JPS6080087A - Discharging method of non-condensable gas for separate type heat exchanger - Google Patents

Discharging method of non-condensable gas for separate type heat exchanger

Info

Publication number
JPS6080087A
JPS6080087A JP18811083A JP18811083A JPS6080087A JP S6080087 A JPS6080087 A JP S6080087A JP 18811083 A JP18811083 A JP 18811083A JP 18811083 A JP18811083 A JP 18811083A JP S6080087 A JPS6080087 A JP S6080087A
Authority
JP
Japan
Prior art keywords
discharge
condensable gas
condensing
condensing section
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18811083A
Other languages
Japanese (ja)
Other versions
JPS6345037B2 (en
Inventor
Kiyoshi Takeuchi
浄 竹内
Kenji Suzuki
健司 鈴木
Takeshi Ikeno
池野 健
Hideo Koriyama
郡山 日出雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kawasaki Steel Corp filed Critical Furukawa Electric Co Ltd
Priority to JP18811083A priority Critical patent/JPS6080087A/en
Publication of JPS6080087A publication Critical patent/JPS6080087A/en
Publication of JPS6345037B2 publication Critical patent/JPS6345037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To discharge the non-condensable gas, stagnated in a condensing section, automatically by a method wherein a discharging device is provided on a discharging pipe and temperatures at the upstream side and the downstream side of the flow of vapor in the condensing section are detected to operate the discharging device automatically by the difference of the temperatures. CONSTITUTION:A pipeline 10, connecting the condensing section 2 with a tank 3, is provided with a discharging pipe 11 and an automatic opening and closing valve 13 as well as a forcibly discharging pump 14 are attached to the discharging pipe 11. On the other hand, temperature detecting units 15a, 15b are attached to an upper header 2a, located at the upstream side of a heat transfer tube 2c in the flow of the vapor, and the lower header 2b at the downstream side of the heat transfer tube 2c in the flow of vapor. Detecting signals obtained from the temperature detecting units are sent into a temperature difference controller 16 to output a signal by the temperature difference and open the opening and closing valve 13 to operate the discharging pump 14. The non-condensable gas 9 in the condensing section 2 is discharged in such manner. According to this method, the stagnated non-condensable gas is discharged automatically without sucking atmosphere in spite of the pressure in the circuit whether it is positive or negative and, thus, all of the heat transfer area of the heat transfer tube in the condensing section may be contributed effectively to the transfer of the heat.

Description

【発明の詳細な説明】 本発明は工場排ガス、排水等の顕熱を回収するセパレー
ト型熱交換装置の非凝縮性ガスの排出方法に関するもの
で、特に熱交換特性に悪影響を及ぼす非凝縮性ガスの滞
留を検知し、これを自動的に排出できるようにしたもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for discharging non-condensable gas from a separate heat exchange device for recovering sensible heat from factory exhaust gas, waste water, etc. This system detects the accumulation of water and automatically discharges it.

一般に工場排ガス、排水等の顕熱回収には作動液の蒸発
、凝縮による相変態により熱交換を行なうヒートパイプ
を用いた熱交換装置が用いられているが、排ガス、排水
等の排熱源(加熱流体)の条件によっては作動液の蒸発
部と凝縮部を分離し、離れた位置に配置する必要があり
、このような場合にはセパレート型熱交換装置が用いら
れている。
Heat exchange equipment using heat pipes, which exchanges heat through phase transformation due to evaporation and condensation of the working fluid, is generally used to recover sensible heat from factory exhaust gas, waste water, etc.; Depending on the conditions of the working fluid, it may be necessary to separate the evaporating section and condensing section of the working fluid and place them at separate locations, and in such cases a separate heat exchanger is used.

