JPS6078628A - Liquid mixing method and apparatus - Google Patents

Liquid mixing method and apparatus

Info

Publication number
JPS6078628A
JPS6078628A JP58185759A JP18575983A JPS6078628A JP S6078628 A JPS6078628 A JP S6078628A JP 58185759 A JP58185759 A JP 58185759A JP 18575983 A JP18575983 A JP 18575983A JP S6078628 A JPS6078628 A JP S6078628A
Authority
JP
Japan
Prior art keywords
liquid
mixing
mixed
section
large amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58185759A
Other languages
Japanese (ja)
Inventor
Satoshi Ihara
井原 郷司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP58185759A priority Critical patent/JPS6078628A/en
Publication of JPS6078628A publication Critical patent/JPS6078628A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To rapidly and uniformly mix an extremely small amount of a liquid with a large amount of liquid flowing through a pipeline without applying energy from the outside, by utilizing stirring and mixing action generated when the mechanical energy of the liquid in the pipeline is lost. CONSTITUTION:A pipeline 3 is provided in a pipeline 1 to divide said pipeline 1 into a flowline having an opening directed to the upstream of the pipeline through which the small part of a large amount of a liquid and a flowline through which the greater part of said liquid is flowed. In a pre-mixing part comprising said pipeline 3, an extremely small amount of a liquid is mixed into the flowline, through which the aforementioned small part is flowed, and both liquids are mixed by stirring action based on the friction in both liquids and the friction between the liquids and a solid surface. Next, in a mixing part, a flow reducing part 6 is adequately provided to the stream occupying the greater part of a large amount of the aforementioned liquid to generate an accelerated stream and the liquids mixed in the aforementioned pre-mixing part 3 are flowed into and mixed with the liquid in said pressure reduced part. By this method, an extremely small amount of the liquid can be rapidly and uniformly mixed with a large amount of the liquid flowing through the pipeline without applying energy from the outside.

Description

【発明の詳細な説明】 本発明は、管路を流れる大量の液体に、ごく少部の液体
を混合する方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for mixing a small amount of liquid with a large amount of liquid flowing through a conduit.

分子拡散の貢献度の高い特別の場合を除くと、液体の場
合は撹拌により惹起される。
Except for special cases in which molecular diffusion has a high degree of contribution, in the case of liquids, it is caused by stirring.

一般に、大量の物質中に、ごく少部の物質を混合するた
めに、両者を加えて撹拌するだけでは不充分なことが多
い。その理由の1つは、少量物質が、大量物質の1部ま
たは溶畷に、付和、吸着、溶解し、または撹拌の不均一
性のため、局在化し易いためであって、他の1つけ、少
量物質が大量物質中に均一に混合するために時間を外し
、いわゆる迅速性(earliness )が損われる
ためである。
Generally, in order to mix a small amount of a substance into a large amount of substance, it is often insufficient to simply add and stir the two. One of the reasons for this is that small amounts of substances tend to localize in a part of large amounts of substances or in the molten furrows due to adsorption, adsorption, dissolution, or non-uniform stirring; This is because it takes time for a small amount of material to be mixed uniformly into a large amount of material, which impairs so-called earlyness.

