JPS6077684A - Actuator - Google Patents

Actuator

Info

Publication number
JPS6077684A
JPS6077684A JP58183744A JP18374483A JPS6077684A JP S6077684 A JPS6077684 A JP S6077684A JP 58183744 A JP58183744 A JP 58183744A JP 18374483 A JP18374483 A JP 18374483A JP S6077684 A JPS6077684 A JP S6077684A
Authority
JP
Japan
Prior art keywords
piezoelectric effect
output shaft
displacement
driver
arrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58183744A
Other languages
Japanese (ja)
Other versions
JPH053230B2 (en
Inventor
Hisashi Sugimoto
久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Okuma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Okuma Industrial Co Ltd filed Critical Asahi Okuma Industrial Co Ltd
Priority to JP58183744A priority Critical patent/JPS6077684A/en
Publication of JPS6077684A publication Critical patent/JPS6077684A/en
Publication of JPH053230B2 publication Critical patent/JPH053230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To accelerate the response speed and to improve the accuracy of an actuator by laminating piezoelectric effect ceramics, amplifying the distortions of the ceramics, and removing them. CONSTITUTION:The first and second drivers 7, 8 are composed by laminating piezoelectric ceramics. When the first driver 7 is energized, an output shaft 25 is pushed by the distortion. The second driver 8 is rotated by the displacement of the output shaft 25 around the recess 30 of the body 21 as a center. Then, when the first driver 7 is interrupted and the second driver 8 is energized, the output shaft 25 is pressed. The first driver 7 is rotated around the recess 29 of the body 21 as a center by the displacement of the shaft 25 to the original state.

Description

【発明の詳細な説明】 本発明は積層形の圧電効果セフミックの歪を利用して産
業用ロボットのアーム等の動作源に利用できるようにし
たアクチュエーターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an actuator that can be used as a motion source for an arm of an industrial robot or the like by utilizing the strain of a laminated piezoelectric effect cephmic.

例えば産業用ロボットのアクチュエー7% 一般にモー
タ或いは油圧・空圧機器を使用し、回転成いは直線運動
として出力するようにしている。
For example, actuators in industrial robots generally use motors or hydraulic/pneumatic equipment to output rotational or linear motion.

しかじな−から、上記の7クチユエー5大形で且つ重い
ものになり勝ちである外、モータを使用し友ものでは、
回転の立上りが遅いため、応答速度が遅く精度の点でも
劣るという問題があり、また、油圧・空圧機器を使用し
たものでは、シリンダ内のプフンジャやケーシング内の
ベーンの摺11711cよる摩擦損失或いは圧力流体の
漏れ等があるため、応答速度が遅く精度も悪いという問
題がある。
However, in addition to the above-mentioned 7 units being large and heavy, there are other types that use a motor.
Since the startup of rotation is slow, there is a problem of slow response speed and poor accuracy.In addition, in those using hydraulic and pneumatic equipment, there is a problem of friction loss or Due to pressure fluid leakage, etc., there are problems with slow response speed and poor accuracy.

本発明は上記の事情に鑑みてなされたもので、その目的
は応答速度が速く且つ精度の良いアクチュエーターを提
供するVc6る。
The present invention has been made in view of the above circumstances, and its purpose is to provide an actuator with high response speed and high precision.

本発明は、積層形の圧電効果セフミックが電圧の印加に
より歪を生ずることVC9目し、この歪を増幅して大き
な変位量として取出し得るようにしたものである。
The present invention is based on the fact that a laminated piezoelectric effect cephmic causes distortion when a voltage is applied, and this distortion can be amplified and extracted as a large amount of displacement.

以下本発明の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

まず本実施例において使用する積層形の圧電効果セラミ
ックについて第1図を参照して説明する。
First, the laminated piezoelectric effect ceramic used in this example will be explained with reference to FIG.