この装置は第1図に示すように蒸発部(1)と凝縮部(
2)を離れた位置に配置し、凝縮部(2)の下方に作動
液タンク(3)を連結し、蒸発部(1)と凝縮部(2)
を断熱配管(4)で連結し、蒸発部(1)とタンク(3
)を断熱配管(5)で連結することにより循環回路を形
成し、該回路内に作動液(6)を装入し、これを矢印方
向に循環させて蒸発部(1)で加熱流体(A)により作
動液(6)を蒸発させ、発生した蒸気を配管(4)によ
り凝縮部(2)に導入し、被加熱流体(B)により冷却
して蒸気を凝縮せしめ、タンク(3)内に流下させて加
熱流体(A)と被加熱流体(B)間の熱交換を行なうも
のである。作動液(6)の循環は、蒸発部(1)と凝縮
部(1)の高さ関係により自然循環させるか、又は図に
示すように配管(5)にポンプ(7)を設けて作動液(
6)を強制循環させている。
As shown in Figure 1, this device consists of an evaporating section (1) and a condensing section (
2) at a separate position, and the working fluid tank (3) is connected below the condensing part (2), and the evaporating part (1) and condensing part (2)
are connected by insulated piping (4), and the evaporator (1) and tank (3) are connected.
) are connected with a heat insulating pipe (5) to form a circulation circuit, a working fluid (6) is charged into the circuit, and this is circulated in the direction of the arrow to generate heated fluid (A) in the evaporator (1). ) to evaporate the working fluid (6), the generated steam is introduced into the condensing part (2) through the pipe (4), and is cooled by the heated fluid (B) to condense the steam, and then into the tank (3). The heating fluid (A) and the fluid to be heated (B) exchange heat by flowing downward. The working fluid (6) can be circulated naturally depending on the height relationship between the evaporating section (1) and the condensing section (1), or by installing a pump (7) in the piping (5) as shown in the figure. (
6) is forced into circulation.

この装置はヒートパイプの原理を応用したもので、蒸発
部と凝縮部が離れていても作動液と蒸気の還流が良好で
、優れた熱交換特性を示す。しかしながら実際の排熱回
収等に使用する場合に、作動時には回路内に空気等が残
存しており、また運転中に作動液と装置材料の反応によ
り排凝縮性ガス、例えば水と鉄の場合には水素を発生す
ることがあり、更には回路内を負圧状態で運転すると、
フランジ等から空気を吸込む。これ等非凝縮性ガスが回
路内に存在すると作動液と蒸気の移動を阻害するばかり
か、凝縮部内に滞留し、熱交換特性を低下する。即ち蒸
発部における蒸発と凝縮部における凝縮を繰返すと、凝
縮部内の蒸気の流れの下流側に非凝縮性ガスが滞留し、
凝縮部の凝縮面積を減少して熱交換特性を低下すること
になる。
This device applies the principle of a heat pipe, and even if the evaporating section and condensing section are separated, the working fluid and steam can circulate well, and it exhibits excellent heat exchange characteristics. However, when used for actual waste heat recovery, etc., air, etc. remains in the circuit during operation, and waste condensable gas, such as water and iron, is generated due to the reaction between the working fluid and equipment materials during operation. may generate hydrogen, and if the circuit is operated under negative pressure,
Air is sucked in from the flange, etc. If such non-condensable gases exist in the circuit, they not only obstruct the movement of the working fluid and steam, but also remain in the condensing section, deteriorating the heat exchange characteristics. That is, when evaporation in the evaporation section and condensation in the condensation section are repeated, non-condensable gas accumulates on the downstream side of the vapor flow in the condensation section.
This will reduce the condensation area of the condensation section and deteriorate the heat exchange characteristics.

従って凝縮部内の非凝縮性ガスの滞留を速やかに検知し
、これを適当なタイミングで排出する必要がある。
Therefore, it is necessary to quickly detect the accumulation of non-condensable gas in the condensing section and discharge it at an appropriate timing.