粉粒体の混合の場合、例えば医薬品の調剤、食F1、飼
料、餌料に微量成分を加えるために、先づ微量成分を主
成分の央部に撹t1′混合しく予備混合または第1段混
合)、次に、この混合物と主成分の大部とを撹拌混合(
本混合または第2段混合)することは広く行われている
。(撹拌および混合の定義として、いずれも「かき混ぜ
」を意味し、前者は流体に用い、後者は固体に用いると
なす説がある。しかしながら、McCabe (!: 
8nith はその著書Llnit 0peratio
ns of (hcmical Engineerin
g、 McGry−Hill(1976)において、撹
拌とは、物質に誘起された運動、例えば容器内の円状運
動により起こるもので、混合とは2以上の物質のランダ
ムな分布に関するものと述べている。純水はいくら撹拌
しても混合が起こる訳ではないから、後者の定義に従う
O) 粉粒体の撹拌混合は、常に外部から、エネルギーを加え
ると七により行われている。第1図は、粉粒体の撹拌混
合を、液体の混合に置き換え示したもので、Bl、B2
は、それぞれ、第1段、第2段の混合器で、それぞれ、
撹拌器AI、A2により撹拌されている。大量液体は、
矢印に沿い管路を流れて、その央部が、管路1b*−経
て、混合器Bl内で、管路(2)から直入する少量液体
と混合し、さらに混合器B2内で、管路1aを経て進入
する残存大量液体と混合することにより2段混合が行わ
れる1、もし、混合器Bl、B2内で完全逆混合が行わ
れ、管路内は社流と仮定すると、この系は解析的に容易
に解りるので、縦来法の理想化モデルと考えると便利で
ある。
In the case of mixing powder and granular materials, for example, in order to add trace ingredients to pharmaceutical preparations, food F1, feed, and feedstuffs, the trace ingredients are first mixed into the center of the main ingredients by premixing or first-stage mixing. ), then stir and mix this mixture with most of the main ingredients (
Main mixing or second stage mixing) is widely practiced. (There is a theory that stirring and mixing both mean "stirring," and that the former is used for fluids and the latter is used for solids. However, McCabe (!:
8nith is his book Llnit 0peratio
ns of (hcmical engineerin
g, McGry-Hill (1976) states that stirring is caused by movement induced in substances, such as circular movement within a container, and mixing refers to the random distribution of two or more substances. . Pure water does not mix no matter how much you stir it, so it follows the latter definition.O) Stirring and mixing of powder and granules is always done by applying energy from the outside. Figure 1 shows the agitation mixing of powder and granular materials replaced with liquid mixing, and shows Bl, B2
are the first and second stage mixers, respectively,
Stirring is performed by agitators AI and A2. A large amount of liquid is
It flows through the pipe along the arrow, and its central part passes through pipe 1b*-, mixes with a small amount of liquid directly entering from pipe (2) in mixer Bl, and further flows through pipe in mixer B2. Two-stage mixing is performed by mixing with the remaining large amount of liquid that enters through 1a. 1. If complete back-mixing is performed in mixers Bl and B2, and assuming that there is a common flow in the pipes, this system will be Since it is easy to understand analytically, it is convenient to think of it as an idealized model of the longitudinal method.

しかるに、管路を流れる液体の場合、液体内または液体
と管壁との摩擦による機械エネルギーの損失の際、必ら
ず混合が起こるので、外部から特にエネルギーを与える
ことを要しない。また、機械エネルギーの混合に貢献す
る程度すなわちエネルギー効率は、液体内での摩擦の場
合の方が、管壁との摩擦の場合の方が大きいのである。
However, in the case of liquid flowing through a pipe, mixing necessarily occurs when mechanical energy is lost due to friction within the liquid or between the liquid and the pipe wall, so it is not necessary to apply any particular energy from the outside. Furthermore, the extent to which mechanical energy contributes to mixing, that is, the energy efficiency, is greater in the case of friction within the liquid than in the case of friction with the tube wall.

木部BI]の目的は、管路を流れる大組の液体に、ごく
少部、の液体を、外部からエネルギーを加えることなく
、迅速かつ均一に混合する方法および装置を提供するこ
とである。
The purpose of the Xylem BI is to provide a method and apparatus for quickly and uniformly mixing a small portion of liquid into a large liquid flowing through a conduit without applying external energy.

ここで、ごく少量とは、例えに約10−1〜1103p
p程度を意味しているが、この数字に拘わるものではな
い。
Here, a very small amount is approximately 10-1 to 1103p.
Although it means about p, it is not limited to this number.

木部81jの方法では、管路内での機械エネルギー損失
の際に伴われる撹拌混合作用を利用して、外部から機械
エネルギー(動力)を加えることなく、実質的に、2段
ないし多段混合を行わせる。しかして本発明の装置は、
これに用いる装置である。
Kibe 81j's method utilizes the stirring and mixing action that accompanies mechanical energy loss within the pipeline, and essentially performs two-stage or multi-stage mixing without applying external mechanical energy (power). Let it happen. However, the device of the present invention
This is the device used for this.

本発明の構成を、先づ、第2図に例示し九実施例装置に
より説明する。
The structure of the present invention will first be explained using a nine-embodiment apparatus illustrated in FIG.

