JPS607894B2 - Salient pole rotating electric machine - Google Patents

Salient pole rotating electric machine

Info

Publication number
JPS607894B2
JPS607894B2 JP7464879A JP7464879A JPS607894B2 JP S607894 B2 JPS607894 B2 JP S607894B2 JP 7464879 A JP7464879 A JP 7464879A JP 7464879 A JP7464879 A JP 7464879A JP S607894 B2 JPS607894 B2 JP S607894B2
Authority
JP
Japan
Prior art keywords
rotor
ventilation duct
electric machine
rotating electric
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7464879A
Other languages
Japanese (ja)
Other versions
JPS561749A (en
Inventor
忠久 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7464879A priority Critical patent/JPS607894B2/en
Publication of JPS561749A publication Critical patent/JPS561749A/en
Publication of JPS607894B2 publication Critical patent/JPS607894B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 本発明は水車発電機などの突極形回転電機の通風冷却に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ventilation cooling of a salient pole rotating electrical machine such as a water turbine generator.

近年水車発電機は大容量化の傾向にあり、特に揚水発電
電動機においては、発電所建設の経済性向上を計るため
に、高速大容量化の傾向が著しい。
In recent years, there has been a trend towards increasing the capacity of water turbine generators, and in pumped storage generator motors in particular, there has been a remarkable trend toward increasing speed and capacity in order to improve the economic efficiency of power plant construction.

この回転電機の高速化に伴って、回転子の強度により、
回転子の直径が制限されるために、固定子鉄心の内径も
制限される。
As the speed of this rotating electric machine increases, the strength of the rotor
Since the diameter of the rotor is limited, the inner diameter of the stator core is also limited.

このため回転電機の出力を増大させようとすると、固定
子鉄心の積厚、すなわち軸方向長さを増加することにな
る。従来一般に採用されている発電電動機の通風冷却構
造を第1図について説明する。回転予リムーの外周に装
着された複数個の磁極2相互間のスペースの電動ファン
3により軸万向に押込んだ冷却風を、固定子鉄心4の間
に設けたェアダクト5内に半径方向に流して、固定子鉄
心4および固定子コイル6を冷却した後、固定子枠7の
外周に取付けた空気冷却器8を通して再循環する。
Therefore, in order to increase the output of the rotating electric machine, the stacking thickness of the stator core, that is, the axial length thereof must be increased. A ventilation cooling structure for a generator motor, which has been generally employed in the past, will be explained with reference to FIG. Cooling air is pushed axially in the space between the plurality of magnetic poles 2 attached to the outer periphery of the rotating pre-limb by the electric fan 3, and is radially directed into the air duct 5 provided between the stator cores 4. After cooling the stator core 4 and stator coils 6, the air is recirculated through an air cooler 8 attached to the outer periphery of the stator frame 7.

その場合、各磁極2間を軸方向に流れる流速は入口では
全風量が通過するために最も速く、中心に向かうほど風
量が減少するので遅くなる。
In this case, the velocity of the flow that flows in the axial direction between the magnetic poles 2 is fastest at the entrance because the entire amount of air passes through it, and becomes slower toward the center because the amount of air decreases.

回転電機の容量が増加して、発生熱量が増大すると、所
要の冷却風量も増加して、このため各磁極2間入口にお
ける流速が上昇し、通風抵抗すなわち圧力損失が激増す
る。また固定子鉄心4の軸方向長さが長いために、軸方
向に流入した冷却空気は、図示しない回転子コイルの発
生熱を吸収して、軸中心に向かうほど高温となり、これ
に伴って固定子鉄心4ならびに固定子コイル6の軸方向
温度分布も不均一となる欠点があった。これを避けるた
めに、第1図に示す様に、回転子リム1にも通風ダクト
9を設けて所要風量の1部を、このダクト9を通して半
径方向に送り込むことによって、磁極間入口から押し込
む風量を減ずると共に、固定子鉄心4ならびに固定子コ
イル6の軸方向温度分布を一様化する方策がとられてい
る。
As the capacity of the rotating electric machine increases and the amount of heat generated increases, the required amount of cooling air also increases, which increases the flow velocity at the inlet between each magnetic pole 2, and causes a drastic increase in ventilation resistance, that is, pressure loss. In addition, since the stator core 4 has a long axial length, the cooling air flowing in the axial direction absorbs the heat generated by the rotor coil (not shown), and becomes hotter as it moves toward the center of the shaft. There is also a drawback that the axial temperature distribution of the child core 4 and the stator coil 6 is non-uniform. In order to avoid this, a ventilation duct 9 is also provided in the rotor rim 1 as shown in FIG. At the same time, measures are being taken to make the axial temperature distribution of the stator core 4 and stator coil 6 uniform.

