst in the exhaust path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は従来例の正面図で、同図03)Hその■
−工線断面図である。 第2図(ト)はこの発明の第1実施例の正面図で、同図
(B)はその■−■線断面図及び同図(C)は同図(B
)のin−■線断面図である。 第3図はこの発明の第2実施例を示す第2図(C)に対
応した図である。 10・・・排気マニホールド本体、11・・・内側管体
、12・外側管体、13・コーティング層。 第1 図(A) 第1 図(B) 第ろ図 第2図(A) 、10 第2 図(B) ■ 第2図(c)
Figure 1 (A) is a front view of the conventional example, and Figure 1 (A) is a front view of the conventional example.
- It is a cross-sectional view of the construction line. FIG. 2(G) is a front view of the first embodiment of the present invention, FIG. 2(B) is a sectional view taken along the line ■-■, and FIG.
) is a sectional view taken along the in-■ line. FIG. 3 is a diagram corresponding to FIG. 2(C) showing a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 10... Exhaust manifold main body, 11... Inner tube body, 12. Outer tube body, 13. Coating layer. Figure 1 (A) Figure 1 (B) Figure 2 (A) , 10 Figure 2 (B) ■ Figure 2 (c)

Claims (1)

【特許請求の範囲】[Claims] セラミックファイバーを用いて所定の多岐管形状に成形
してなる内側管体と、この内側管体’& 一体重に鋳込
むようにして鋳造成形された上記管体と略相似形のアル
ミ製外側管体とで、二重管構造の排気マニホールド本体
を形成したこと全特徴とする内燃機関の排気マニホール
ド。
An inner pipe body formed by molding ceramic fiber into a predetermined manifold shape, and an aluminum outer pipe body having a substantially similar shape to the above-mentioned pipe body, which is cast by casting the inner pipe body and the body in one piece. The exhaust manifold for an internal combustion engine is characterized by the fact that the exhaust manifold body has a double pipe structure.
JP18947283A 1983-10-11 1983-10-11 Exhaust manifold of internal-combustion engine Pending JPS6081420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18947283A JPS6081420A (en) 1983-10-11 1983-10-11 Exhaust manifold of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18947283A JPS6081420A (en) 1983-10-11 1983-10-11 Exhaust manifold of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6081420A true JPS6081420A (en) 1985-05-09

Family

ID=16241830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18947283A Pending JPS6081420A (en) 1983-10-11 1983-10-11 Exhaust manifold of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6081420A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
US6349542B1 (en) * 1998-08-17 2002-02-26 Soundwich, Inc. Silicon carbide (SiC) composite exhaust manifold and method of making it
WO2003050397A3 (en) * 2001-12-07 2003-09-18 Soundwich Inc Insulated exhaust manifold having internal catalyst support body
US6725656B2 (en) 2001-12-07 2004-04-27 Dan T. Moore Company Insulated exhaust manifold
CN107387219A (en) * 2017-07-19 2017-11-24 冠立科技扬州有限公司 A kind of motorcycle exhaust blast pipe
JP2018204484A (en) * 2017-06-01 2018-12-27 株式会社豊田自動織機 Intake manifold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
US6349542B1 (en) * 1998-08-17 2002-02-26 Soundwich, Inc. Silicon carbide (SiC) composite exhaust manifold and method of making it
WO2003050397A3 (en) * 2001-12-07 2003-09-18 Soundwich Inc Insulated exhaust manifold having internal catalyst support body
US6725656B2 (en) 2001-12-07 2004-04-27 Dan T. Moore Company Insulated exhaust manifold
JP2018204484A (en) * 2017-06-01 2018-12-27 株式会社豊田自動織機 Intake manifold
CN107387219A (en) * 2017-07-19 2017-11-24 冠立科技扬州有限公司 A kind of motorcycle exhaust blast pipe

Similar Documents

Publication Publication Date Title
JPH01280616A (en) Enveloping cast of heat insulating ceramic for exhaust channel of internal combustion engine and its manufacture
US4884400A (en) Exhaust manifold of internal combustion engine
JP2002509221A (en) Honeycomb body configuration with an intermediate layer comprising at least one metal sheet
JP4408005B2 (en) Cylinder block structure
JPS6081420A (en) Exhaust manifold of internal-combustion engine
JPS60187712A (en) Exhaust manifold for internal-combustion engine
US6284332B1 (en) Exhaust line of an exhaust system equipped with a catalytic converter for an internal combustion engine
JP7051500B2 (en) Engine components
JP3118991B2 (en) Manufacturing method of heat shield manifold
JP2581900Y2 (en) Exhaust manifold with heat shield
JPH068265Y2 (en) Exhaust manifold structure
JPH029058Y2 (en)
JP2577793Y2 (en) Exhaust manifold
JPH09236014A (en) Thermal insulation manifold
JPH0734200Y2 (en) Engine parts with manifold exhaust passage
JPH05200525A (en) Production of heat insulating member
JP2586564Y2 (en) Exhaust manifold with heat shielding structure
JPS6018417Y2 (en) insulation structure casting
JP3111830B2 (en) Exhaust manifold of internal combustion engine
JPS643570Y2 (en)
JPH05106506A (en) Cylinder head for internal combustion engine
JP2519219Y2 (en) Engine parts with manifold exhaust passage
JPS6179818A (en) Heat insulator device for engine
JPH01134022A (en) Exhaust manifold
JPH06299847A (en) Exhaust pipe structure for internal combustion engine