+llは多量液体の流れる管路で、tt+flこれに混
合すべき少量液体の管6L+:nは後部にコーン状の邪
魔板t115を有する予備(または第1段)混合部(第
1図のB1にほぼ匹敵する。)(4)は少ptI液体の
噴出ノズル、(5)は邪魔板である。液体は矢印方向に
流れるものとする。少量液体はノズル(4)から噴出す
る際に、管路が怠に拡大することから壁との摩擦の少な
い状態で、液体が撹拌され、混合が起こる。この撹拌混
合は、該液体が矢印方向(下流)に進むにつれて、さら
に進行し、予備混合部(3)を出て、邪魔板+51に衡
突して、より一層混合が進んで、隙間(6)(管路11
)と邪魔板(5)及び(d)により形成される環状空部
)を通る。この際、この隙間(6)では大fat:液体
側の流れが絞られるので予備混合部内で予備混合した、
少量液体が吸出されて大部の大量液体中に入りかき混ぜ
られ、本混合(2段混合)シ、均一な混合物になって、
下流へ流れる。
+ll is a pipe through which a large amount of liquid flows, tt+fl is a pipe for a small amount of liquid to be mixed with this pipe 6L+:n is a preliminary (or first stage) mixing section (B1 in Fig. (4) is a jetting nozzle for low ptI liquid, and (5) is a baffle plate. Assume that the liquid flows in the direction of the arrow. When a small amount of liquid is ejected from the nozzle (4), the pipe expands lazily, so the liquid is stirred and mixed with less friction with the wall. This stirring and mixing progresses further as the liquid advances in the direction of the arrow (downstream), exits the premixing section (3) and hits the baffle plate +51, whereupon the mixing progresses further and the gap (6 ) (Pipeline 11
) and the annular cavity formed by the baffles (5) and (d). At this time, in this gap (6), the flow on the large fat: liquid side is constricted, so the premixing is performed in the premixing section.
A small amount of liquid is sucked out and mixed into a large amount of liquid, and the main mixing (two-stage mixing) becomes a homogeneous mixture.
flows downstream.

すなわち、本例では、予備混合部(3)を用いて、少量
液体と比較的少量の多お液体とを先づ混合し、これを大
對1液体の残りと隙間(6)(本混合部)で混合してい
る(第1段混合部、第2段混合部、第3段混合部と順次
設けて混合を多段化すれば、さらに混合の迅速性、均一
性が増すことは言うまでもないoL+なお、本例の予備
混合部(3)はベンチュリ管trr造になっており、該
管内での4μ械エネルギー損失が低減されているが、後
述するl(j+、の実施例中部管で示したものに有利に
適用可能である。
That is, in this example, a small amount of liquid and a relatively small amount of large liquid are first mixed using the preliminary mixing section (3), and this is mixed with the remainder of the large amount of liquid in the gap (6) (main mixing section). ) (It goes without saying that the speed and uniformity of mixing will further increase if the mixing is performed in multiple stages by sequentially installing the 1st stage mixing section, 2nd stage mixing section, and 3rd stage mixing section) The premixing section (3) in this example is constructed with a Venturi tube trr, which reduces mechanical energy loss by 4μ within the tube. It can be advantageously applied to things.

本例において撹拌状態を惹起するのId、少i1液体の
噴出ノズル部(管路急拡大)と邪魔板(6)のヒ流部液
体流れの方向転換が主体に々っているが(もち論ベンチ
ュリ管でも撹拌が紀ころ。)、いずれも、直情の場合に
比べ”C1液体内!g擦の重要性が高く、撹拌へのエネ
ルギー効率がi+ffIいことに注意されたい。
In this example, the stirring state is mainly caused by the ejection nozzle part of the small liquid (rapid expansion of the pipe) and the change in the direction of the liquid flow in the flow part of the baffle plate (6). It should be noted that in both cases, the importance of rubbing inside the C1 liquid is higher than in the direct case, and the energy efficiency for stirring is lower.

なお、本実施例および、以下の実施例で、液体の流れの
方向を水平に示しているが、これに拘わるものでなく、
垂直、斜などいずれの方向であっても差支えないことは
商うまでもない(周知のとおり、垂直方向の場合偏流が
少ない意味で有利である。)。また、予備混合部(3)
を管路外に設けて1必要な配管を行い、本実施例と同一
効果を奏し得ることも当然である。
Note that in this example and the following examples, the direction of the liquid flow is shown horizontally, but the direction is not limited to this.
It goes without saying that there is no problem in any direction, such as vertical or oblique (as is well known, the vertical direction is advantageous in that there is less drifting). In addition, the premixing section (3)
Of course, it is also possible to provide the same effect as this embodiment by providing the necessary piping outside the pipe line.