一般に凝縮部は第2図に示すように上下両ヘッダー(2
a)、(2b)間に伝熱管(2c)を1けたもので、配
管(4)から導入された蒸気はヘッダー(2a)より伝
熱管(2C)内に入り、被加熱流体(B)により冷却さ
れて伝熱管(2C)の内壁に凝縮液滴(8)を形成し、
該壁面を流下して下部ヘッダー(2b)を通り、タンク
(3)内に流れ込み、非凝縮ガス(9)は蒸気の流れの
下流側(図では下部へラダーとその下方)に滞留する。
Generally, the condensing section has both upper and lower headers (2
A one-digit heat transfer tube (2c) is installed between a) and (2b), and the steam introduced from the pipe (4) enters the heat transfer tube (2C) through the header (2a) and is heated by the heated fluid (B). It is cooled to form condensed droplets (8) on the inner wall of the heat transfer tube (2C),
It flows down the wall surface, passes through the lower header (2b), and flows into the tank (3), and the non-condensable gas (9) is retained on the downstream side of the steam flow (in the figure, toward the bottom of the ladder and below it).

また図には示してないが、凝縮部の下方より蒸気を導入
するものでは蒸気の流れの下流側、即ち凝縮部の上部に
滞留する。この滞留した非凝縮性ガスを排出するため、
従来は蒸気の流れの下方、図では凝縮部(2)の下部ヘ
ッダー(2b)とタンク(3)を連結する配管(10)
に排出管(11)を取付け、その先端に設けた排出バル
ブ(12)を適当な間隔毎に人力で開閉することにより
、非凝縮性ガス(9)を排出している。しかしながら非
凝縮性ガスの滞留を検知する手段がない5− ため、凝縮部を良好な状態に保持することが困難なばか
りか、回路内が負圧の場合には逆に非凝縮性ガスを吸込
む欠点があった。
Further, although not shown in the figure, in the case where steam is introduced from below the condensing part, the steam remains on the downstream side of the flow, that is, in the upper part of the condensing part. In order to exhaust this accumulated non-condensable gas,
Conventionally, a pipe (10) connects the lower header (2b) of the condensing section (2) and the tank (3) below the flow of steam, as shown in the figure.
A discharge pipe (11) is attached to the pipe, and the non-condensable gas (9) is discharged by manually opening and closing a discharge valve (12) provided at the tip of the pipe at appropriate intervals. However, since there is no means to detect the accumulation of non-condensable gas5-, it is not only difficult to maintain the condensing section in a good condition, but also non-condensable gas may be sucked in if the pressure inside the circuit is negative. There were drawbacks.

本発明はこれに鑑み種々検討の結果、凝縮部内に非凝縮
性ガスが滞留すると、凝縮部内の蒸気の流れの上流側と
、下流側で温度が生ずることを知見し、更に検討の結果
凝縮部内に滞留する非凝縮性ガスを自動的に排出し、常
に良好な熱交換特性を示すセパレート型熱交換装置の非
凝縮性ガスの排出方法を開発し□たもので、蒸発部と凝
縮部を分離して配置し、これを断熱配管により連結して
循環回路を形成し、該回路内に作動液を装入循環させて
作動液の相変態により熱交換する装置の凝縮部内に、滞
留した非凝縮性ガスを凝縮部内の蒸気の流れの下流側又
は下流側配管に設けた排出管より排出する方法において
、排出管に排出装置を設け、凝縮部内の蒸気の流れの上
流側と下流側の温度を検出し、その温度差により排出装
置を自動的に作動させることを特徴とするものである。
In view of this, as a result of various studies, the present invention found that when non-condensable gas stagnates in the condensing section, temperatures occur on the upstream and downstream sides of the flow of steam in the condensing section. We have developed a method for discharging non-condensable gas from a separate type heat exchanger that always shows good heat exchange characteristics by automatically discharging non-condensable gas that accumulates in the evaporating section and condensing section. A circulating circuit is formed by connecting these with insulated piping, and a working fluid is charged and circulated in the circuit to exchange heat by phase transformation of the working fluid. In this method, a discharge pipe is provided on the downstream side of the flow of steam in the condensing section or on the downstream piping. It is characterized by detecting the temperature difference and automatically operating the discharge device based on the temperature difference.

