JPS6078420A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS6078420A
JPS6078420A JP58186169A JP18616983A JPS6078420A JP S6078420 A JPS6078420 A JP S6078420A JP 58186169 A JP58186169 A JP 58186169A JP 18616983 A JP18616983 A JP 18616983A JP S6078420 A JPS6078420 A JP S6078420A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
substrates
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186169A
Other languages
Japanese (ja)
Inventor
Yasuhiro Obata
小幡 恭裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58186169A priority Critical patent/JPS6078420A/en
Publication of JPS6078420A publication Critical patent/JPS6078420A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To improve the display quality by using plastics as materials of a substrate and setting the optical anisotropy of the substrate to a specific value or setting the angle between the direction of the optical anisotropic axis of the substrate and the direction of the liquid crystal orientation processing of the substrate to a specific value. CONSTITUTION:In a liquid crystal display element where plastics are used as materials of substrates 1 and 1', an optical anisotropy dDELTAn (d is the thickness of substrates and DELTAn is the refractive index anisotropy of substrates) of plastic substrates 1 and 1' is set to <=15nm or an angle theta between the direction of the optical anisotropic axis of substrates 1 and 1' and the direction of the orientation processing of a liquid crystal 3 of substrates 1 and 1' is set to a prescribed value smaller than 45 deg. in accordance with the value of the optical anisotropy dDELTAn. The angle theta between an optical anisotropic axis A of substrates 1 and 1' and an axis B of rubbing to which inside faces of substrates 1 and 1' are subjected is adjusted to a small value in this manner to secure a display contrast and to prevent colored phenomena. If the value dDELTAn is set to <=15nm, the display contrast is sufficient and colored phenomena do not occur though the angle theta is random. Thus, this liquid crystal display element has a high display quality.

Description

【発明の詳細な説明】 く技術分野〉 本発明は基板材料としてプラスチック材を使用した液晶
表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a liquid crystal display element using a plastic material as a substrate material.

〈従来技術〉 従来、基板材料としてプラスチック材を使用した液晶表
示素子(プラスチックフィルム液晶表示素子)ではプラ
スチック材の光学異方性による表示品位への影響が無視
できない大きなものであった。即ちプラスチック材の光
学異方性d△n(d:基板の厚さ、Δn:基板の屈折率
異方性)が大きい、あるいは光学異方性の軸バネ均一で
あった場合、均一な表示品位を得ることができなかった
<Prior Art> Conventionally, in liquid crystal display elements using plastic materials as substrate materials (plastic film liquid crystal display elements), the influence on display quality due to the optical anisotropy of the plastic material was significant and could not be ignored. In other words, if the optical anisotropy dΔn (d: thickness of the substrate, Δn: refractive index anisotropy of the substrate) of the plastic material is large, or if the optical anisotropy is uniform, the display quality will be uniform. I couldn't get it.

そこで、液晶表示素子の基板材料として採用可能な光学
異方軸を持たないプラスチック材料の製造が望まれる所
であるが、完全に無軸のプラスチックフィルムを得るこ
とはフィルムの製造条件から見て非常に困難であり、又
無軸に近いフィルムを作成することは素子のコスト高の
原因になるものである。
Therefore, it is desired to produce a plastic material without an optical anisotropic axis that can be used as a substrate material for liquid crystal display elements, but it is extremely difficult to obtain a completely axis-free plastic film considering the film manufacturing conditions. In addition, creating a film that is nearly axisless increases the cost of the device.

く目 的〉 本発明は以上の従来問題点を解消するべくなされたもの
であり、プラスチック基板を光学異方性dΔn(d:基
板の厚み、△n:基板の屈折率異方性)の観点から検討
し、液晶表示素子の基板として用いる場合における光学
異方性の条件値及び光学異方軸の設定位置を解明し、該
解明に基いて表示品位の良好な液晶表示素子を比較的容
易に得ることを目的とするものである。
Purpose> The present invention has been made to solve the above-mentioned conventional problems, and is to improve the plastic substrate from the viewpoint of optical anisotropy dΔn (d: thickness of the substrate, Δn: refractive index anisotropy of the substrate). Based on this research, the condition value of optical anisotropy and the setting position of the optical anisotropy axis when used as a substrate for a liquid crystal display element were clarified, and based on the clarification, it was possible to relatively easily produce a liquid crystal display element with good display quality. The purpose is to obtain.