上記のように、第2図に示した実施例により、外部から
機械エネルギーを加えることなく、笹路内の液体の持つ
枦・械エネルギーにより、2段混合かり能なのは明らか
である。
As described above, it is clear that the embodiment shown in FIG. 2 allows two-stage mixing to be carried out by the mechanical energy of the liquid in the bamboo path without applying external mechanical energy.

次に第3図に示り、fr、実施例を用いて、大量液体を
、予備混合部用(少部)と本混合部用(大部)に分流さ
せる機構の例を示す。
Next, as shown in FIG. 3, an example of a mechanism for dividing a large amount of liquid into a preliminary mixing section (a small portion) and a main mixing section (a large portion) will be shown using an example.

この実施例では、第2図の実施例における邪魔板(6)
が、予(q11重合部(3)の上流端(入口端)に環状
板として同着されており、また予備混合Its< (s
)には、蓋状体3aが遊冠されている。しかして、予備
混合部(3)、通路(3b)、同(3c)全体において
予備混合が行われるようICなっている。邪魔板(5)
とIvf路+1)の間の環状隙間(6)は、大に液体の
大部の流れの絞りになっており、この部で、圧降下を生
ぜしめ、その下流縮流部に予備混合し走小部液体を吸入
させて本混合を行うのである。隙間(6)の面積を調整
することにより、大1+1.液体の大部と少部との比を
7Ry!、シ得ることは用らさであって、隙間(6)は
、環状連続であることを要しない。それどころか、この
流入路を2−フ巨上(てし、および、′!1′たけ、偏
平にして、その周磯長を大tてし、相当直径を小にする
と、混合に要する流路長が短縮され、装jP1の流れ方
向の長さを短細し得るのであって、他の実施例につい°
Cもその適用が望ましい。
In this embodiment, the baffle plate (6) in the embodiment of FIG.
is attached as an annular plate to the upstream end (inlet end) of the pre-(q11 polymerization section (3)), and the pre-mixing Its< (s
) has a lid-like body 3a with a free crown. Thus, the IC is configured such that premixing is performed throughout the premixing section (3), the passage (3b), and the passageway (3c). Baffle board (5)
The annular gap (6) between the Ivf path and the Ivf path +1) is a major flow restriction for the majority of the liquid, causing a pressure drop in this section and premixing and running into the downstream contraction section. Main mixing is performed by sucking in a small portion of the liquid. By adjusting the area of the gap (6), large 1+1. The ratio of the major part to the minor part of the liquid is 7 Ry! However, the gap (6) does not need to be annular and continuous. On the contrary, if this inlet channel is made 2-fold taller and 1' taller and flatter, its circumference is made larger, and the equivalent diameter is made smaller, the flow length required for mixing is increased. is shortened, and the length of the device jP1 in the flow direction can be shortened.
It is also desirable to apply C.

なお、本実施例においては、エネルギー損失を生ずる主
要原因が、性格の急拡大(少量流体I!#を出ノズル部
)および、方向転換(辿his Lll、同(3b)、
同(3c)および、出口路(3d)を順次通過の1祭)
であり゛Cエネルギー効率が大である。
In addition, in this example, the main causes of energy loss are sudden expansion of character (nozzle part that outputs a small amount of fluid I!#) and change of direction (tracing his Lll, same (3b),
Passing through the same (3c) and exit road (3d) one after another)
It has high energy efficiency.

次に、第4図に示した実施例では、大量液体の大部の通
路が、螺旋構造−になっており、そのため必要な圧悄失
を生ずると共に、隙間16)を通る大量液体の大部に旋
回運動が与えられ、隙間(6)近辺での本混合の効果が
一層増すのである。その他構造は第2図の場合と大同小
沢である。
Next, in the embodiment shown in FIG. 4, most of the passages for the bulk liquid are of a helical structure, which creates the necessary pressure drop and also allows the bulk of the liquid to pass through the gap 16). A swirling motion is applied to the gap (6), further increasing the effect of main mixing near the gap (6). Other structures are similar to those shown in Figure 2 and Daido Ozawa.