即ち本発明はセパレート型熱交換装置の凝縮部6− における蒸気ど凝縮液と非凝縮性ガスの挙動について詳
細に観察した結果、凝縮部内に導入された蒸気は被加熱
流体により凝縮して流下し、凝縮部内はほぼ等しい温度
分布を示す。しかるに非凝縮性ガスが伝熱管に滞留する
と、蒸気の流れがl害されて被加熱流体による凝縮量が
低下する。しかも伝熱管は被加熱流体により冷却される
結果、蒸気の流れの上流側と下流側で温度差を生ずる。
That is, as a result of detailed observation of the behavior of steam, condensate, and non-condensable gas in the condensing section 6 of a separate heat exchanger, the present invention found that the steam introduced into the condensing section is condensed by the heated fluid and flows down. , the temperature distribution inside the condensing section is almost equal. However, when non-condensable gas remains in the heat transfer tube, the flow of steam is impaired and the amount of condensation by the heated fluid is reduced. Moreover, as a result of the heat transfer tube being cooled by the fluid to be heated, a temperature difference occurs between the upstream side and the downstream side of the steam flow.

更に伝熱管の伝熱面積を十分に生かすため温度検知位置
を伝熱管内ではなく伝熱管より蒸気の上流側と下流側に
て検知する必要である。また検討の結果、蒸気の流れの
下流側又は下流側に設けた排出−管に排出装置を設け、
上記温度差を検知して該温度差により排出装置を作動さ
せることにより、凝縮部内に滞留した非凝縮性ガスを自
動的排出するものである。
Furthermore, in order to make full use of the heat transfer area of the heat exchanger tube, it is necessary to detect the temperature at the upstream and downstream sides of the steam rather than inside the heat exchanger tube. In addition, as a result of the study, it was found that a discharge device was installed in the discharge pipe installed on the downstream side of the steam flow, or on the downstream side.
The non-condensable gas stagnant in the condensing section is automatically discharged by detecting the temperature difference and activating the discharge device based on the temperature difference.

排出装置としては排出管に自動開閉弁又は/及び強制排
出ポンプを設けたもので、前記温度差が2℃以上の時に
作動せしめることが望ましり、2℃未満では非凝縮性ガ
スと共に作動液が排出される恐れがある。また温度差が
2℃以上になっても排出装置を直ちに作動させることな
く、一定時間遅らせて作動させることが望ましい。これ
は複数本の伝熱管の内、一部の管内の非凝縮性ガスのみ
が排出されても、他の管内の非凝縮性ガスにより温度差
が続き、作動液が排出されるいわゆる偏流吸引を防止す
るためである。また非凝縮性ガスの排出に当っては、回
路内の圧力を検出し、回路内が正圧の場合には自動開閉
弁を開き、負圧の場合には強制排出ポンプを作動させる
ことが望ましい。
The discharge device is equipped with an automatic opening/closing valve or/and a forced discharge pump in the discharge pipe, and it is desirable to operate it when the temperature difference is 2°C or more, and when the temperature difference is below 2°C, the non-condensable gas and working fluid are discharged. may be emitted. Further, even if the temperature difference becomes 2° C. or more, it is desirable that the discharge device is not activated immediately, but activated after a certain period of time. This is because even if only the non-condensable gas in some of the heat transfer tubes is discharged, the temperature difference continues due to the non-condensable gas in other tubes, causing so-called uneven flow suction in which the working fluid is discharged. This is to prevent this. In addition, when discharging non-condensable gas, it is desirable to detect the pressure in the circuit, open an automatic shut-off valve if the pressure is positive in the circuit, and operate a forced discharge pump if the pressure is negative. .