しかしながら、第1図に示す様に構成したものにおいて
は、磁極2間から軸方向に流入する冷却空気の流れと、
回転子リムーの通風ダクト9から磁極2間に半径方向に
流入する冷却空気の流れとが合流する際に、多大のうず
流損を生じ、この結果風損が増加して、回転電機の効率
を著しく低下させる欠点があった。
However, in the configuration shown in FIG. 1, the flow of cooling air flowing in the axial direction from between the magnetic poles 2,
When the flow of cooling air flowing radially between the magnetic poles 2 from the ventilation duct 9 of the rotor rim merges, a large amount of eddy flow loss occurs, resulting in an increase in windage loss, which reduces the efficiency of the rotating electric machine. There was a drawback that caused a significant decline.

特に回転子の周速が120m/秒を超える様な300M
VA級の高速大容量機では、風損は2000kW以上に
も達する莫大なものとなる。本発明は、磁極間入口部の
風速を減じて、その部分の圧力損失を減少させると共に
、風損の激増を招くことなく、所要の風量を磁極間に流
入させることにより、所要の冷却風量を流すに要するフ
ァン動力を減じると同時に、軸方向の温度分布が一様で
、効率の高い回転電機を提供することを目的とする。
In particular, 300M where the circumferential speed of the rotor exceeds 120m/sec.
In a VA-class high-speed, large-capacity aircraft, the windage loss is enormous, reaching more than 2,000 kW. The present invention reduces the wind speed at the inlet between the magnetic poles to reduce the pressure loss in that area, and also allows the required amount of air to flow between the magnetic poles without causing a drastic increase in windage loss, thereby increasing the required amount of cooling air. It is an object of the present invention to provide a highly efficient rotating electric machine that reduces the fan power required for the flow, has uniform temperature distribution in the axial direction, and at the same time has uniform temperature distribution in the axial direction.

以下、本発明の一実施例について、第2図および第3図
を参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

これらの図において第1図と同一部分には同一符号を付
して説明を省略する。この実施例において、1川ま各磁
極2間のスペースを鼠方向に3個の室11,12,13
に仕切る磁極間通風仕切板で、各磁極2間に2枚宛配置
され、回転子リム1にボルト14で取付けられる。
In these figures, the same parts as in FIG. 1 are given the same reference numerals, and their explanation will be omitted. In this embodiment, the space between each magnetic pole 2 is divided into three chambers 11, 12, 13 in the mouse direction.
Two ventilation partition plates between the magnetic poles are arranged between each magnetic pole 2, and are attached to the rotor rim 1 with bolts 14.

そして回転子リム1の通風ダクト9は磁極間に仕切られ
た3個の室11,12,13のうち、中央の室12のみ
に通ずる様に設けられる。この様にすると、軸万向端部
の軸端側の室11,13には軸方向から、そして中央の
室12には半径方向から、各々独立して冷却風を送り込
むことになるので、磁極2間入口から軸方向に流入する
冷却空気の流れと、回転子リムの通風ダクト9から半径
方向に流入する流れが混合することなく、従って両者の
合流によろうず流損の発生を抑止することが出来る。こ
の結果風損の激増を招くことなく、所要の冷却風量を確
保することが可能となる。
The ventilation duct 9 of the rotor rim 1 is provided so as to communicate only with the central chamber 12 among the three chambers 11, 12, 13 partitioned between the magnetic poles. In this way, cooling air is sent independently to the chambers 11 and 13 on the end side of the shaft from the axial direction, and from the radial direction to the central chamber 12, so that the magnetic pole The flow of cooling air flowing in the axial direction from the inlet of the rotor rim and the flow flowing in the radial direction from the ventilation duct 9 of the rotor rim do not mix, thus preventing the occurrence of wax flow loss due to the merging of the two. I can do it. As a result, it becomes possible to secure the required amount of cooling air without causing a drastic increase in windage loss.

そして中央の室12へ多量の冷却風風を送り込むので、
固定子鉄心4並びに固定子コイル6の麹方向の温度分布
をほぼ一様に保つことが可能になる。第4図に他の実施
例を示す。
Since a large amount of cooling air is sent into the central chamber 12,
It becomes possible to maintain substantially uniform temperature distribution in the stator core 4 and stator coil 6 in the koji direction. FIG. 4 shows another embodiment.