第5図に示した実施例では、予備混合器(3)が、上流
の管状都(3a)と下流の膨出部(3b)とからなつ°
Cいる。膨出部(3b)は、この部分で逆方向の流れを
含む大量の回流(矢印)を起して逆混合を起、こさせ、
前記ごく少部の液体が、往復ポンプなどシτより送入さ
れ脈動がある場合に、濃度の1駿萌現象の時間的均らし
作用を起むさせるためである。なお、本実施例で、予備
混合部(3)から本混合部(6)K、ごく少量の液体と
大m液体の少量との混合物が送り出される通路(6a)
が単一孔でなく多数の孔であることに注意されたい。
In the embodiment shown in FIG. 5, the premixer (3) consists of an upstream tubular cap (3a) and a downstream bulge (3b).
There is C. The bulging part (3b) causes a large amount of circulation (arrow) including a flow in the opposite direction in this part to cause back mixing,
This is to cause a temporal equalization effect of the concentration phenomenon when a very small amount of the liquid is fed from a reciprocating pump or the like and there is pulsation. In addition, in this embodiment, from the premixing section (3) to the main mixing section (6)K, a passage (6a) through which a mixture of a very small amount of liquid and a small amount of large m liquid is sent out.
Note that is not a single hole but multiple holes.

次に第6図に示した実施例では、第5図の膨出部(3b
)に相当する部分に1充填R(イ)が設け°Cある。充
填層のかわりに、1枚または数枚の多孔板を設置しても
、邪魔板を、セグメント方式に、またはドクナット方式
に設置しても差支えないが、そ濃度の時間的均らしを行
うためである。第5図、第6図の実施例ともに、完全逆
混合でなく、不完全逆混合でも差支えないことは占う塊
でもない。
Next, in the embodiment shown in FIG. 6, the bulge portion (3b
) is provided with 1 filling R (a) at °C. Instead of a packed bed, one or several perforated plates can be installed, and baffles can be installed in a segmented or dokunut type, but in order to equalize the concentration over time. It is. In both the embodiments shown in FIGS. 5 and 6, it is not impossible to predict that there is no problem with incomplete back-mixing rather than complete back-mixing.

さらに、また、いわゆるインキボトル効果(管路に、イ
ンキボトル状の瘤部を設けて、ボトルと管路間の拡散に
要する遅れ時間で、+1′¥路内の流体濃度の時間的均
らしを起こさせる効果)を利用することもでき、均らし
効果をさらにj〜ノ加できる。
Furthermore, the so-called ink bottle effect (by providing an ink bottle-shaped bump in the conduit, the time delay required for diffusion between the bottle and the conduit can equalize the fluid concentration in the +1' line over time). It is also possible to take advantage of the effect of raising the level of the air, and further add a leveling effect.

第7図に示1.た実施例においては、管路(1)におい
で、予備混合部(3)、および31九肝板(6)の下流
部に、軸流タービンJli、 +111を股直し、これ
と同軸心で、しかも、増速装嵌I44、例えば、歯車増
速装「グを用いて増速した軸に、予備混合部内m、拌択
佑0)を連設し六構造が用いられ′Cおり、管路(1)
内の沿体の持つ機械エネルギーを、タービンBT、 f
、1rllに伝パ・川7、さらに螺旋型撹拌液−を回転
させ゛C1予備混合部(3)内を撹拌し゛C混合させる
ように4っている。撹拌と同時に、液体を下流に移動さ
せる作用も兼ねさせることが可能なこと、このような積
極的な撹拌により、液体の持つ機械エネルギーのみによ
る撹拌に比べて、さらに迅速かつ充分々混合を行い得る
ことは言う寸でもかい。外部動力を用いてかい点に11
意されたい。
Figure 7 shows 1. In this embodiment, in the conduit (1), an axial flow turbine Jli, +111 is installed downstream of the premixing section (3) and the 319 liver plate (6), and coaxially therewith, In addition, a six-structure structure is used in which a gear speed increasing device (I44), for example, a gear speed increasing device (G) is used to increase the speed, and a pre-mixing section (m, stirring option) is connected to the shaft. (1)
The mechanical energy of the body in the turbine BT, f
, 1 rll, the transmission pipe 7 and the spiral stirring liquid are rotated so as to stir the inside of the C1 premixing section (3) and mix the mixture. It is possible to stir and move the liquid downstream at the same time, and this active stirring allows for faster and more thorough mixing than stirring solely by the mechanical energy of the liquid. That's all I can say. 11 at the paddle point using external power
I want to be understood.

