JPS6077990A - Solid lubricative composite material - Google Patents

Solid lubricative composite material

Info

Publication number
JPS6077990A
JPS6077990A JP18617583A JP18617583A JPS6077990A JP S6077990 A JPS6077990 A JP S6077990A JP 18617583 A JP18617583 A JP 18617583A JP 18617583 A JP18617583 A JP 18617583A JP S6077990 A JPS6077990 A JP S6077990A
Authority
JP
Japan
Prior art keywords
layer
solid
plating
composite material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18617583A
Other languages
Japanese (ja)
Other versions
JPS6253599B2 (en
Inventor
Kiyoshi Nakanishi
清 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP18617583A priority Critical patent/JPS6077990A/en
Publication of JPS6077990A publication Critical patent/JPS6077990A/en
Publication of JPS6253599B2 publication Critical patent/JPS6253599B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid lubricative composite material prolonging the lives of various sliding parts by forming a plated layer contg. dispersed fine particles of a solid lubricant on the surface of a base metal and a metallic layer having solid lubricating action on the plated layer. CONSTITUTION:A plated layer of nickel or the like contg. dispersed fine particles 2 of a solid lubricant such as graphite or molybdenum disulfide in a partially exposed state is formed on the surface of a base metal 1 such as iron. A lubricative metallic layer 4 of silver or the like having solid lubricating action is formed on the whole surface of the plated layer or the metallic matrix layer 3 among the exposed particles 2 to obtain a solid lubricative composite material. This composite material has a long life and is suitable for use as a material for various rolling parts such as roller bearing, a ball screw and a ball joint and various sliding parts such as a plain bearing used in high vacuum or under irradiation.

Description

【発明の詳細な説明】 この発明は、高度の真空状態下または放射線の被曝状態
(覧温)下で使用される転がり軸受、ボールねじ、ボー
ルジヨイント等の各種転動部および滑り軸受等の各種摺
動部の寿命の向上を目的とする固体潤滑性複合材に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to various rolling parts such as rolling bearings, ball screws, ball joints, etc., and sliding bearings, etc., which are used under high vacuum conditions or under radiation exposure conditions (temperature reading). This invention relates to a solid lubricating composite material that aims to improve the life of various sliding parts.

従来、固体潤滑作用を有する金属として、銀、鉛、金、
インジウム、錫等があることはよく知られており、湿式
めっき法またはイオンブレーティング法によってこれら
金属の被膜が形成されてきたが、この金属被膜は、真空
中または高温下における転勤もしくは摺動用の材料とし
て、寿命が充分でなく、満足できるものとはいえない。
Conventionally, silver, lead, gold,
It is well known that indium, tin, etc. exist, and films of these metals have been formed by wet plating or ion blating methods. As a material, it does not have a sufficient lifespan and cannot be said to be satisfactory.

また、固体潤滑剤として、たとえば、グラファイト、二
硫化モリブデン、二硫化タングステン、窒化ホウ素、フ
ッ素樹脂のような層状構造もしくは滑り性を何する炭素
、金属化合物、有機高分子等が用いられていることもよ
く知られているが、これら固体潤滑剤の被膜を形成する
ことは、複雑な形状をした部品等の表面などfこ対して
は特1こ困難で、容易に均一被膜が得られず、装置たと
えばイオンブレーティング装置が高価であるなど多くの
欠点があり、しかも、1尋られた被)漠の性能は充分な
ものとはぎえない。
In addition, as a solid lubricant, for example, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, carbon having a layered structure such as fluororesin, or carbon, metal compounds, organic polymers, etc. that have sliding properties are used. However, it is particularly difficult to form a film of these solid lubricants on surfaces such as parts with complex shapes, and a uniform film cannot be easily obtained. The device, such as the ion blating device, has many drawbacks, such as being expensive, and furthermore, its performance is far from satisfactory.

