JPS6080520A - Helical crowning control method in gear hobbing machine - Google Patents

Helical crowning control method in gear hobbing machine

Info

Publication number
JPS6080520A
JPS6080520A JP18638683A JP18638683A JPS6080520A JP S6080520 A JPS6080520 A JP S6080520A JP 18638683 A JP18638683 A JP 18638683A JP 18638683 A JP18638683 A JP 18638683A JP S6080520 A JPS6080520 A JP S6080520A
Authority
JP
Japan
Prior art keywords
axis
hob
work
workpiece
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18638683A
Other languages
Japanese (ja)
Inventor
Takaomi Fukuyama
福山 敬臣
Yoshimasa Kagawa
香川 好正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP18638683A priority Critical patent/JPS6080520A/en
Publication of JPS6080520A publication Critical patent/JPS6080520A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
    • B23F23/1237Tool holders
    • B23F23/1243Hob holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/002Modifying the theoretical tooth flank form, e.g. crowning
    • B23F19/007Modifying the theoretical tooth flank form, e.g. crowning using a gear-shaped tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/006Equipment for synchronising movement of cutting tool and workpiece, the cutting tool and workpiece not being mechanically coupled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gear Processing (AREA)

Abstract

PURPOSE:To cut a spiral tooth in the barrel-shaped work, by performing a circular interpolation motion between an X-axis and a Z-axis driving a work diameter and a gear hob in an axial direction, while numerically controlling each axis so as to perform a linear interpolation motion between a C-axis and a Z- axis rotating the work. CONSTITUTION:A hob table 3 rotates centering on a B-axis and a cutting angle of a hob 4 to a work WK is set thereto. Next, the work WK rotates centering on a C-axis while the hob 4 rotates centering on a C'-axis, and furthermore the hob 4 shifts toward a Z-axis and an X-axis. Movement in the hob 4 at the X- axis takes place at a constant speed in synchronous with rotation in a rotary shaft C of the work WK. A ratio of the Z-axis and the C-axis is of sucklike one that a helical tooth is cut in the work WK and yet preset with a tooth pitch of the hob 4 and a helical degree of the work WK. Therefore, in order to numerically control each axis, a linear interpolation motion takes place between both Z- and C-axes. Likewise, movement in the hob 4 on the X-axis will merely control it so as to do circular motion between the X-axis and the Z-axis. For this reason, all X-, Z- and C-axes are controlled for interpolation at the same time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ワークをホブによって切削加工して歯車を作
成するホブ盤をヒア樽形状のワークにらせん状の歯を切
るように制御するホブ盤のヘリカルタラウニングシJ削
制御法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a hobbing machine that controls a hobbing machine that creates gears by cutting a workpiece with a hob to cut spiral teeth on a barrel-shaped workpiece. This article relates to a control method for helical roughening of a disk.

(従来技術) 歯車は、動力伝達手段、変速手段として広く利用されて
いる。歯車を作成するのに、一般にはホブ盤が広く用い
られている。ホブ盤では、ワークとホブを所定比で回転
せしめることによってワーク周囲をホブによって+)J
削加−トし、ワーク周囲に歯を形成する。一方、歯車に
も種々存在し、特殊な歯車の一例として、第1図に示す
如くビヤ樽状の本体WKにヘリカル(らせん)状の歯T
Hか切られた歯車がある。このような歯車なホブ盤で作
成するため複雑な伝達機構を継ぎ合せホブを駆動するよ
うにしていた。
(Prior Art) Gears are widely used as power transmission means and speed change means. Generally, hobbing machines are widely used to make gears. In a hobbing machine, by rotating the workpiece and the hob at a predetermined ratio, the workpiece is surrounded by the hob.
Machining and forming teeth around the workpiece. On the other hand, there are various kinds of gears, and as an example of a special gear, as shown in Fig. 1, there is a beer barrel-shaped main body WK with helical teeth T.
There is a gear with an H cut. In order to create such a gear-like hobbing machine, a complex transmission mechanism was pieced together to drive the hob.

(従来技術の問題点) このため、従来のホブ盤の切削法によれば、ホブを複雑
に駆動させる必要があることから、複雑な伝達機構を設
けてホブを複数の軸に沿って移動させていた。従って、
#i雑な伝達機構を要するばかりか、ワークの形状か変
わるイIfに伝達機構を組み直す必要があるという問題
点があった。
(Problems with conventional technology) For this reason, according to the conventional cutting method using a hobbing machine, it is necessary to drive the hob in a complicated manner, so a complicated transmission mechanism is provided to move the hob along multiple axes. was. Therefore,
#i Not only does this require a complicated transmission mechanism, but it also has the problem of requiring reassembly of the transmission mechanism if the shape of the workpiece changes.