これは回転子リム1の内周側端部開口部15に通風制限
板16を設けたものである。この通風制限板16は通風
ダクト9の内周入口部17に設けてもよい。この様にす
ると、ローターリムの通風ダクト9に半径方向に流入し
て、中央部の室12に入る冷却空気量を加減できるので
、軸端側の室11,13に入る冷却空気量とのバランス
を適切に設定することが出来「 この結果固定子鉄心4
並びに固定子コイル6の軸万向の温度分布を、さらに一
様にして、一層信頼性の高い回転電機が得られる。
This is provided with a ventilation restricting plate 16 at an opening 15 at the inner peripheral end of the rotor rim 1. This ventilation restriction plate 16 may be provided at the inner circumferential entrance portion 17 of the ventilation duct 9. In this way, the amount of cooling air that flows into the ventilation duct 9 of the rotor rim in the radial direction and enters the chamber 12 in the center can be adjusted, so the amount of cooling air that enters the chambers 11 and 13 on the shaft end side can be adjusted. As a result, stator core 4 can be set appropriately.
In addition, the temperature distribution in all axial directions of the stator coil 6 can be made even more uniform, and a rotating electrical machine with even higher reliability can be obtained.

尚、本発明は上記し、かつ図面に示した実施例のみに限
定されるものではなく、その要旨を変更しない範囲で、
種々変形して実施できることは勿論である。以上述べた
如く、本発明によれば、各磁極2間のスペースを軸方向
に3個の室に仕切り、軸端側の室11,13には軸方向
から、中央部の室i2には半径方向から各々独立して冷
却風を送り込む様にしたので、所要の冷却風量を得るた
めのファン動力を減ずると共に、回転子の風損を大中に
減ずることが可能となり、軸方向の温度分布が一様で、
かつ効率の高い回転電機を提供できる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but may include the following without changing the gist thereof:
Of course, it can be implemented with various modifications. As described above, according to the present invention, the space between each magnetic pole 2 is partitioned into three chambers in the axial direction, and the chambers 11 and 13 on the shaft end side are partitioned from the axial direction, and the chamber i2 in the center is partitioned from the radial direction. Since cooling air is sent in from each direction independently, it is possible to reduce the fan power required to obtain the required amount of cooling air, and also to greatly reduce the windage loss of the rotor, which improves the temperature distribution in the axial direction. Uniform,
Moreover, a highly efficient rotating electric machine can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の突極形回転電機を示す右半部縦断面図、
第2図は本発明の突極形回転電機の一実施例を示す右半
部縦断面図、第3図は第2図のm−m線に沿う矢視拡大
断面図、第4図は他の実施例を示す右半部縦断面図であ
る。 1…・・・回転子リム、2・・・…磁極、9・・・・・
・通風ダクト、10・…・・仕切板、11,13…・・
・麹端側の室、12・・・・・・中央の室、15・・・
・・・・・・回転子リム内周側軸端部の開口部、16・
・・・・・通風制限板、17・…・・通風ダクトの入口
部。 第1図 第2図 第3図 第4図
Figure 1 is a vertical sectional view of the right half of a conventional salient pole type rotating electrical machine;
FIG. 2 is a vertical cross-sectional view of the right half of an embodiment of the salient pole type rotating electrical machine of the present invention, FIG. 3 is an enlarged cross-sectional view taken along line m-m in FIG. 2, and FIG. FIG. 2 is a vertical cross-sectional view of the right half of the embodiment. 1...Rotor rim, 2...Magnetic pole, 9...
・Ventilation duct, 10... Partition plate, 11, 13...
・Koji edge side chamber, 12...Central chamber, 15...
...Opening at the shaft end on the inner peripheral side of the rotor rim, 16.
...Ventilation restriction plate, 17...Inlet of ventilation duct. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 半径方向に通風ダクトを有する回転子リムおよびこ
の回転子リムの外周に装着した複数個の磁極とを備えた
回転子と、この回転子の外周側にあって半径方向に通風
ダクトを有する固定子とからなり、回転子の軸方向に押
込んだ冷却風を回転子リムの通風ダクトおよび磁極間の
スペースに流通させてから固定子側へ送るようにした突
極形回転電機において、回転子リムの通風ダクトを回転
子リム内周側軸端部の開口部に連通させ、各磁極間のス
ペースに軸方向の中央部に位置する中央の室を含む3個
の室を分割形成する2枚の通風仕切板を隔設し、この中
央の室にのみ前記回転子リムの通風ダクトを連通させた
ことを特徴とする突極形回転電機。
1. A rotor including a rotor rim having a ventilation duct in the radial direction and a plurality of magnetic poles attached to the outer periphery of the rotor rim, and a fixed device located on the outer periphery of the rotor and having a ventilation duct in the radial direction. In a salient pole rotating electric machine, cooling air forced in the axial direction of the rotor is passed through the ventilation duct of the rotor rim and the space between the magnetic poles, and then sent to the stator side. The ventilation duct of the rim is communicated with the opening at the shaft end on the inner peripheral side of the rotor rim, and the space between each magnetic pole is divided into three chambers, including a central chamber located at the center in the axial direction. 1. A salient pole type rotating electric machine, characterized in that a ventilation partition plate is provided at intervals, and a ventilation duct of the rotor rim is communicated only with the central chamber.
JP7464879A 1979-06-15 1979-06-15 Salient pole rotating electric machine Expired JPS607894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7464879A JPS607894B2 (en) 1979-06-15 1979-06-15 Salient pole rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7464879A JPS607894B2 (en) 1979-06-15 1979-06-15 Salient pole rotating electric machine