一方、すてに分散めっき(または複合めっき)法が開発
され、金属もしくは合金(これらをマトリックス金1萬
と呼ぶ)と分散粒子との組み合わせによって非常iこ多
くの種類のものが利用されている。たとえば、耐摩耗性
を目的とした分散めっきの例としては、マトリックス金
1萬にNi、 co、 Ni−GO,C6−Wなどを選
び、分散粒子にAl2O3,Tic。
On the other hand, dispersion plating (or composite plating) methods have already been developed, and a large number of types are used by combining metals or alloys (these are called matrix gold) and dispersed particles. . For example, as an example of dispersion plating for the purpose of wear resistance, Ni, Co, Ni-GO, C6-W, etc. are selected for 10,000 yen of matrix gold, and Al2O3, Tic are selected for dispersed particles.

SiC,cr3c2などきわめて硬度の高い粒子を用い
たもの、また、分散粒子の自己潤滑性を目的とする分散
めっきの例としては、マトリックス金属にNi 、CH
,Cr、Feなどを選ひ分散粒子に前記の固体潤滑剤M
ob2、黒鉛、フッ素樹脂などを用いたものを挙げるこ
とができる。このように、被膜の要求特性に応じた組み
合わせの機能向上のためのめっきが種々行なわれる中で
、工業的1こしかも潤滑用に最も多く利用されている分
散めっきのマトリックス金属はニッケルである。これに
対して、分散めっきを施される下地金属は、その多くが
鋼球、鋼棒、鋼板等の鉄系金属であることから、鉄とニ
ッケルとの親和性によって下地金属面1こおける分散め
っき層の結合力が大きいことは好ましいことであるか、
分散めっき層が接触する転勤もしくは摺動の相手材に対
しても親和性が大きく、その結果、分1めつきのマトリ
ックス金属と相手材とが溶着摩耗(摩擦面か押し付けら
れて滑るときに、用互に溶着し離されて傷がつき、これ
が繰り返えされるために起こる摩耗)を起こし、分散粒
子の性能を発揮することなくトルクの上昇を招き寿命も
著しく短縮されることになって、充分満足できる効果は
期待できない。そこで、マトリックス金属に前記した固
体潤滑性を有する金属を用いる分散めっきが考えら尤る
が、このような例は従来からきわめて少なく、分散粒子
の共析員が不充分なため潤滑性能は期待されるほと発揮
されず、また。
Examples of dispersion plating using extremely hard particles such as SiC and CR3C2, and dispersion plating aimed at self-lubricating properties of the dispersed particles include Ni, CH, etc. in the matrix metal.
, Cr, Fe, etc., and the above-mentioned solid lubricant M is added to the dispersed particles.
Examples include those using ob2, graphite, fluororesin, etc. As described above, various types of plating have been carried out to improve functionality in combinations depending on the required characteristics of the coating, and nickel is the matrix metal for dispersion plating that is most commonly used industrially and for lubricating purposes. On the other hand, since most of the base metals to which dispersion plating is applied are ferrous metals such as steel balls, steel bars, and steel plates, dispersion over one surface of the base metal is due to the affinity between iron and nickel. Is it desirable that the plating layer has a high bonding strength?
The dispersion plating layer also has a great affinity for the mating material that comes into contact with it during rolling or sliding. The dispersion particles become welded and separated, causing scratches, and wear that occurs due to this repeated process.The performance of the dispersed particles is not achieved, the torque increases, and the lifespan is significantly shortened. A satisfactory effect cannot be expected. Therefore, dispersion plating using a metal with solid lubricity as described above has been considered as a matrix metal, but such examples have been extremely rare, and the lubrication performance is not expected because the eutectoids of the dispersed particles are insufficient. Ruho was not fully demonstrated and again.

相手材に対する溶着摩耗が起こりにくい反面、下地金属
との結合力は低下するなど現在の技術水準では実用化は
きわめて困難である。
Although welding wear to the mating material is less likely to occur, the bonding strength with the base metal decreases, making it extremely difficult to put it into practical use with the current state of technology.