(発明の目的) 本発明の目的は、係る複雑な伝達機構を要せずに電気的
に制御するホブ盤のヘリカルタラウニフグ切削制御法を
提供するにある。
(Object of the Invention) An object of the present invention is to provide a method for controlling helical hobbing cutting of a hobbing machine, which is electrically controlled without requiring such a complicated transmission mechanism.

(発明の概裳) 本発明では、ホブ盤としてホブをワークの径方向(X軸
)及びワークの軸方向(X軸)の両方に駆動できる数値
制御ホブ盤を用い、ワークとホブを同期回転させる他に
、X軸とX軸の間で円弧補間動作を行ない且つX軸と(
4d+(ワークの回転軸)との間で適切な比(ワークに
らせん状の歯が切られるような比でしかもホブの歯のピ
・ンチとワークのらせんの度合で決まる比)の直線補間
動作を行なわしめることによりヘリカルタラウニングl
りJ削を行なうようにしている。即ち、同時3軸補間に
よってX軸、X軸、C軸を数イ]a制御してヘリカルク
ララこング切削を行なうものである。
(Summary of the invention) In the present invention, a numerically controlled hobbing machine that can drive the hob in both the radial direction of the workpiece (X-axis) and the axial direction of the workpiece (X-axis) is used as a hobbing machine, and the workpiece and the hob are rotated synchronously. In addition to performing a circular interpolation operation between the X-axis and the
Linear interpolation operation with an appropriate ratio between 4d+ (rotation axis of the workpiece) (ratio such that spiral teeth are cut into the workpiece, and the ratio is determined by the pinch of the hob teeth and the degree of spiralness of the workpiece) By carrying out helical rolling
I try to do J-cutting. That is, helical Clara Kong cutting is performed by controlling the X-axis, X-axis, and C-axis several times by simultaneous three-axis interpolation.

(実施例) 以下本発明を実施例により詳細に説明する。(Example) The present invention will be explained in detail below using examples.

t52図は本発明に用いられるホブ盤の一実施例構成図
であり、図中、■はベースであり、2は支持枠であり、
ベースlに対しX方向(ワークWKであり、支持枠2に
対しZ +klt方向(ワークWKの軸方向)に移動可
能でしかも、B +bを中心にして回転可能であり、後
述するホブをワークWKに対して任意の角度に設定する
もの、4はホブであり、周囲に所定ピッチで歯が形成さ
れ、ホブテーブル3に支持され、C′軸を中心に回転さ
れるもの、5はワークテーブルでありベース1に設けら
れ、C1kl+を中心に回転し、ワークWKをCII〜
11を中心に回転させるものである。尚、ワークWK(
ワークテーブル5)とホブ4とは同一のC軸モータで駆
動され、しかもその動力は差動ギヤによって伝えられ、
ギヤ機構によってワークWKとホブ4の回転比が決定さ
れる。
Figure t52 is a configuration diagram of an embodiment of the hobbing machine used in the present invention, in which ■ is a base, 2 is a support frame,
It is movable in the X direction (workpiece WK) with respect to the base l, and in the Z +klt direction (axial direction of the workpiece WK) with respect to the support frame 2, and rotatable around B +b. 4 is a hob with teeth formed at a predetermined pitch around the hob, which is supported by a hob table 3 and rotated around the C'axis; 5 is a work table. It is installed on the dovetail base 1, rotates around C1kl+, and moves the workpiece WK to CII~
It rotates around 11. In addition, work WK (
The work table 5) and the hob 4 are driven by the same C-axis motor, and the power is transmitted by a differential gear.
The rotation ratio of the workpiece WK and the hob 4 is determined by the gear mechanism.

このホブ盤では、ホブ4がX軸方向、X軸方向に駆動さ
れ、ワークWKに対する切削位置を変更するとともにC
′軸を中心に回転してワークWKを切削し、且つB軸を
中心に回転してワークWKに対する切削角度を変更する
ものである。
In this hobbing machine, the hob 4 is driven in the X-axis direction and the X-axis direction to change the cutting position with respect to the workpiece WK and
It rotates around the ' axis to cut the work WK, and rotates around the B axis to change the cutting angle with respect to the work WK.