本発明の方法では、さらに、(イ)予備渭、合部内で、
管路+1)に平行で、かつ、下浦5方向(図中左方向)
上流方向(図中左方向)に、交互に流れの方向を変えた
通路を設けること、(すこれら通路の1部を逆混合型に
近似させることなどにより種種の変形が可能であるが、
通路を複雑にすることによりm合は良くなるが、゛仙方
圧押失が増加する傾向があるので得策でないことが多い
In the method of the present invention, furthermore, (a) in the reserve and joint,
Parallel to the pipeline +1) and in the 5th direction of Shimoura (left direction in the figure)
Various modifications are possible by providing passages in which the direction of flow is alternately changed in the upstream direction (to the left in the figure), or by approximating part of these passages to a back-mixing type.
Complicating the passageway improves the fit, but it is often not a good idea because it tends to increase sacral compression.

上記説明から明らかなように、木部1ツ1は、大量の液
体に、ごく少量の液体を混合するために、先づ、大11
1.液体の少量に、少量の6友体を混合し、生成した予
備九合体を、大m液体の大部(Q量)に温石する(要す
れば、さらに多眼化する。)方法およびその4賎に関す
るもので、外部からiネルギーを供給することなく、液
体の持つ機械エネルギーのみで、必要な417.拌を行
うことができ、その混合は迅速かつ均一であるのみなら
ず、動力機械を使用しないので、信頼性6安全性が高い
0寸た、。
As is clear from the above explanation, in order to mix a very small amount of liquid into a large amount of liquid, the xylem 1
1. A method of mixing a small amount of 6-ammonium with a small amount of liquid and heating the generated preliminary 9-ammonium into a large portion (Q amount) of large m liquid (further multiplicity if necessary) and Part 4 It is related to sieve, and requires only the mechanical energy of the liquid without supplying energy from outside. The mixing is not only quick and uniform, but also reliable and safe since no power machinery is used.