この発明はこのような現状に着目してなされたものであ
り、下地金属表面に1分散させた固体潤滑剤微粒子の一
部が露出した状態1こある分散めっき層を形成し、さら
に、この分散めっき層の全面もしくは露出している固体
潤滑剤微粒子間のマトリックス金属面上1こ、固体潤滑
作用を何する金属層を形成したことを特徴とする固体潤
滑性複合相を提供するものである。以下図面を用いてそ
の詳細を述べる。
This invention was made in view of the current situation, and involves forming a dispersed plating layer in which a portion of solid lubricant fine particles dispersed on the base metal surface are exposed, and further dispersing the dispersion. The present invention provides a solid lubricating composite phase characterized in that a metal layer having a solid lubricating effect is formed on the entire surface of the plating layer or on the matrix metal surface between exposed solid lubricant fine particles. The details will be described below using the drawings.

まず、この発明における下地金属層1は転動部品または
摺動部品の基材(素地)を構成するものであって、通常
、鉄系の金属から成る。固体潤滑剤微粒子2は前記した
グラファイト、二硫化モリブデン、二硫化タングステン
、窒化はう素のようなせん断強さが低く、全1萬面への
付着性が強く、また、粉化しやすい層状固体である炭素
材、金属化合物、さら1こはフッ素樹脂のような潤滑性
の大きい合成高分子などの粒径1〜10μm程度のもの
である。ここで粒径を1〜10μm程度とする理由は、
後述するマl−IJラックス属層3、潤滑性金属層4の
層厚1こも関連するものであって、絶対的な限定条件で
はなく、通常調製しやすい粒度て、しかも、潤滑性を目
的とする分散めっき層の効果が最も得られやすいこと1
こ基づくものである。また、マトリックス金属層3は、
下地金属層1に対する親和性が大きく、しかも、固体潤
滑剤微粒子2との親和性の良好なものが望ましいことは
言うまでもないが、それぞれの親和性を一層高めるため
の表面処理をそれぞれに施しておくこともてきる。通常
、下地金属層1が鉄系の材質のものであるときは、特に
限定されるものではないが、マトリックス金属1こは主
としてニッケルか利用される。
First, the base metal layer 1 in the present invention constitutes a base material (material) of a rolling or sliding component, and is usually made of an iron-based metal. The solid lubricant fine particles 2 are layered solids such as graphite, molybdenum disulfide, tungsten disulfide, and boron nitride, which have low shear strength, have strong adhesion to all 10,000 surfaces, and are easily powdered. Some carbon materials, metal compounds, and even synthetic polymers with high lubricity such as fluorocarbon resins have a particle size of about 1 to 10 μm. The reason why the particle size is set to about 1 to 10 μm is because
The layer thickness 1 of the Maru-IJ Lux layer 3 and the lubricating metal layer 4, which will be described later, is also related, and is not an absolute limiting condition. The effect of the dispersed plating layer can be most easily obtained 1
It is based on this. Moreover, the matrix metal layer 3 is
It goes without saying that it is desirable to have a material that has a high affinity for the base metal layer 1 and also a good affinity for the solid lubricant fine particles 2, but each of them should be subjected to surface treatment to further increase their affinity. It can also happen. Usually, when the base metal layer 1 is made of an iron-based material, the matrix metal 1 is mainly made of nickel, although it is not particularly limited.