Publications (2)

Publication Number Publication Date
JPS561749A JPS561749A (en) 1981-01-09
JPS607894B2 true JPS607894B2 (en) 1985-02-27

Family

ID=13553250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7464879A Expired JPS607894B2 (en) 1979-06-15 1979-06-15 Salient pole rotating electric machine

Country Status (1)

Country Link
JP (1) JPS607894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204360A (en) * 1994-01-18 1995-08-08 Takeji Kinoshita Spherical body motion mechanism

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084075U (en) * 1983-11-11 1985-06-10 パイオニア株式会社 printed wiring connection strip
JPS62123674A (en) * 1985-11-25 1987-06-04 松下電工株式会社 Branch connector of telephone flat cable
US6680552B2 (en) 2002-01-24 2004-01-20 Visteon Global Technologies, Inc. Flow path for a liquid cooled alternator
US6674188B2 (en) 2002-03-01 2004-01-06 Visteon Global Technologies, Inc. Liquid cooled alternator
DE102006020149A1 (en) * 2006-05-02 2007-11-15 Siemens Ag Synchronous salient pole machine e.g. ring motor, for use in ball mill, has yoke with yoke section arranged between two salient poles, where yoke section has radial air passage that radially separates air portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204360A (en) * 1994-01-18 1995-08-08 Takeji Kinoshita Spherical body motion mechanism

Also Published As

Publication number Publication date
JPS561749A (en) 1981-01-09

Similar Documents

Publication Publication Date Title
US3643119A (en) Ventilated dynamoelectric machine
CN102124637B (en) Rotating electrical machine
US2494200A (en) Electric machine
CA2656986C (en) Process and devices for cooling an electric machine
US4051400A (en) End gas gap baffle structure for reverse flow cooled dynamoelectric machine
US4182966A (en) Ventilation system for dynamoelectric machines
JPS5914968B2 (en) Ventilation cooling system for rotating electrical machines
US4546279A (en) Dynamoelectric machine with rotor ventilation system including exhaust coolant gas diffuser and noise baffle
US4547688A (en) Dynamoelectric machine with rotor ventilation system including prewhirl inlet guide vanes
US4028569A (en) Ventilation system for dynamoelectric machines
WO2021027301A1 (en) Stator block, stator assembly, and cooling system for stator assembly
US3588557A (en) Low loss ventilation for salient pole machines
US2663808A (en) Dynamoelectric machine having a ventilation shield in the air gap
US4379975A (en) Reverse flow cooled dynamoelectric machine
KR20190096408A (en) Stator supports for stators of wind turbine generators, stators including such stator supports, generators, and wind turbines
JPS607894B2 (en) Salient pole rotating electric machine
JPH05227701A (en) Electric machine cooled by gas
US4163163A (en) Non-salient pole synchronous electric generator
CN115800576B (en) Permanent magnet motor with high-efficiency air-water mixed cooling system
US6426574B1 (en) Rotor of a turbogenerator having direct gas cooling incorporating a two-stage flow cascade
JPS596135B2 (en) Salient pole rotating electric machine
JPS6337588B2 (en)
US5065058A (en) Shroud for dynamoelectric machine
US2324297A (en) Dynamoelectric machine
JPS5828455Y2 (en) rotating electric machine