次に、本発明に係る9J削制御法について第3図の動作
軸説明図、第4図の各軸の動作関係図により説明する。
Next, the 9J machining control method according to the present invention will be explained with reference to an explanatory diagram of the operating axes in FIG. 3 and an operational relationship diagram of each axis in FIG. 4.

先ずホブテーブル3がB軸を中心に回転し、ホブ4のワ
ークWKに対する切削角度が設定される次に、ワークW
KがC軸を中心に、ホブ4がC′軸を中心に回転される
。更にホブ4がZ!klI及びX4TIl+方向に移動
する。ホブ4のX軸での移動は第4図(B)に示すよう
に、ワークWKの回転軸Cの回転に同期して定速移動す
る。このX軸とCil@+とノ比は、ワークWKにヘリ
カル(らせん)状の歯が切られるような比であり、しか
もホブの歯のピッチとワークのヘリカルの度合で予じめ
決められる。従って、各軸を数値制御するには、X軸と
C軸との間で直線補間動作を行なう。同様に、ホブ4の
X軸上の移動は、第4図(A)に示すように、ホブ4か
X軸との間で円弧移動するように制御すれば良い。即ち
、X軸とX軸との間で円弧補間動作を行なえばよい。
First, the hob table 3 rotates around the B axis, and the cutting angle of the hob 4 with respect to the workpiece WK is set.
K is rotated around the C axis, and the hob 4 is rotated around the C' axis. Furthermore, Hob 4 is Z! It moves in the klI and X4TIl+ directions. As shown in FIG. 4(B), the hob 4 moves at a constant speed along the X-axis in synchronization with the rotation of the rotation axis C of the workpiece WK. The ratio between the X axis and Cil@+ is such that helical teeth are cut into the workpiece WK, and is predetermined based on the pitch of the hob teeth and the helical degree of the workpiece. Therefore, in order to numerically control each axis, a linear interpolation operation is performed between the X-axis and the C-axis. Similarly, the movement of the hob 4 on the X-axis may be controlled so that the hob 4 moves in an arc between the hob 4 and the X-axis, as shown in FIG. 4(A). That is, a circular interpolation operation may be performed between the X-axes.

このため、X軸、X軸、C軸を同時3軸補間制御すれば
良い。
Therefore, simultaneous three-axis interpolation control of the X-axis, X-axis, and C-axis is sufficient.

第5図は本発明方法を実現するための一実施例ブロック
図であり、図中、第2図と同一のものは同一の構成で示
してあり、10は数値制御装置(NC)であり、数値制
御指令データに基いて所定の数値演算処理を実行して各
軸の移動指令を演算し、各軸を数値制御するもの、11
はX +kl+モータであり、支持枠2をX軸方向に駆
動するもの、12はZ軸モータであり、ホブテーブル3
をX軸方向に駆動するもの、13はC輛モータであり、
14は差動ギヤ機構であり、C@11(ワークテーブル
5の軸)とC′軸(ホブ4)とを所定比で回転すルモノ
、15.16.17は各zzX軸、C軸、Z−油のパル
ス分配器であり、NCl0からの移動指令ΔX、△C1
Δ2に応した分配パルスを出力するもの、18.19.
20は各々X軸、C佃1、X軸のサーボ回路であり、パ
ルス分配器16.17.18からの分配パルスに従って
各X軸、C輛、ZIlIIモータ11.12.13をサ
ーボ制御するものであり、エラーレジスタ及び速度制御
回路を含むものである。
FIG. 5 is a block diagram of an embodiment for realizing the method of the present invention, in which the same components as in FIG. 2 are shown with the same configuration, and 10 is a numerical control device (NC); A device that performs predetermined numerical calculation processing based on numerical control command data to calculate movement commands for each axis and numerically control each axis, 11
is the X+kl+ motor, which drives the support frame 2 in the X-axis direction, and 12 is the Z-axis motor, which drives the hob table 3.
13 is a car motor that drives the motor in the X-axis direction.
14 is a differential gear mechanism that rotates C@11 (axis of work table 5) and C' axis (hob 4) at a predetermined ratio; 15, 16, and 17 are gears for each zz - Oil pulse distributor, movement commands ΔX, ΔC1 from NCl0
One that outputs a distribution pulse corresponding to Δ2, 18.19.
Reference numerals 20 are servo circuits for the X-axis, C-1, and X-axis, respectively, which servo-control the X-axis, C-car, and ZIlII motors 11, 12, and 13 according to the distribution pulses from the pulse distributor 16, 17, and 18. It includes an error register and a speed control circuit.