この際のマl−IJツクス金嘱@3の厚さは前記固体潤
滑剤微粒子2が固定される程度(たとえば最低0.5〜
10μm)とする。つき]こ、潤潤滑性金属層は、固体
潤滑剤微粒子2の表面性状および潤滑性金属層4自体の
生成法1こよって、第2図に示すように、固体潤滑剤微
粒子2の露出部分およびマトリックス全1萬層3の全面
に形成される場合と、第3図1こ示すようなマトリック
ス金属層3の表面のみに形成される場合とがある。いず
れ1こしても2このような潤滑性金属層4の厚さは、ボ
ールやレース面(転がり)のときは、従来0,3〜1.
0μmであったものがこの発明では0,3〜0.6 μ
mか最適であり、これを越える厚さてはトルクが増大し
て好ましくない。また、保持器やその他滑りにさらされ
るときは、従来5〜25μmであったものが3〜10μ
mのめつき厚がとられる。ここで、10μmよりも厚い
ときは層厚の増加fこよる効果よりも層形成に要する手
間や時間による経済的不利を招くようになって好ましく
ないからである。
At this time, the thickness of the Maru-IJ Tsukusu Metal@3 is such that the solid lubricant fine particles 2 are fixed (for example, at least 0.5~
10 μm). The lubricating metal layer is formed by the surface properties of the solid lubricant particles 2 and the method of producing the lubricant metal layer 4 itself.As shown in FIG. There are cases where it is formed on the entire surface of the matrix metal layer 3, and cases where it is formed only on the surface of the matrix metal layer 3 as shown in FIG. Conventionally, the thickness of such a lubricating metal layer 4 is 0.3 to 1.2 mm for balls and race surfaces (rolling).
In this invention, the diameter was 0 μm, but in this invention it is 0.3 to 0.6 μm.
m is optimum, and a thickness exceeding this is undesirable because torque increases. In addition, when cages and other objects are exposed to slippage, the conventional 5-25μm diameter is now 3-10μm.
A plating thickness of m is taken. Here, if it is thicker than 10 μm, it is not preferable because it causes an economic disadvantage due to the labor and time required for layer formation rather than the effect due to the increase in layer thickness.

なお、第2図1こ示すよう1こ、潤滑性金属層4が全面
に形成されていても、この層の厚さが前記する程度のも
のであれば2表面を節用に研磨することによって、固体
潤滑剤微粒子2の先端部分は容易iこ露出し、潤滑性を
充分に発揮する状態になるのである。
Note that even if the lubricating metal layer 4 is formed on the entire surface as shown in FIG. The tip portions of the solid lubricant fine particles 2 are easily exposed and are in a state where they exhibit sufficient lubricity.

つぎに、この発明のような固体潤滑性複合材を製造する
にあたっては、以下fこ示すような方法を用いればよい
。ここで、ます、■地金1萬層1の表面は清浄でなけれ
ばならないので、音部ならば、脱脂処理、ω[磨等の表
面処理を施しておくことはgうまでもない。
Next, in manufacturing the solid lubricating composite material of the present invention, the following method may be used. Here, since the surface of layer 1 must be clean, it goes without saying that if it is a sound part, it should be subjected to surface treatments such as degreasing and polishing.

固体潤滑剤粒子2を分散させた分散めっき層は、マトリ
ックス金属層3を構成する金属の種類のそれぞれに適し
た組成のめつき浴を用い、固体潤滑剤粒子2をマトリッ
クス金1萬とともに共析させて形成されるが、マトリッ
クス金属がニッケルであるときを例にとれば、めっき浴
として、ワット浴、塩化物浴、スルファミン酸浴、ホウ
フッ化浴、ワイスベルブ浴等を挙げることができる。固
体潤滑剤粒子2は共析能または導電性を改善する目的か
ら、粒子表面1こpめ表面コーティング等の処理を施し
たものであってもこの発明に支障はない。
The dispersion plating layer in which the solid lubricant particles 2 are dispersed is made by eutectoiding the solid lubricant particles 2 with 10,000 matrix gold using a plating bath with a composition suitable for each type of metal constituting the matrix metal layer 3. For example, when the matrix metal is nickel, plating baths include Watt bath, chloride bath, sulfamic acid bath, borofluoride bath, and Weissberb bath. There is no problem in the present invention even if the solid lubricant particles 2 are subjected to a treatment such as surface coating on one part of the particle surface for the purpose of improving the eutectoid ability or conductivity.