強制排出ポンプには水封式真空ポンプ、冷却トラップ付
回転真空ポンプ等作動液が混合しても問題を起さない媒
体を用いた真空ポンプ、或いはエゼクタ−、フロア−等
気体吸引機能のあるものを用いる。また濃度検出には熱
雷対、測温抵抗体等公知の温度検出器を用い、温度差検
出には差温コントローラーを用いればよい。
Forced discharge pumps include water-ring type vacuum pumps, rotary vacuum pumps with cooling traps, and other vacuum pumps that use media that do not cause problems when mixed with working fluid, or those with gas suction functions such as ejectors and floor pumps. Use. In addition, a known temperature detector such as a thermal lightning pair or a resistance temperature detector may be used to detect the concentration, and a temperature difference controller may be used to detect the temperature difference.

以下本発明方法を図面を用いて詳細に説明する。The method of the present invention will be explained in detail below with reference to the drawings.

第3図は本発明方法の一実施例を示すもので、上部ヘッ
ダー(2a)と下部ヘッダー(2b)間に伝熱管(2C
)を設けた凝縮部(2)内に、図には示してないが、蒸
発部で発生した蒸気が配管(4)より導入され、被加熱
流体(B)により冷却されて伝熱管(2C)内壁に凝縮
液滴(8)を形成し、流下してタンク(3)内に入る。
FIG. 3 shows an embodiment of the method of the present invention, in which heat exchanger tubes (2C
Although not shown in the figure, the steam generated in the evaporation section is introduced from the pipe (4) into the condensation section (2) provided with Condensed droplets (8) form on the inner wall and flow down into the tank (3).

凝縮部(2)とタンク(3)を連結する配管(10)に
は排出管(11)を設け、該排出管(11)に自動開閉
弁(13)と強制排出ポンプ(14)を取付ける。一方
伝熱管(2C)より蒸気の上流側である上部ヘッダー(
2a)と伝熱管(2C)より蒸気の下流側である下部ヘ
ッダー(2b)に温度検出器(15a)、(15b)を
取付け、その検出信号を差温コントローラー(16)に
送り、温度差が2℃以上になったとき、一定時間遅らせ
て信号を出し、開閉弁(13)を開くと同時に排出ポン
プ(10を作動させる。このようにして凝縮部(2)内
の非凝縮性ガス(9)を排出する。非凝縮性ガスの排出
により上下両ヘッダー(2a)、(2b)の温度差が2
℃以下に下がると、差温コントローラー(16)の信号
により開閉弁(13)は締り、排出ポンプ9− (14)は停止する。このようにして凝縮部(2)に滞
留した非凝縮性ガスを自動的に排出するようにしたもの
である。
A discharge pipe (11) is provided in the pipe (10) connecting the condensing part (2) and the tank (3), and an automatic opening/closing valve (13) and a forced discharge pump (14) are attached to the discharge pipe (11). On the other hand, the upper header (
Temperature detectors (15a) and (15b) are attached to the lower header (2b), which is downstream of the steam from the heat transfer tubes (2C) and 2a), and the detection signals are sent to the temperature difference controller (16) to detect the temperature difference. When the temperature exceeds 2°C, a signal is issued after a certain period of time, and the on-off valve (13) is opened and at the same time the discharge pump (10 is activated. In this way, the non-condensable gas (9 ) is discharged. Due to the discharge of non-condensable gas, the temperature difference between the upper and lower headers (2a) and (2b) is 2.
When the temperature drops below 0.degree. C., the on-off valve (13) is closed by a signal from the temperature difference controller (16), and the discharge pump 9- (14) is stopped. In this way, the non-condensable gas stagnant in the condensing section (2) is automatically discharged.