混合が迅速に行われるから、少量液体として腐食件の液
体を用いた場合に、腐食防止の効果を奏する。
Since the mixing is done quickly, it is effective in preventing corrosion when a corrosive liquid is used as a small amount of liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第゛1図は、従来法の概略図、第2図、第3図、第4図
、第5図、第6図および第7図は、本発明の異なった実
施態様を示す実施例である。 11)・・・管路、(2)・・・少量液体の管路、+3
10.・予備(第1段)混合部、(4)・・・少量液体
噴出ノズル、(5)、(6)・・・邪魔板、(6)・・
・隙間(本混合部)、(イ)・・・螺旋通路、(洞・・
・充填層、hr+・・・タービン、(lit)・・・撹
拌機、Al・・・予備混合器撹拌機、A2・・・本混合
器撹拌機、B1・・・予備混合器、B2・・・本混合器
。 出願人 株式会社 笹倉機械製作所 第1図 2 第2図 第4図 第5図 几
FIG. 1 is a schematic diagram of a conventional method, and FIGS. 2, 3, 4, 5, 6, and 7 are examples showing different embodiments of the present invention. . 11)...Pipeline, (2)...Pipeline for small amount of liquid, +3
10.・Preliminary (first stage) mixing section, (4)... small amount liquid jet nozzle, (5), (6)... baffle plate, (6)...
・Gap (main mixing part), (a)... spiral passage, (cave...
- Packed bed, hr+...Turbine, (lit)...Stirrer, Al...Premixer stirrer, A2...Main mixer stirrer, B1...Premixer, B2...・This mixer. Applicant Sasakura Machinery Co., Ltd. Figure 1 Figure 2 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 管路を流れる大量の液体にごく少量の液体を混合す
るに際し: 前記大量の液体の央部に、前記ごく少量の液体を混合し
、混合した液体を前記大量の液体の残りの大部に混合す
る操作を、外力を消費することなく、液体の持つ機械エ
ネルギーを消費して行う・液体混合方法。 2 管路を流れる大量の液体にごく少量の液体を混合す
るに際し: (イ)該大か・の液体を、その央部が流れる管路上流に
向った開口を有する流路と、残りの大部が流れる流路と
に分ける装置と (ロ)該央部が流れる流路に前記ごく少量の液体を流入
させ、液体的摩擦と液体と固体面との摩擦に基づく撹拌
作用により混合する予備混合部と (ハ)前記大量の液体の大部の流れに適宜縮流部を設け
て、高速流を生せしめ、この低圧となった部分に、前記
予備部で混合した液体を流入混合させる本混合部とを含
んでなる液体混合装置。 3 予備混合部が、大量の液体の小部の流れるベンチュ
リ管の喉部近辺に、前記ごく少量の液体の流入口が開口
した構造を含む特許請求の範囲第2項記戦の液体混合装
置。 4 予備混合部が、開口鍔附短管に鍔の反対方向から同
心状に有底筒を遊冠した構造を持ち、前記ごく少量の液
体が、上記短管の鍔側から筒部に、ノズルを介して流入
し、前記大量の液体の央部と混合し、鍔の反対側筒端と
、有底筒の底との間隙(3b) 、短管と、有底筒の筒
部との間隙(3c)、鍔と有底筒の開口部との間隙(3
d)を通り、半径方向に流出する構造であり、本混合部
が前記鍔の外縁と管路(1)との間隙により大量液体の
大部を絞って形成された縮流部である特許請求の範囲第
2項または第3項記戦の液体混合装置。 5 大剤液体の大部の流れに設は念抵抗が、管路ulと
、これと同心状に設けられた予備混合部(3)との間に
形成された螺旋−により旋回する構造になりた特許請求
の範囲第2項または第3項記載の液体混合装置。 6 予備混合部に、完全逆混合に近づけるための膨出滞
留部を設けた特許請求の範囲第2項、第3項、第4項の
いずれか1に記載の液体混合装置。 7 予備混合部に完全逆混合に近づけるための固体構造
物を内蔵させた特許請求の範囲第2項、第3項、第4項
のいずれか1に記載の液体混合装置。 8 予備混合部に、インキボトル効果を生じさせるため
の留状膨出部を設けた特許請求の範囲第2項、第3項、
第4項のいずれか1に記載の液体混合装置。 9 予備混合部で混合した液体が本混合部へ流入する部
分の流路の周縁長を大ならしめその担当直径を小さくし
た特許請求の範囲第2項から第8項までのいずれか1に
記載の液体混合装置。
[Claims] 1. When mixing a very small amount of liquid with a large amount of liquid flowing through a pipe: The very small amount of liquid is mixed in the center of the large amount of liquid, and the mixed liquid is mixed into the large amount of liquid. A liquid mixing method in which the mechanical energy of the liquid is used to mix it into most of the remaining liquid without consuming external force. 2. When mixing a very small amount of liquid with a large amount of liquid flowing through a pipe: (a) The large liquid is mixed into a flow path whose central part has an opening facing upstream of the pipe, and the remaining large liquid. and (b) a device that divides the liquid into a flow path through which the central portion flows, and (b) a premixing device in which a very small amount of the liquid is introduced into the flow path through which the central portion flows and is mixed by a stirring action based on liquid friction and friction between the liquid and the solid surface. and (c) Main mixing in which a condenser section is appropriately provided in the flow of most of the large amount of liquid to generate a high-speed flow, and the liquid mixed in the preliminary section is flowed and mixed into this low-pressure section. A liquid mixing device comprising: 3. The liquid mixing device according to claim 2, wherein the premixing section includes a structure in which an inlet for the very small amount of liquid is opened near the throat of a Venturi tube through which a small portion of the large amount of liquid flows. 4. The premixing section has a structure in which a bottomed tube is concentrically crowned from the opposite direction of the flange on a short tube with an open flange, and the very small amount of liquid flows from the flange side of the short tube to the cylindrical part through the nozzle. The liquid flows through the gap (3b) between the opposite end of the collar and the bottom of the bottomed tube, and the gap between the short tube and the bottom of the bottomed tube. (3c), gap between the collar and the opening of the bottomed tube (3
d), and the main mixing part is a contraction part formed by squeezing most of the large amount of liquid by the gap between the outer edge of the collar and the pipe (1). A liquid mixing device according to Clause 2 or 3. 5. The structure is such that the virtual resistance to the flow of most of the bulk liquid is caused by the spiral formed between the pipe ul and the premixing part (3) provided concentrically therewith. A liquid mixing device according to claim 2 or 3. 6. The liquid mixing device according to any one of claims 2, 3, and 4, wherein the premixing section is provided with a swelling and retention section for approaching complete back-mixing. 7. The liquid mixing device according to any one of claims 2, 3, and 4, wherein the premixing section has a built-in solid structure for achieving close to complete back mixing. 8. Claims 2 and 3, in which the pre-mixing section is provided with a stagnation-like bulge for producing an ink bottle effect.
The liquid mixing device according to any one of Item 4. 9. According to any one of claims 2 to 8, the peripheral length of the flow path at the portion where the liquid mixed in the premixing section flows into the main mixing section is increased and the corresponding diameter is decreased. liquid mixing equipment.
JP58185759A 1983-10-03 1983-10-03 Liquid mixing method and apparatus Pending JPS6078628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185759A JPS6078628A (en) 1983-10-03 1983-10-03 Liquid mixing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185759A JPS6078628A (en) 1983-10-03 1983-10-03 Liquid mixing method and apparatus