く*上剥〉 以下、本発明に係る液晶表示素子の一実施例について図
面を用いて詳細に説明する。第1図(a)はプラスチッ
クフィルムを基板として備えるフィルム液晶表示素子の
側面断面図である。1.1’はプラスチックフィルム基
板(例えばポリアクリレート、ポリビニルアルコール等
からなる)であり該プラスチツクフィルム基板1.1′
間には液晶2が介在する。3はその周辺に位置するシー
ル材、4.4′は上下の偏光板、5は反射板である。上
記プラスチックフィルム基板1.1’はその材質上光学
的に無軸ではあり得ず光学異方性があり。
*Upper Peeling> Hereinafter, one embodiment of a liquid crystal display element according to the present invention will be described in detail with reference to the drawings. FIG. 1(a) is a side sectional view of a film liquid crystal display element having a plastic film as a substrate. 1.1' is a plastic film substrate (for example, made of polyacrylate, polyvinyl alcohol, etc.);
A liquid crystal 2 is interposed between them. 3 is a sealing material located around it, 4.4' is an upper and lower polarizing plate, and 5 is a reflecting plate. The plastic film substrate 1.1' cannot be optically non-axial due to its material and has optical anisotropy.

第1図(blに示す如く光学異方軸Aが存在する。即ち
プラスチックフィルム基板の光学異方軸に垂直な方向と
平向な方向では屈折率が異なり、この為プラスチックフ
ィルム基板を透過した光は上記2方向で位相のズレを生
ずる。この位相の差がRetardation値であり
次式で示される。
As shown in Figure 1 (bl), there is an optical anisotropy axis A. In other words, the refractive index is different in the direction perpendicular to the optical anisotropy axis of the plastic film substrate and in the direction parallel to it, and for this reason, the light transmitted through the plastic film substrate causes a phase shift in the above two directions. This phase difference is the retardation value and is expressed by the following equation.

(n0n6−△n) no:光軸に平行な方向でのフィルム基板の屈折率 ne:光軸に垂直な方向でのフィルム基板の屈折率 d:フィルム厚 λ:測定波長 プラスチックフィルム基板を液晶表示素子の基板として
用いる場合、上記光学異方軸の方向と上記d△nはパラ
メータとして重要である。尚、同図において上記プラス
チックフィルム基板の光学異方軸Aと該プラスチックフ
ィルム基板内面に施こしたラビング軸Bとの間のなす角
をθとした(但しラビング軸Bの方向と偏光板4,4′
の吸収軸の方向との関係は垂直若しくは平行とした。)
(n0n6-△n) no: refractive index of the film substrate in the direction parallel to the optical axis ne: refractive index of the film substrate in the direction perpendicular to the optical axis d: film thickness λ: measurement wavelength The plastic film substrate is displayed on a liquid crystal display. When used as a substrate for an element, the direction of the optical anisotropic axis and the dΔn are important parameters. In the figure, the angle formed between the optical anisotropic axis A of the plastic film substrate and the rubbing axis B applied to the inner surface of the plastic film substrate is defined as θ (however, the direction of the rubbing axis B and the polarizing plate 4, 4′
The relationship with the direction of the absorption axis was perpendicular or parallel. )
.

本発明者は鋭意研究の結果、上記構造のフィルム液晶表
示素子を用いてdΔnを変化させた時に表示コントラス
トの確保と着色現象の防止を施こす為には上記角度θを
調整し小さくすればよいことを解明した。父上記dΔn
が1.5nm以下の時は上記角度0はランダムで良く表
示コントラストか十分で着色現象が発生しない事を解明
した。第2図にプラスチックフィルム基板のdΔnを変
化させた時の、表示品位に問題を生じさせない角度θの
変化状態のグラフ図を示す。同時の斜線領域か表示品位
に問題を生じさせない博聞である。但し液晶表示素子の
基板として用いる為には基板厚は1閤厚以下であること
が好ましい。尚、上記プラスチックフィルム基板のdΔ
nはフィルムを0.1ms厚に設定し、フィルム延伸レ
ベルをコントロールすることによって変化させた。
As a result of intensive research, the present inventor has found that in order to ensure display contrast and prevent coloring when changing dΔn using a film liquid crystal display element with the above structure, the above angle θ can be adjusted and made smaller. I figured it out. dΔn above father
It has been found that when the angle is 1.5 nm or less, the angle 0 is random, the display contrast is sufficient, and no coloring phenomenon occurs. FIG. 2 is a graph showing how the angle θ changes without causing any problems in display quality when dΔn of the plastic film substrate is changed. The shaded area at the same time is a common knowledge that does not cause problems in display quality. However, in order to use it as a substrate of a liquid crystal display element, it is preferable that the substrate thickness is one layer thickness or less. In addition, dΔ of the above plastic film substrate
The film was set to have a thickness of 0.1 ms, and n was varied by controlling the film stretching level.