第4図は本発明方法の他の一実施例を示すもので、第3
図と同様、凝縮部(2)とタンク(3)を連結する配管
(10)に排出管(11)を設け、該排出管(11)に
自動開閉弁(13)と排出ポンプ(14)を設け、かつ
開閉弁(13)とポンプ(14)間に自動開閉弁(13
’)をも設けた分岐管(17)を取付け、上下両ヘッダ
ー(2a)、(2b)の。
FIG. 4 shows another embodiment of the method of the present invention.
As shown in the figure, a discharge pipe (11) is installed in the pipe (10) connecting the condensing part (2) and the tank (3), and an automatic on-off valve (13) and a discharge pump (14) are installed in the discharge pipe (11). An automatic on-off valve (13) is provided between the on-off valve (13) and the pump (14).
Install the branch pipe (17) with the headers (2a) and (2b) on both the upper and lower headers.

温度を温度検出器(15a)、(15b)により検出し
、その信号を差温コントローラー(16)に送る。
Temperature is detected by temperature detectors (15a) and (15b), and the signal is sent to a differential temperature controller (16).

一方図には示してないが回路内の圧力を検出し、この信
号を差温コントローラー(16)に送り、回路内の圧力
が正圧の場合で温度差が2℃以上となったとき、一定時
間遅らせて排出ポンプ(14)を作動させることなく、
自動開閉弁(13)、(13’ )を同時に開いて非凝
縮性ガスを自然排出せしめ、また回路内が負圧の場合に
は、自動開閉台(13’ ”)を開くことなく、自動開
閉弁(13)と排出ポンプ10− (14)を同時に作動させて非凝縮性ガスを強制排出す
るようにしたものである。
On the other hand, although it is not shown in the figure, the pressure inside the circuit is detected and this signal is sent to the temperature difference controller (16). without activating the discharge pump (14) with a time delay.
Automatic opening/closing valves (13) and (13') are opened at the same time to allow non-condensable gas to be discharged naturally, and if there is negative pressure in the circuit, automatic opening/closing is possible without opening the automatic opening/closing stand (13'''). The valve (13) and discharge pump 10-(14) are operated simultaneously to forcefully discharge non-condensable gas.

尚、排出管を通して非凝縮性ガスを排出する際、凝縮部
で凝縮した液滴が排出管内に入るのを防止するため、第
5図(イ)、(ロ)に示すように配管(10)内におけ
る配管(13)の開口部を(イ)に示すように斜め下方
向を向くようにするか又は(ロ)示すように先端を下方
に折曲げることが望ましい。
When discharging non-condensable gas through the discharge pipe, in order to prevent droplets condensed in the condensing section from entering the discharge pipe, the pipe (10) is installed as shown in Figures 5 (a) and (b). It is desirable that the opening of the pipe (13) inside the tube be directed diagonally downward as shown in (a), or that the tip be bent downward as shown in (b).