コノ圧電効果セラミック11−t、近時、日本電気株式
会社に↓ジ開発夾用化されたもので、セフミック板2と
内部電極板3とを交互に積層一体化して焼結した素子を
所望の形状・大きさに切断し、全周面に露出した内部電
極板3を左右両側面において一層おきに絶縁材4によV
電気的に絶縁すると共に、左右両側面に外部電極5及び
6を形成して構成したものである。従って、内部電極板
31−1ニ一層おきに外部”電極板5及び乙に電気的V
C接続されている。木圧電効果セフミック1は従来の圧
電効果セフミックとは異なり、印加電圧が低くても(例
えば100■でも)成る量販上の歪を発生し、電圧を繰
返し印加しても全く劣化しない(央験によれば、電圧パ
μス′fe5億回以上連続的に印加しても劣化は何らみ
とめられなかった。)という特徴を有する2反面、本圧
電効果セフミック1は従来の圧電効果セフミックと同様
に積層厚を余り厚くすることは困難で、9鞘程度が限界
とされている。ちなみに本圧電効果セフミック1のセフ
ミック板2としては、マグネシウム・ニオブ酸鉛とチタ
ン酸鉛の二成分固溶体セラミック、(1〜X)Pb (
Mg1/s Nb2/s) Os −PbTiO3,の
うち例えばXが肌65近くのものが使用されている。
Kono Piezoelectric Effect Ceramic 11-t, recently developed and used by NEC Corporation, is a device made by laminating and sintering cefmic plates 2 and internal electrode plates 3 alternately. After cutting the internal electrode plate 3 into a shape and size, the internal electrode plate 3 exposed on the entire circumference is covered with insulating material 4 every other layer on both left and right sides.
It is electrically insulated and has external electrodes 5 and 6 formed on both left and right sides. Therefore, every other layer of the internal electrode plate 31-1 is electrically connected to the external electrode plate 5 and
C is connected. Wood piezoelectric effect Cefmic 1 differs from conventional piezoelectric effect Cefmic 1 in that it generates mass-market distortion even when the applied voltage is low (for example, even at 100 μm), and does not deteriorate at all even when voltage is repeatedly applied (according to central testing). According to the authors, no deterioration was observed even when the voltage pass μ'fe was continuously applied more than 500 million times.2 On the other hand, this piezoelectric effect Cefmic 1 has the same characteristics as the conventional piezoelectric effect Cefmic 1, which has a layered structure. It is difficult to make the thickness too thick, and the limit is about 9 sheaths. By the way, the Cefmic plate 2 of this piezoelectric effect Cefmic 1 is made of a binary solid solution ceramic of magnesium/lead niobate and lead titanate, (1~X)Pb (
Among Mg1/s Nb2/s) Os -PbTiO3, for example, one in which X is close to 65 is used.