分散めっき層が形成された後、潤滑性金属層4を形成す
るが、そのためには潤滑性金属である銀、鉛、金、イン
ジウム、錫等1こ対して通常用いられるめつき浴内てそ
れぞれを電着させる方法が最も簡]史でよいが、イオン
ブレーティング等の別の方法であってもかまわない。
After the dispersion plating layer is formed, the lubricating metal layer 4 is formed, but for this purpose, each lubricating metal such as silver, lead, gold, indium, tin, etc. is coated in a commonly used plating bath. The simplest method is to electrodeposit the material, but other methods such as ion blating may also be used.

以下実施例を述べる。Examples will be described below.

〔実施例1〕 直径40mm、厚さ5 ff1mの円盤(軸受鋼第2種
)の片面に、つぎの(1)および(2)に示す条件で厚
さ約1μm のN1−グラファイトの分散めっき層およ
び厚さ約5μmの銀めっき層を形成した。このとき、使
用したグラファイト(日本黒鉛社製: ACP100O
1平均粒径5μm )は導電性粒子であるため、銀のめ
つき層は第2図に示すような全表面を覆う被膜となった
が、表面層が銀70〜60容量幅、グラフアイ)30〜
40容量%からなる固体潤滑性複合材を得た。
[Example 1] On one side of a disk (class 2 bearing steel) with a diameter of 40 mm and a thickness of 5 ff1 m, a dispersion plated layer of N1-graphite with a thickness of about 1 μm was applied under the conditions shown in (1) and (2) below. A silver plating layer with a thickness of about 5 μm was formed. At this time, the graphite used (manufactured by Nippon Graphite Co., Ltd.: ACP100O
1 (average particle size: 5 μm) are conductive particles, so the silver plating layer became a film that covered the entire surface as shown in Figure 2. 30~
A solid lubricating composite material consisting of 40% by volume was obtained.

(1)5+散めっき条件: (浴の組55.) 硫酸ニッケル 240g/l 塩化ニッケル 45 σ ホウ酸 30 σ 界面活性剤 0.2’ グラフアイト 10 t (めっき) 電流密度 5A/dm2 時 間(分) 1 (2)銀めっき条件: (浴の組成) シアン化銀 40g/l シアン化カリウム 70 σ 炭酸カリウム 30 (めっき) 電流密度 0.5A/di2 時 間(分) 〔実施例2〕 下地金属が直径4+m+の鋼球(軸受鋼第2種であり、
グラファイト粒子に代わって二硫化モリブデン(タウ・
コーニンク社製:モリコート・マイクロサイズパウダー
、平均粒径1〜2μm)を用いた分散めっき層を形成し
たこと以外は実施例1と同様(ただし、分散めっき条件
を電流密度I A/d m 2゜めっき時間2.5分と
したため分散めっき層厚は実施例1の平針の約0,5μ
m であり、銀めっきの際の時間を15分に変えたため
めっき厚は0.5μmとなる)の方法で固体潤滑性複合
材を得た。二硫化モリブデンは非電導性であるため、表
面の銀めっきは第3図に示すような粒子が露出した状態
のものであり、銀60〜50容@%、二硫化モリブデン
40〜50容量%からなる膜を形成していた。
(1) 5+ plating conditions: (Bath set 55.) Nickel sulfate 240 g/l Nickel chloride 45 σ Boric acid 30 σ Surfactant 0.2' Graphite 10 t (Plating) Current density 5 A/dm2 Time ( minutes) 1 (2) Silver plating conditions: (Bath composition) Silver cyanide 40 g/l Potassium cyanide 70 σ Potassium carbonate 30 (Plating) Current density 0.5 A/di2 Time (minutes) [Example 2] Steel ball with a diameter of 4+m+ (second class bearing steel,
Molybdenum disulfide (tau) replaces graphite particles.
Same as Example 1 except that a dispersion plating layer was formed using Molykote Microsize Powder manufactured by Konink Co., Ltd. (average particle size 1 to 2 μm) (however, the dispersion plating conditions were changed to a current density of I A/d m 2°). Since the plating time was 2.5 minutes, the thickness of the dispersed plating layer was approximately 0.5μ of the flat needle of Example 1.
A solid lubricating composite material was obtained by the method (the silver plating time was changed to 15 minutes, so the plating thickness was 0.5 μm). Since molybdenum disulfide is non-conductive, the silver plating on the surface has exposed particles as shown in Figure 3, and is composed of 60-50% silver by volume and 40-50% molybdenum disulfide by volume. It formed a film.