このように本発明によれば凝縮部伝熱管内の非凝縮性ガ
スの滞留検知が可能となり、回路内の圧力が正圧、負圧
にかかわらず、外気を吸込むことなく自動的に滞留非凝
縮性ガスを排出し、かつ凝縮部伝熱管の伝熱面積をすべ
て有効に伝熱に寄与させ得るもので、セパレート型熱交
換装置の凝縮部を常に良好な状態に保持することができ
る顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to detect the accumulation of non-condensable gas in the condensing section heat transfer tube, and automatically detect the accumulation of non-condensable gas without drawing in outside air, regardless of whether the pressure in the circuit is positive or negative. It has the remarkable effect of keeping the condensing part of a separate heat exchanger in good condition at all times, as it allows the entire heat transfer area of the condensing part heat transfer tube to effectively contribute to heat transfer. It is something that plays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセパレート型熱交換装置の一例を示す説
明図、第2図は第1図における凝縮部の一例を示す説明
図、第3図は本発明排出方法の一実施例を示す説明図、
第4図は本発明排出方法の他の一実施例を示す説明図、
第5図(イ)、(ロ)はそれぞれ本発明排出管の凝縮液
侵入防止手段を示す側断面図である。 1、 蒸発部 2、 凝縮部 2a 凝縮部上部ヘッダー管 2b 凝縮部下部ヘッダー管 2C凝縮部伝熱管 3、 作動液タンク 4、凱 配管 6、 作動液(凝縮液) 7、 ポンプ 8、 凝縮液滴 9、 非凝縮性ガス 11、 排出管 12、 排出バルブ 13.13′ 自動開閉弁 14、 排出ポンプ 15a 、 15b、温度検出器 16、 差温コントローラー 13− 第5図 (1))
Fig. 1 is an explanatory diagram showing an example of a conventional separate type heat exchange device, Fig. 2 is an explanatory diagram showing an example of the condensing section in Fig. 1, and Fig. 3 is an explanatory diagram showing an example of the discharge method of the present invention. figure,
FIG. 4 is an explanatory diagram showing another embodiment of the discharge method of the present invention;
FIGS. 5(a) and 5(b) are side sectional views showing the condensate intrusion prevention means of the discharge pipe of the present invention, respectively. 1. Evaporation section 2, Condensation section 2a Condensation section upper header pipe 2b Condensation section lower header pipe 2C Condensation section heat transfer tube 3, Working fluid tank 4, Gai Piping 6, Working fluid (condensed fluid) 7, Pump 8, Condensed droplet 9, non-condensable gas 11, discharge pipe 12, discharge valve 13, 13' automatic opening/closing valve 14, discharge pumps 15a, 15b, temperature detector 16, temperature difference controller 13- Fig. 5 (1))

Claims (4)

【特許請求の範囲】[Claims] (1)蒸発部と凝縮部を分離して配置し、これを断熱配
管により連結して循環回路を形成し、該回路内に作動液
を装入循環させて作動液の相変態により熱交換する装置
の凝縮部内に、滞留した非凝縮性ガスを凝縮部内の蒸気
の流れの下流側又は下流側配管に設けた排出管より排出
する方法において、排出管に排出装置を設け、凝縮部内
の蒸気の流れの凝縮部伝熱管より上流側温度と凝縮部伝
熱管より下流側の温度を検出し、その温度差により排出
装置を自動的に作動させることを特徴とするセパレート
型熱交換装置の非凝縮性ガスの排出方法。
(1) The evaporation section and the condensation section are arranged separately and connected by adiabatic piping to form a circulation circuit, and the working fluid is charged and circulated in the circuit to exchange heat through phase transformation of the working fluid. In a method of discharging the non-condensable gas accumulated in the condensing section of the device from a discharge pipe provided on the downstream side of the flow of steam in the condensing section or in the downstream piping, a discharge device is provided in the discharge pipe to discharge the non-condensable gas accumulated in the condensing section. A non-condensing separate heat exchange device characterized by detecting the temperature upstream of the condensing heat transfer tube and the temperature downstream of the condensing heat transfer tube, and automatically operating the discharge device based on the temperature difference. How to release gas.
(2)凝縮部内の蒸気の流れの上流側と下流側の温度差
が2℃以上のときに排出装置を作動させる特許請求の範
囲第1項記載のセパレート型熱交換装置の非凝縮性ガス
の排出方法。
(2) The non-condensable gas in the separate heat exchange device according to claim 1, in which the discharge device is activated when the temperature difference between the upstream and downstream sides of the flow of steam in the condensing section is 2° C. or more. Discharge method.
(3)凝縮部内の蒸気の流れの上流側と下流側の温度差
による排出装置の作動を一定時間遅らせて作動させる特
許請求の範囲第1項又は第2項記載のセパレート型熱交
換装置の非凝縮性ガスの排出方法。
(3) Non-operation of the separate heat exchange device according to claim 1 or 2, in which the operation of the discharge device is delayed for a certain period of time due to the temperature difference between the upstream and downstream sides of the flow of steam in the condensing section. How to vent condensable gases.
(4)排出装置に強制排出機と自動排出弁を並列に設け
、回路内が正圧の場合には自動排出弁を作動させ、負圧
の場合には強制排出機を作動させる特許請求の範囲第1
項、第2項又は第3項記載のセパレート型熱交換装置の
非凝縮性ガスの排出方法。
(4) A claim in which the discharge device is provided with a forced discharge machine and an automatic discharge valve in parallel, and when the pressure in the circuit is positive, the automatic discharge valve is operated, and when the pressure is negative, the forced discharge machine is operated. 1st
A method for discharging non-condensable gas from a separate heat exchange device according to item 1, 2 or 3.
JP18811083A 1983-10-07 1983-10-07 Discharging method of non-condensable gas for separate type heat exchanger Granted JPS6080087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18811083A JPS6080087A (en) 1983-10-07 1983-10-07 Discharging method of non-condensable gas for separate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18811083A JPS6080087A (en) 1983-10-07 1983-10-07 Discharging method of non-condensable gas for separate type heat exchanger