く効 果〉 以上の本発明によれば表示品位の良好な液晶表示素子を
得ることができる。
Effects> According to the present invention described above, a liquid crystal display element with good display quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alはフィルム液晶表示素子の側面断面図、同
図(blは基板の平面図、第2図は測面データのグラフ
図を示す。 図中、1.1’ニブラスチツクフイルム基板、2:液晶
、3:シール材、4.4’:偏光板、5:反射板。 代理人 弁理士 福 士 愛 彦(他2名)手続補正書 昭和59年 7月ニア日 特許庁長官殿 1、事件の表示 特願昭 58−186169 2、発明の名称 液晶表示素子 3、補正をする者 事件との関係 特許出願人 4、代 理 人 住 所 8545大阪市阿倍野区長池町22番22号自
 発 6、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 (1) 明細書の第3頁第10行の「ポリビニルアルコ
ール」ヲ「ポリエチレンテレフタレート、ポリカーボネ
イト、ポリスルホン」と訂正します。 (2)明細書の第5頁第8行の「博聞」を[範囲」と訂
正します。 以 上
Figure 1 (al is a side sectional view of a film liquid crystal display element, the same figure (bl is a plan view of the substrate, and Figure 2 is a graph of surface measurement data. , 2: Liquid crystal, 3: Sealing material, 4.4': Polarizing plate, 5: Reflecting plate. Agent: Patent attorney Aihiko Fukushi (and 2 others) Procedural amendments July 1980 Near Japan Patent Office Commissioner 1. Indication of the case Patent application No. 58-186169 2. Name of the invention Liquid crystal display element 3. Person making the amendment Relationship to the case Patent applicant 4. Agent Address 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka 8545 Section 6, Detailed Description of the Invention in the Specification Subject to Amendment, Column 7, Contents of the Amendment (1) "Polyvinyl alcohol" on page 3, line 10 of the specification was corrected to "polyethylene terephthalate, polycarbonate, polysulfone." (2) “Learning” on page 5, line 8 of the specification will be corrected to “range.”

Claims (1)

【特許請求の範囲】 1 プラスチック基板間に液晶を封入してなる液晶表示
素子において、 前記プラスチック基板の光学異方性 dΔn(d:基板
の厚さ、△n:基板の屈折率異方性)を15nm以下と
するか、若しくは前記プラスチック基板の光学異方軸の
方向と該基板の液晶配向処理方向との間の角度を前記光
学異方性dΔnの値に対応して45°より小さな所定の
値に設定したことを特徴とする液晶表示素子。
[Claims] 1. In a liquid crystal display element in which a liquid crystal is sealed between plastic substrates, optical anisotropy dΔn of the plastic substrate (d: thickness of the substrate, Δn: refractive index anisotropy of the substrate) is 15 nm or less, or the angle between the direction of the optical anisotropy axis of the plastic substrate and the liquid crystal alignment treatment direction of the substrate is set to a predetermined angle smaller than 45° corresponding to the value of the optical anisotropy dΔn. A liquid crystal display element characterized in that the value is set to a certain value.
JP58186169A 1983-10-04 1983-10-04 Liquid crystal display element Pending JPS6078420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186169A JPS6078420A (en) 1983-10-04 1983-10-04 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186169A JPS6078420A (en) 1983-10-04 1983-10-04 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS6078420A true JPS6078420A (en) 1985-05-04

Family

ID=16183596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186169A Pending JPS6078420A (en) 1983-10-04 1983-10-04 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS6078420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295102B1 (en) 1999-05-19 2001-09-25 Ricoh Company, Ltd. Liquid-crystal shutter
US7242453B2 (en) 2003-02-25 2007-07-10 Sharp Kabushiki Kaisha Liquid crystal display device with scattering fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295102B1 (en) 1999-05-19 2001-09-25 Ricoh Company, Ltd. Liquid-crystal shutter
US7242453B2 (en) 2003-02-25 2007-07-10 Sharp Kabushiki Kaisha Liquid crystal display device with scattering fiber

Similar Documents

Publication Publication Date Title
US5119220A (en) Liquid crystal display device with a phase plate for shadow compensation
JPH02289824A (en) Liquid crystal display element
JPH0237319A (en) Liquid crystal display element
JPH10123503A (en) Liquid crystal display device
JPS6078420A (en) Liquid crystal display element
JPH06301006A (en) Color liquid crystal display device
JPH02111918A (en) Liquid crystal electrooptic element
JPH03103822A (en) Liquid crystal display device
JP2850404B2 (en) Liquid crystal electro-optical element
JPH03134622A (en) Liquid crystal electrooptical element
JP2605064B2 (en) Liquid crystal display device
JPH06250166A (en) Optical phase element and liquid crystal display device
JP3289392B2 (en) Color liquid crystal display
JP2749846B2 (en) Liquid crystal display device
JPH06317790A (en) Color liquid crystal display device
JPH0593907A (en) Liquid crystal display element
JPH11231807A (en) Reflection type liquid crystal display device
JPH0815696A (en) Color liquid crystal display element
JPH06317792A (en) Color liquid crystal display device
JPS6381322A (en) Liquid crystal display device
JPS629303A (en) Polarizing plate
JPH0364850B2 (en)
JPH07140462A (en) Color liquid crystal display device
JPH0262513A (en) Liquid crystal display element
JPH086012A (en) Color liquid crystal display device