つぎに、このようにして得られた固体潤滑性複合材(鋼
球)を用いて、真空度5 X 10 torr の高真
空下で、寿命試験を行なった。軸受#608(ボールに
めっき)を用い、試験条件は総玉形式、荷11kg、毎
分5000回転とし、対照品として、実施例2と同じ下
地材に、■実施例1の(2)に示す浴組成で電流両度0
.5 A/dm2.時間1,5分で0.5μm 厚の銀
めっき層のみを施したもの、@イオンブレーティングに
よる0、5μm厚の銀コーテイングのみを施したもの、
θ実施例2の銀めっき層を施さないNi−MQS2の0
.5μm厚分散めっき層のみを施したもの、Oスパッタ
リングによる05μm厚の二硫化モリブデンのコーティ
ングのみを施したもの、およびの無処理のものを選んだ
。その結果はつぎのとおりであって、実施例2で得た固
体潤滑性複合体は他の対照品に比べて格段1こ長い寿命
のものであることが明らかとなった。なお。
Next, using the solid lubricating composite material (steel ball) thus obtained, a life test was conducted under a high vacuum with a degree of vacuum of 5×10 torr. Bearing #608 (ball plated) was used, the test conditions were full ball type, load 11 kg, 5000 revolutions per minute, and as a control product, the same base material as in Example 2 was used, as shown in (2) of Example 1. Current is 0 depending on the bath composition
.. 5 A/dm2. Those with only a 0.5 μm thick silver plating layer applied in 1.5 minutes, those with only a 0.5 μm thick silver coating by @ion blating,
θ0 of Ni-MQS2 without silver plating layer of Example 2
.. The following were selected: one with only a 5 μm thick dispersion plating layer, one with only a 05 μm thick molybdenum disulfide coating by O sputtering, and one without any treatment. The results are as follows, and it was revealed that the solid lubricating composite obtained in Example 2 had a significantly longer life than other control products. In addition.

寿命はトルク増大までの時間(分)によって示した。The lifespan was indicated by the time (minutes) until torque increase.

実施例2;こよって辱られたもの 2500■銀めっき
層のみ 130 @イオンブレーテイングによる銀コーテイングのみ 4
00 θN1−M052 mのみ 4.5 OスパツタリングによるMO52層のみ10 の無処理 1.2 〔実施例31 実施例2と同じ条件でニッケルと二硫化モリブデン粒子
の厚さ0.5μm の分散めっき層を形成した後、つぎ
の条件で0.5μm厚の鉛めっき層を形成した。この表
面層は鉛60〜5o容#幅、二硫化モリブデン40〜5
0容ir<のものであった。
Example 2: What was humiliated by this 2500 ■ Silver plating layer only 130 @ Silver coating only by ion blating 4
00 θN1-M052 m only 4.5 Only MO52 layer by O sputtering 10 No treatment 1.2 [Example 31 A 0.5 μm thick dispersed plating layer of nickel and molybdenum disulfide particles was formed under the same conditions as Example 2. After forming, a 0.5 μm thick lead plating layer was formed under the following conditions. This surface layer has a lead width of 60 to 5 o volume and a molybdenum disulfide of 40 to 5
It was of <0 volume IR.

寿命は鉛のみの場合よりも著しく延びた。The lifespan was significantly longer than with lead alone.