次に本発明Vcf$、るアクチュエータを示す第2図及
び第6図において、7及び8は第1及び第2の駆動体で
、これらは上述の圧電効果セフミックの歪をある程度大
きな変位として取出す友めのもので、その具体的構成は
第4図及び第5図に示されている。即ち、第4図及び@
5図において、9は金属製の筒体で、この筒体9の一端
側に形成された雌ねじ10に栓体を兼ねるコネクター1
1を螺合してロックナツト12により固定している。1
6は筒体9の中空内部に低層されfc摩擦係数の小なる
例えばポリアセターμ樹脂製の絶縁筒で、これの内部に
円形もしくは小判形に形成された前述の圧電効果セフミ
ック1を多数積み重ね状部に収納しており、これら圧電
効果セフミック1は叛看剤にエリ相互に結合されていて
絶縁筒13に対し摺動自在になっている。14は゛電気
抵抗の低い電線で、ここでは銀線を用いており、外部電
極5及び6のうち同一極性どうしの電極の一箇所ずつを
、 ロー付は等VCより電気的に接続している。この電
線14は圧電効果セラミック1間にたるみを残してロー
付けされている。また電線14は圧電効果セフミック1
′t−絶縁筒13内に挿入した時に生ずる空間8を利用
して一配線している。そして、コネクター11側に位置
する一個の圧電効果セフミック10両外部電極5及び6
に接続されたリード線15及び16を筒体9外方に導出
し、以てリード線15及び16を電源に接続したとき各
圧電効果セフミック1が電源に対し並列に接続されるよ
うにしている。尚、17は圧電効果セフミック1とコネ
クター11との間に設けたセラミック製の絶縁板である
。18は作動部としてのプランジャで、このプランジャ
18會筒俸9の他端部内方に摺動自在に挿入し、その挿
入端をセラミック製の絶縁板19を介して圧電効果セラ
ミック1に当板させている。
Next, in FIGS. 2 and 6 showing the actuator according to the present invention, 7 and 8 are first and second driving bodies, which are used to extract the strain of the piezoelectric effect cephmic described above as a relatively large displacement. Its concrete structure is shown in FIGS. 4 and 5. That is, Figure 4 and @
In Fig. 5, reference numeral 9 denotes a metal cylindrical body, and a connector 1 that also serves as a plug body is connected to a female thread 10 formed on one end side of this cylindrical body 9.
1 are screwed together and fixed with a lock nut 12. 1
Reference numeral 6 is an insulating cylinder made of, for example, polyaceter μ resin, which is layered in the hollow interior of the cylinder 9 and has a small fc friction coefficient. These piezoelectric effect cefmics 1 are mutually bonded to the insulating tube 13 and are slidable relative to the insulating tube 13. Reference numeral 14 denotes an electric wire with low electrical resistance, in which a silver wire is used, and the electrodes of the same polarity of the external electrodes 5 and 6 are electrically connected at one point by the equal VC when soldered. This electric wire 14 is brazed with a slack left between the piezoelectric ceramics 1. In addition, the electric wire 14 is a piezoelectric effect cefmic 1
The space 8 created when the wire is inserted into the insulating tube 13 is used for wiring. Then, one piezoelectric effect cephmic 10 and both external electrodes 5 and 6 located on the connector 11 side
Lead wires 15 and 16 connected to the cylindrical body 9 are led out to the outside of the cylindrical body 9, so that when the lead wires 15 and 16 are connected to a power source, each piezoelectric effect cefmic 1 is connected in parallel to the power source. . Note that 17 is a ceramic insulating plate provided between the piezoelectric effect cefmic 1 and the connector 11. Reference numeral 18 denotes a plunger as an actuating part, and this plunger 18 is slidably inserted inside the other end of the tube 9, and its insertion end is brought into contact with the piezoelectric effect ceramic 1 via a ceramic insulating plate 19. ing.

而して本発明のアクチュエーターに上述のように構成さ
れた駆動体から取出される変位を更に大きく増幅して出
力するもので、第2図及び第3図中、20゛ハアクチユ
エーターの基体であり、短円筒状をなす胴体21の図示
上下両側に蓋体22及び23をねじ24により締結して
構成されている。
The actuator of the present invention further amplifies and outputs the displacement taken out from the drive body configured as described above. It is constructed by fastening lids 22 and 23 with screws 24 to both upper and lower sides in the drawing of a short cylindrical body 21.

25Vi出力8(1ycる出力軸で、上側の蓋体22の
中央に軸受26を介して上下方向に往復wJ可能に支持
されており、基体20円に位置された下端部に汀ロッド
27が螺合手段にエリ連結一体化されている。28は胴
体21の円周面に突設された環状凸部で、これの上面側
及び下面1IlllIには半球状の凹1fl129及び
30が例えば六個ずつ等間隔に形成されている。31は
出力軸25の上部位に各回F!A29に対応してこれら
よりも上方に位置するように形成された半球状の凹部、
32はロンド27の下方部に各四部60に対応してこれ
らよりも下方に位置するように形成された半球状の凹部
である。
25Vi output 8 (1yc output shaft, supported in the center of the upper lid body 22 via a bearing 26 so that it can reciprocate in the vertical direction wJ, and a bottom rod 27 is screwed to the lower end located at 20 yen of the base. 28 is an annular projection protruding from the circumferential surface of the body 21, and the upper and lower surfaces 1IllllI of this are provided with, for example, six hemispherical recesses 129 and 30. are formed at equal intervals. 31 is a hemispherical recess formed in the upper part of the output shaft 25 so as to correspond to each time F!A 29 and to be located above these;
Reference numeral 32 denotes a hemispherical recess formed in the lower part of the iron 27 so as to correspond to each of the four parts 60 and to be located below these parts.