次に、第5図実施例構成の動作について説明する。Next, the operation of the embodiment shown in FIG. 5 will be explained.

ここで、予じめ図示しないB軸モータによりホブテーブ
ル3がワークWKに対、し所定角度に位置決めされ、従
ってホブ4がワークWKに対し所定角度に設定されてい
るものとする。
Here, it is assumed that the hob table 3 is previously positioned at a predetermined angle with respect to the workpiece WK by a B-axis motor (not shown), and therefore the hob 4 is set at a predetermined angle with respect to the workpiece WK.

NCl0にはC@11の回転速度Vc、C軸とZIi1
]との比P、及びZ軸とX@との間の通路座標(又は半
径)がNC指令データとして入力され、これを所定の数
値処理プログラムに従って数値処理部−算する。即ち、
各軸の移動指令ΔX、ΔC1ΔZを演算す柩。この時、
C軸とZ軸間では直線補間演算が行なわれ、回転速度V
cによって決められたΔCに対して所定の比Pを乗じた
P・ΔCか2軸移動指令△Zとして演算される。又、Z
軸とX1141+間では円弧補間演算が行なわれ、Z軸
移動指令△Zに対し、第4図(A)の円弧動作を行なう
ようなX軸移動指令ΔXが演算される。これらの演算さ
れた各軸の移動指令△X、ΔC1ΔZは各軸のパルス分
配器15.16.17に与えられ、パルス分配器15.
16.17から対応する数、周波数の分配パルスPx、
Pc、Pzが各軸のサーボ回路18.19.20に出力
される。サーボ回路、18.19.20は各々対応する
X軸、C頓1、Z軸モータ11.12.13を与えられ
た分配パルスPx、Pc、Pzに従ってサーボ制御し、
支持枠2をX +ll+方向に移動せしめ、ワークテー
ブル5及びホブ4を回転せしめ5ワークチー・プル3を
Z軸方向に移動せしめる。従って、ホブ4とワークWK
とは所定比で回転し、しかもホブ4はX−2軸子面を、
ワークWKの回転に同期し、第4IN (A)のように
移動する。これにより、ホブ4はワークWKに所定の歯
を切削形成しながら、ワークWKに沿って移動し、ビヤ
樽状のワークWKにらせん(ヘリカル)状の歯を形成す
る。
NCl0 has the rotational speed Vc of C@11, the C axis and ZIi1
] and the path coordinate (or radius) between the Z axis and X@ are input as NC command data, and are calculated by the numerical processing unit according to a predetermined numerical processing program. That is,
A coffin that calculates movement commands ΔX and ΔC1ΔZ for each axis. At this time,
A linear interpolation calculation is performed between the C-axis and the Z-axis, and the rotation speed V
P·ΔC, which is obtained by multiplying ΔC determined by c by a predetermined ratio P, is calculated as a two-axis movement command ΔZ. Also, Z
A circular interpolation calculation is performed between the axis and X1141+, and an X-axis movement command ΔX that performs the circular movement shown in FIG. 4(A) is calculated in response to the Z-axis movement command ΔZ. These calculated movement commands ΔX, ΔC1ΔZ for each axis are given to the pulse distributors 15, 16, and 17 for each axis.
16.17 to the corresponding number, frequency distribution pulse Px,
Pc and Pz are output to servo circuits 18, 19, and 20 for each axis. The servo circuits 18, 19, and 20 respectively servo control the corresponding X-axis, C-ton 1, and Z-axis motors 11, 12, and 13 according to the given distribution pulses Px, Pc, and Pz;
The support frame 2 is moved in the X+ll+ direction, the work table 5 and the hob 4 are rotated, and the workpiece puller 3 is moved in the Z-axis direction. Therefore, hob 4 and work WK
The hob 4 rotates at a predetermined ratio, and the hob 4 has an X-2 axis
It synchronizes with the rotation of the workpiece WK and moves as shown in the 4th IN (A). As a result, the hob 4 moves along the workpiece WK while cutting and forming predetermined teeth on the workpiece WK, thereby forming helical teeth on the beer barrel-shaped workpiece WK.