鉛めっき条件: (浴の組成) ホウフッ化鉛(50%) 250m1/1ホウフツ化水
素酸(42%) 651 ゼラチン o、15g/l (めっき) 電流密度 0゜75A/dm2 時 間(分)1.7 〔実施例4〕 実施例2と同じ条件でニッケルと二硫化モリブデン粒子
の厚さ0,5μm の分散めっき層を形成した後、つき
lこ示す条件で0.5μm厚の金めつき層を形成した。
Lead plating conditions: (Bath composition) Lead borofluoride (50%) 250ml1/1 Hydroborofluoric acid (42%) 651 Gelatin o, 15g/l (Plating) Current density 0゜75A/dm2 Time (minutes) 1 .7 [Example 4] After forming a 0.5 μm thick dispersion plating layer of nickel and molybdenum disulfide particles under the same conditions as Example 2, a 0.5 μm thick gold plating layer was formed under the conditions shown below. was formed.

得られた金めつきの表層は金60〜50容厳%、二硫化
モリブデン40〜5o容級%のものであり、寿命は金め
つきのみの場合より著しく延びた。
The resulting gold-plated surface layer contained 60 to 50% gold by volume and 40 to 5% molybdenum disulfide by volume, and the service life was significantly longer than in the case of gold plating alone.

金めつき条件゛ (浴の組成) 純金めつき浴(デグサ社製ニオールナ552M)(めっ
き) 電流密度 0.2 A/dm2 時 間(分) 4 〔実施例5〕 実施例2と同じ条件でニッケルと二硫化モリブデン粒子
の厚さ0.5ttm の分散めっき層を形成した後、つ
ぎの条件で0.5μm厚のインジウムめっき層を形成し
た。この表面層はインジウム60〜50容量%、二硫化
モリブデン40〜5o容量%のものであり、寿命はイン
ジウムめっきのみの場合よりも著しく延びた。
Gold plating conditions (bath composition) Pure gold plating bath (Degussa Nioruna 552M) (plating) Current density 0.2 A/dm2 Time (minutes) 4 [Example 5] Same conditions as Example 2 After forming a dispersed plating layer of nickel and molybdenum disulfide particles with a thickness of 0.5 ttm, an indium plating layer with a thickness of 0.5 μm was formed under the following conditions. This surface layer contained 60 to 50% by volume of indium and 40 to 5% by volume of molybdenum disulfide, and the service life was significantly longer than in the case of indium plating alone.

インジウムめっき条件: (浴の組成) 塩化インジウム 25 g/l シアン化カジカリウム エ50 ’ 水酸化カリウム 35 1 デキストリン 35 ’ (めっき) 電流密度 1.5 A/dm2 時 間(分)1.7Indium plating conditions: (Bath composition) Indium chloride 25 g/l Potassium cyanide E50' Potassium hydroxide 35 1 Dextrin 35' (plating) Current density 1.5 A/dm2 Time (minutes) 1.7

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の下地金属表面に分散めっき層を形成
したときの状態を模式的1こ示す断面図、第2図および
第3図は第1図に示す状態の分散めっき層の表面に、潤
滑性余興層を形成したときの状態を模式的に示す断面図
である。 1・・・下地金嘱層、2・・・固体潤滑剤微粒子、3・
・・マ) IJソックス属層、4・・・潤滑性金嘱層特
許出願人 エヌ・チー・エヌ 東洋ベアリング株式会社 同 代理人 鎌 1) 文 二
Fig. 1 is a cross-sectional view schematically showing the state when a dispersion plating layer is formed on the surface of the base metal of the present invention, and Figs. 2 and 3 show the surface of the dispersion plating layer in the state shown in Fig. 1. , is a cross-sectional view schematically showing a state when a lubricious entertainment layer is formed. 1... Base metal layer, 2... Solid lubricant fine particles, 3.
...Ma) IJ sock metal layer, 4...Lubricating metal layer Patent applicant NCHN Toyo Bearing Co., Ltd. Agent Kama 1) Bun 2

Claims (1)