そして、前記第1及び第2の駆動体7及び8μ夫々六個
ずつ基体20内に上下の位置関係をもって共に放射状に
配設され、中心側のプランジャ18の球状先端部が夫々
凹部61及び62に嵌合されていると共にコネクター1
1の球状先端部が夫々凹部29及び60に嵌合されてい
る。この結果、第1の駆動体7については中心側のブラ
ンジャ18側が斜め上方に傾いた状態で両端部が夫々出
力軸25及び胴体21に回動可能に連結された形態にな
され、第2のgwJ俸aについて杖中心側のブランジャ
18側が斜め下方に傾いた状態で両端部が夫々ロッド2
7及び胴体’211C回111ilrr能に連結された
形態になされている。
Six each of the first and second driving bodies 7 and 8μ are arranged radially in a vertical positional relationship in the base body 20, and the spherical tip of the plunger 18 on the center side is inserted into the recesses 61 and 62, respectively. Connector 1 with mated
One spherical tip is fitted into the recesses 29 and 60, respectively. As a result, the first driving body 7 has a configuration in which the plunger 18 side on the center side is tilted diagonally upward and both ends are rotatably connected to the output shaft 25 and the body 21, respectively, and the second gwJ With respect to the handle a, the plunger 18 side on the center side of the cane is tilted diagonally downward, and both ends are connected to the rod 2.
7 and the fuselage '211C times 111ilrr function is connected.

次に上記構成の作用を説明するに、本夾施例においてに
第1及び第2の駆動体7及び8に交互に通電することを
基本とする。まず第1の駆動体7に通電すると、その各
圧電効果セラミック1に所定の電圧が印加され、各圧電
効果セフミック1が積み重ね方向に伸長する如く歪む、
この歪みは圧電効果セラミック1個々では微少なもので
あるが、多数の圧電効果″11!フミック1が積み重ね
状態に設けられていることから、グランジャ1atcr
t多数の圧電効果セフミック1の歪の総和が作用し、従
ってブランジャ18が圧電効果セフミック1に強く押圧
されて、矢印A方向に進出するよう直線的に変位する。
Next, the operation of the above structure will be explained. In this embodiment, the first and second driving bodies 7 and 8 are basically energized alternately. First, when the first driving body 7 is energized, a predetermined voltage is applied to each piezoelectric effect ceramic 1, and each piezoelectric effect ceramic 1 is distorted so as to extend in the stacking direction.
This distortion is minute in each piezoelectric effect ceramic 1, but since a large number of piezoelectric effect ceramics 1 are stacked,
The sum of the strains of the large number of piezoelectric cephmics 1 acts on the plunger 18, so that the plunger 18 is strongly pressed against the piezoelectric cephmic 1 and is linearly displaced in the direction of arrow A.

すると、第1の駆動体7が上方に傾けて配設されている
ことから、ブランジャ1Bの矢印入方向の変位により出
力軸25を押上げようとする分力が生じ、この結果、第
1の駆動体7が胴体21の凹部29を中心に矢印B方向
に回動しつつ出力軸25を矢印C方向に進出させるよう
に直線的に変位させる。尚、この出力軸25の矢印C方
向の変位により、第2の駆動体8はブランジャ18の筒
体9内への押込みを伴って胴体21の四部60を中心に
矢印り方向に回動する。斯る出力軸25の進出後の状態
を第2図に二点鎖線で示す0次に第1の駆動体7を断電
して第2の駆動体8に通電すると、第1の駆動体7の圧
電効果セフミック1は縮む如く元の状態に戻ると共に、
第2の駆動体8の圧電効果セフミック1に所定の電圧が
印加されて歪み、前述したと同様にしてプランジャ18
が圧電効果セフミックIK強く押圧されて矢印E方向に
進出するよう直線的に変位する。
Then, since the first driving body 7 is disposed in an upwardly inclined manner, the displacement of the plunger 1B in the direction of the arrow causes a component force that tries to push up the output shaft 25, and as a result, the first driving body 7 The driving body 7 rotates in the direction of arrow B around the recess 29 of the body 21 and linearly displaces the output shaft 25 so as to advance in the direction of arrow C. By this displacement of the output shaft 25 in the direction of arrow C, the second driving body 8 is rotated in the direction of the arrow about the four parts 60 of the body 21 while pushing the plunger 18 into the cylinder body 9. The state after the output shaft 25 advances is shown by the two-dot chain line in FIG. The piezoelectric effect Cefmic 1 returns to its original state as if shrinking, and
A predetermined voltage is applied to the piezoelectric effect cefmic 1 of the second driving body 8 and the plunger 18 is distorted in the same manner as described above.
is strongly pressed by the piezoelectric effect Cefmic IK and is linearly displaced in the direction of arrow E.