」一連の説明では、第2図構成の数値制御ホブ盤を用い
て説明したが、これに限られることがなく、本発明の主
旨に従い種々の変形が可能であり、これらを本発明の範
囲から排除するものではない(発明の効果) 以上説明したように1本発明によれば、ワークとホブと
を同期回転させるホブ盤に対し、ワークの径方向にホブ
を駆動するX軸とワークの軸方向にホブを駆動するZ軸
との間で円弧補間動作を行ない且つワークの回転を行な
うC軸とZ軸との間で直線補間動作を行なうように各軸
を数値制御側しているので、電気的制御によりビヤ樽形
状のワークにらせん状の尚をホブによって切削加工でき
るため、従来のような複雑な伝達機構を必要としないと
いう効果を奏し、ホブ盤の構成を簡易化することができ
る。しかもワークの形状が変っても、指令データを変更
するだけで良いので、従来の如く複雑な伝達機構を組み
直す必要がないという効果も奏し、この種の歯車の作成
を容易にしかも迅速にでき、実用上極めて有用である。
In the series of explanations, the numerically controlled hobbing machine having the configuration shown in FIG. (Effects of the Invention) As explained above, according to the present invention, in a hobbing machine that rotates a workpiece and a hob synchronously, the X-axis that drives the hob in the radial direction of the workpiece and the axis of the workpiece Each axis is numerically controlled so that circular interpolation is performed between the Z-axis, which drives the hob in the direction, and linear interpolation is performed between the C-axis, which rotates the workpiece, and the Z-axis. Since a spiral hob can be cut into a beer barrel-shaped work using electrical control, there is no need for a complicated transmission mechanism like in the past, and the configuration of the hobbing machine can be simplified. Moreover, even if the shape of the workpiece changes, all you need to do is change the command data, so there is no need to reassemble the complicated transmission mechanism as in the past, making it easy and quick to create this type of gear. It is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする歯車説明図、第2図は本発
明に用いられる数値制御ホブ盤構成図、第3図は本発明
による動作軸説明図、第4図は本発明による各軸の動作
1!l係図、第5図は本発明を実現するための一実施例
ブロック図である。 図中、WK・・・ワーク、l・・・ベース、2・・・支
持枠、3・・・ホブテーブル、4・・・ボブ、5・・・
ワークテーブル、10・・・数値制御装置。 特許出願人 ファナンク株式会社 代 理 人 弁理士 辻 實 (外1名) 第 1 図 第 2 回 第3図 第4図
Fig. 1 is an explanatory diagram of gears targeted by the present invention, Fig. 2 is a configuration diagram of a numerically controlled hobbing machine used in the present invention, Fig. 3 is an explanatory diagram of the operating axes according to the present invention, and Fig. 4 is an illustration of various gears according to the present invention. Axis operation 1! FIG. 5 is a block diagram of an embodiment for realizing the present invention. In the figure, WK...work, l...base, 2...support frame, 3...hob table, 4...bob, 5...
Work table, 10...numerical control device. Patent applicant Fananku Co., Ltd. Representative Patent attorney Minoru Tsuji (1 other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ワークとホブを同期回転せしめるとともに該ワークの径
方向に該ホブを駆動するX軸と該ワークの軸方向に該ホ
ブを駆動するX軸との間で円弧補間動作を行ない、更に
該ワークの回転を行なうC軸と該X軸との間で直線補間
動作を行なうように各軸を数値制御することによってビ
ヤ樽形状の当該ワークに該ホブの切削によりらせん状の
歯を形成することを特徴とするホブ盤のヘリカルタラウ
ニフグ切削制御法
The workpiece and the hob are rotated synchronously, and circular interpolation is performed between the X-axis that drives the hob in the radial direction of the workpiece and the X-axis that drives the hob in the axial direction of the workpiece, and further rotation of the workpiece is performed. By numerically controlling each axis to perform a linear interpolation operation between the C-axis and the X-axis, spiral teeth are formed on the beer barrel-shaped workpiece by cutting with the hob. Hobbing machine helical trough cutting control method
JP18638683A 1983-10-05 1983-10-05 Helical crowning control method in gear hobbing machine Pending JPS6080520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18638683A JPS6080520A (en) 1983-10-05 1983-10-05 Helical crowning control method in gear hobbing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18638683A JPS6080520A (en) 1983-10-05 1983-10-05 Helical crowning control method in gear hobbing machine

Publications (1)