【特許請求の範囲】[Claims] 下地金属表面に、分散させた固体潤滑剤微粒子の一部分
が露出した状態にある分散めっき層を形成し、さらに、
この分散めっき層の全面もしくは露出している固体潤滑
剤微粒子間のマトリックス金属面上に、固体潤滑作用を
有する全1萬層を形成させたことを特徴とする固体潤滑
性複合材。
A dispersion plating layer is formed on the base metal surface in which a portion of the dispersed solid lubricant fine particles are exposed, and further,
A solid lubricating composite material characterized in that a total of 10,000 layers having a solid lubricating effect are formed on the entire surface of the dispersed plating layer or on the matrix metal surface between exposed solid lubricant fine particles.
JP18617583A 1983-10-04 1983-10-04 Solid lubricative composite material Granted JPS6077990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18617583A JPS6077990A (en) 1983-10-04 1983-10-04 Solid lubricative composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18617583A JPS6077990A (en) 1983-10-04 1983-10-04 Solid lubricative composite material

Publications (2)

Publication Number Publication Date
JPS6077990A true JPS6077990A (en) 1985-05-02
JPS6253599B2 JPS6253599B2 (en) 1987-11-11

Family

ID=16183699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18617583A Granted JPS6077990A (en) 1983-10-04 1983-10-04 Solid lubricative composite material

Country Status (1)

Country Link
JP (1) JPS6077990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641363A1 (en) * 1988-12-30 1990-07-06 Aerospatiale PROCESS FOR THE TREATMENT OF SURFACES IN CONTACT WITH TWO METAL PARTS CALLED TO BE FRICTIONED AGAINST THE ONE IN A VACUUM
EP0872296A4 (en) * 1995-08-08 1999-06-30 Komatsu Mfg Co Ltd Self-lubricating sintered sliding material and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121839C2 (en) * 1991-07-02 2003-01-09 Werner Hermann Wera Werke Tool with torque transmitting work surfaces and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318660A (en) * 1976-08-04 1978-02-21 Unitika Ltd Flame-retardant polyester composition
JPS5346441A (en) * 1976-10-12 1978-04-26 Suzuki Motor Co Multiilayer composite plating layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318660A (en) * 1976-08-04 1978-02-21 Unitika Ltd Flame-retardant polyester composition
JPS5346441A (en) * 1976-10-12 1978-04-26 Suzuki Motor Co Multiilayer composite plating layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641363A1 (en) * 1988-12-30 1990-07-06 Aerospatiale PROCESS FOR THE TREATMENT OF SURFACES IN CONTACT WITH TWO METAL PARTS CALLED TO BE FRICTIONED AGAINST THE ONE IN A VACUUM
EP0872296A4 (en) * 1995-08-08 1999-06-30 Komatsu Mfg Co Ltd Self-lubricating sintered sliding material and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6253599B2 (en) 1987-11-11

Similar Documents

Publication Publication Date Title
US2700623A (en) Process of bonding solid lubricant to a metal surface
EP2757277B1 (en) Sliding member and sliding material composition
JP3431152B2 (en) bearing
JPH03219098A (en) Compositely plated film of sliding member
JP2001132754A (en) Multilayer slide bearing
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
US5342698A (en) Slide bearing
US3658488A (en) Electrodeposited plain bearing liners
JPH08199327A (en) Swash plate for swash plate type compressor
JPH01261514A (en) Sliding material
JPS59177341A (en) Double-layered bearing material having layer of phosphor bronze containing graphite
JPH04198440A (en) Sliding member having sintered copper alloy layer
JP3571623B2 (en) Sliding material
JP2001343022A (en) Double sliding material
US3365777A (en) Method for producing a multi-layer bearing
JPS6077990A (en) Solid lubricative composite material
JP2000314424A (en) Slide bearing and slide bearing structure
JP2013204809A (en) Sliding bearing
JPH07207496A (en) Production of composite plating metal material excelling in sliding property and anticorrosion
JPH11293305A (en) Slide material and double layered sintered slide member
JP2017043801A (en) Slide structure, plating bath, and manufacturing method of slide member
JPS5929119B2 (en) Multilayer composite plating layer
JPS58108299A (en) Aluminum alloy bearing
JP2007239867A (en) Sliding bearing
JP2004010707A (en) Coating composition for sliding, and slide member