Publications (2)

Publication Number Publication Date
JPS6080087A true JPS6080087A (en) 1985-05-07
JPS6345037B2 JPS6345037B2 (en) 1988-09-07

Family

ID=16217872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18811083A Granted JPS6080087A (en) 1983-10-07 1983-10-07 Discharging method of non-condensable gas for separate type heat exchanger

Country Status (1)

Country Link
JP (1) JPS6080087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116768U (en) * 1987-01-14 1988-07-28
US4958679A (en) * 1987-05-04 1990-09-25 Siemens Aktiengesellschaft Condenser for the water-steam loop of a power plant, in particular a nuclear power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199793A (en) * 1989-12-25 1991-08-30 Tomoe Gijutsu Kenkyusho:Kk Butterfly valve preventing dew condensation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123088A (en) * 1982-01-14 1983-07-22 Kawasaki Steel Corp Non-condensed gas discharging device of separate type heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123088A (en) * 1982-01-14 1983-07-22 Kawasaki Steel Corp Non-condensed gas discharging device of separate type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116768U (en) * 1987-01-14 1988-07-28
US4958679A (en) * 1987-05-04 1990-09-25 Siemens Aktiengesellschaft Condenser for the water-steam loop of a power plant, in particular a nuclear power plant

Also Published As

Publication number Publication date
JPS6345037B2 (en) 1988-09-07

Similar Documents

Publication Publication Date Title
US4513813A (en) Air-cooled steam condenser
US3698476A (en) Counter flow-dual pressure vent section deaerating surface condenser
JPS6030686Y2 (en) Purge device for refrigeration equipment
US3180805A (en) Multi-stage flash evaporation system
JPS6080087A (en) Discharging method of non-condensable gas for separate type heat exchanger
JPH04340090A (en) Heat exchanger
JPH0646153B2 (en) Method for discharging non-condensable gas from separate heat exchanger
JP4364414B2 (en) Heat exchanger
JPS6347751Y2 (en)
US1993832A (en) Steam heating system
JPS5929986A (en) Heat medium circulating type heat exchanger
JPH0144951Y2 (en)
JP3789993B2 (en) Heat exchanger
MX2007010783A (en) Condensation method.
US1747193A (en) Heating system
JPS6118490A (en) Method and device for distillation of salt water basing on coolant vapor compression system
JPS6222779Y2 (en)
JPH0260958B2 (en)
JPH0144952Y2 (en)
FI74620C (en) Method and apparatus for preventing the occurrence of water hammers and steam condensation impacts
US1144197A (en) Condenser.
JPS625577Y2 (en)
CN205516594U (en) Reation kettle solvent vapor -recovery unit
JPS6252237B2 (en)
JPH10148480A (en) Heat exchanger