Publications (1)

Publication Number Publication Date
JPS6078628A true JPS6078628A (en) 1985-05-04

Family

ID=16176368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185759A Pending JPS6078628A (en) 1983-10-03 1983-10-03 Liquid mixing method and apparatus

Country Status (1)

Country Link
JP (1) JPS6078628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086259A1 (en) * 2010-01-18 2011-07-21 Peugeot Citroën Automobiles SA Device for mixing a main gas flow and a secondary gas flow
JP2011200808A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method and apparatus for mixing fluid
KR101127420B1 (en) 2009-09-14 2012-03-22 주식회사 한국건설관리공사 Structure for projecting chlorine of filtration plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129773A (en) * 1975-04-28 1976-11-11 Mitsubishi Plastics Ind Ltd Method of continuously mixing and diluting chemicals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129773A (en) * 1975-04-28 1976-11-11 Mitsubishi Plastics Ind Ltd Method of continuously mixing and diluting chemicals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127420B1 (en) 2009-09-14 2012-03-22 주식회사 한국건설관리공사 Structure for projecting chlorine of filtration plant
WO2011086259A1 (en) * 2010-01-18 2011-07-21 Peugeot Citroën Automobiles SA Device for mixing a main gas flow and a secondary gas flow
FR2955266A1 (en) * 2010-01-18 2011-07-22 Peugeot Citroen Automobiles Sa DEVICE FOR MIXING BETWEEN A MAJOR GAS FLOW AND AN AUXILIARY GAS FLOW
JP2011200808A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method and apparatus for mixing fluid

Similar Documents

Publication Publication Date Title
US3376023A (en) Mixing process
US4753535A (en) Motionless mixer
US4808007A (en) Dual viscosity mixer
US6749330B2 (en) Cement mixing system for oil well cementing
US5820256A (en) Motorless mixer
JP3681479B2 (en) Apparatus and method for mixing low viscosity fluid with high viscosity fluid
KR101148080B1 (en) Apparatus for mixing fluids
KR870004724A (en) Bubble generation system
US6132079A (en) Multi path mixing apparatus
JPS60227820A (en) Rapid inline mixer of two fluids
JPH0824832B2 (en) CO underneath the alkaline water neutralization process 2
CN111203123A (en) Gas-liquid static mixer and gas-liquid mixing system
JPH0663371A (en) Gas-liquid dissolving and mixing device
CN108714376B (en) Venturi mixer containing porous annular cavity and application of venturi mixer in synthesizing cyanohydrin
RU2414283C2 (en) Whirl flow mixer
US20040013032A1 (en) Method and apparatus for injecting a chemical into a process upstream of an inline mixer
JPS6078628A (en) Liquid mixing method and apparatus
US4164960A (en) Apparatus for mixing fluids
JPS5836626A (en) Dispersing and mixing device
RU180014U1 (en) Jet mixer
JPH10503968A (en) Device for mixing two fluids
CA2056418A1 (en) Apparatus and method for sparging a gas into a liquid
JPH06285344A (en) Method and device for gas-liquid dissolution and mixing
EP1501626B1 (en) Device and method of creating hydrodynamic cavitation in fluids
KR850005286A (en) Gas dissolution method for liquids and apparatus