Publication Number Publication Date
JPS6080520A true JPS6080520A (en) 1985-05-08

Family

ID=16187480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18638683A Pending JPS6080520A (en) 1983-10-05 1983-10-05 Helical crowning control method in gear hobbing machine

Country Status (1)

Country Link
JP (1) JPS6080520A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192025A (en) * 1987-10-02 1989-04-11 Aisin Seiki Co Ltd Gear cutting machine
WO1994023880A1 (en) * 1993-04-08 1994-10-27 Crown Gear B.V. Method of producing a crown wheel
AU661506B2 (en) * 1991-11-25 1995-07-27 Gleason Works, The Gear hobbing machine
JP2002113613A (en) * 2000-10-05 2002-04-16 Yukinori Ariga Method for hobbing gear with curved tooth trace
DE10208531A1 (en) * 2002-02-27 2003-09-04 Reishauer Ag Method for modifying flank lines and / or for correcting flank line deviations of a gear wheel
WO2009025198A1 (en) * 2007-08-17 2009-02-26 Mitsubishi Heavy Industries, Ltd. Dressing method and dressing apparatus for barrel worm-shaped tool, and internal gear grinding machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192025A (en) * 1987-10-02 1989-04-11 Aisin Seiki Co Ltd Gear cutting machine
AU661506B2 (en) * 1991-11-25 1995-07-27 Gleason Works, The Gear hobbing machine
WO1994023880A1 (en) * 1993-04-08 1994-10-27 Crown Gear B.V. Method of producing a crown wheel
NL9300617A (en) * 1993-04-08 1994-11-01 Crown Gear Bv Method for manufacturing a crown wheel.
JP2002113613A (en) * 2000-10-05 2002-04-16 Yukinori Ariga Method for hobbing gear with curved tooth trace
DE10208531A1 (en) * 2002-02-27 2003-09-04 Reishauer Ag Method for modifying flank lines and / or for correcting flank line deviations of a gear wheel
US6752695B2 (en) 2002-02-27 2004-06-22 Reishauer Ag Process for the modification of tooth traces and/or for the correction of tooth trace deviations of a gear
DE10208531B4 (en) * 2002-02-27 2009-06-04 Reishauer Ag Method for modifying flank lines and / or for correcting flank line deviations of a gear
WO2009025198A1 (en) * 2007-08-17 2009-02-26 Mitsubishi Heavy Industries, Ltd. Dressing method and dressing apparatus for barrel worm-shaped tool, and internal gear grinding machine
JP2009045681A (en) * 2007-08-17 2009-03-05 Mitsubishi Heavy Ind Ltd Method and device for dressing barrel-shaped worm-like tool and internal gear grinding machine
KR101106512B1 (en) 2007-08-17 2012-01-20 미츠비시 쥬고교 가부시키가이샤 Method of dressing barrel worm-shaped tool, dressing apparatus, and internal-gear grinding machine
US8460064B2 (en) 2007-08-17 2013-06-11 Mitsubishi Heavy Industries, Ltd. Method of dressing barrel worm-shaped tool, dressing apparatus, and internal-gear grinding machine

Similar Documents

Publication Publication Date Title
JPH01206406A (en) Numerical controller for non-cylindrical work machining
EP0470564B1 (en) Method of and apparatus for controlling motion of a machine member
JPS62162417A (en) Gear cutter for spiral bevel gear
JPH05113814A (en) Method for commanding acceleration and speed of shaft
JP2761426B2 (en) Numerical control unit
JPS6333166B2 (en)
JPH01177618A (en) Involute interpolation system
JPH01159126A (en) Skiving machine
JPS6080520A (en) Helical crowning control method in gear hobbing machine
EP0460220A1 (en) Display system of numerical controller
JPS62163109A (en) Numerical controller
JPH03288908A (en) Gear pitch error correcting system for numerical controller
JPS58149129A (en) Nc gear hobbing machine controller
EP0362391B1 (en) Involute interpolating method
JPH03296109A (en) Motion controller
JPS6389904A (en) Numerical controller
JPH0628812B2 (en) Processing method for scroll parts
JP3782545B2 (en) Gear cutting method
JPS6377638A (en) Numerically controlled machine tool
JPH01205915A (en) Nc skiver
JPS62188615A (en) Machining method for scroll component
JP2004142032A (en) Gear finishing device
JP2997270B2 (en) Interpolation method
JPH03212705A (en) Numerical controller
JPH03246707A (en) Position correcting system by systems