すると、第2の駆動体8が下方に傾けて配設されている
ことから、ブランジャ18の矢印E方向の変位にエリ出
力@25を押下げようとする分力が生じ、この結果、第
2の駆動体8が胴体21の凹部60を中心に反矢印り方
向に回動しつつ出力軸25を反矢印C方向に、@退させ
るようVC度位せしめ、この出力軸25の反矢印C方向
の変位に工9、ボ1の駆動体7がブランジャ18の筒体
9円への ゛押込みを伴って反矢印B方向に@I動じ、
全てが第2図に実線で示す元の状態に戻る。斯くして、
第1及び第2の駆1#J坏7及び8に交互に通電するこ
とにより、出力軸25が矢印C方向及び反矢印C方向に
往復動するものである。
Then, since the second driving body 8 is arranged to be inclined downward, a component force is generated in the displacement of the plunger 18 in the direction of the arrow E, which tends to push down the Eri output @25. The driving body 8 rotates around the recess 60 of the body 21 in the direction opposite to the arrow C, and positions the output shaft 25 in the direction opposite to the arrow C by the VC degree so as to move the output shaft 25 backward in the direction opposite to the arrow C. Due to the displacement of , the drive body 7 of the cylinder 1 moves in the opposite direction of the arrow B as the plunger 18 is pushed into the cylindrical body 9.
Everything returns to the original state shown in solid lines in FIG. Thus,
The output shaft 25 reciprocates in the direction of arrow C and the direction opposite to arrow C by alternately energizing the first and second drive 1#J pins 7 and 8.

ところで、第1及び第2の駆動体7及び8のブランジャ
18の変位量は比較的小さく、ブランジャ18Vcよっ
て産業用ロボットのアーム等を直後駆動することニ火際
上困難である。しかしながら、本発明のアクチュエータ
によれば、ブランジャ18の変位を増幅して出力するこ
とができる。このことを第6図により原理的に説明する
に、駆動体は通電MiJ O−Y+ 間VCあり、通電
によりプウンジヤカr進出すると0を中心に角度σだけ
回動して0−Y211Ji’に位置するとし、そのとき
のブランジャの進出変位量をΔX、出力軸の変位量をy
とすると、BINa6Δx/y従ってy=Δx/BIN
a とyzる。然るにθは比較的小さく、SINθ(1
であるため、ブランジャ18の変位fkを増幅して出力
軸25の大きな往復動変位として取出すことができ、出
力軸25によって産業用ロボットのアーム等を直接駆動
することができるものである。
Incidentally, the amount of displacement of the plungers 18 of the first and second driving bodies 7 and 8 is relatively small, and it is extremely difficult to immediately drive an arm or the like of an industrial robot by the plungers 18Vc. However, according to the actuator of the present invention, the displacement of plunger 18 can be amplified and output. To explain this in principle with reference to Fig. 6, the driving body has a VC between energized MiJ O-Y+, and when it moves forward by energization, it rotates by an angle σ around 0 and is positioned at 0-Y211Ji'. The amount of advance displacement of the plunger at that time is ΔX, and the amount of displacement of the output shaft is y.
Then, BINa6Δx/y Therefore, y=Δx/BIN
a and yzru. However, θ is relatively small, and SINθ(1
Therefore, the displacement fk of the plunger 18 can be amplified and extracted as a large reciprocating displacement of the output shaft 25, and the output shaft 25 can directly drive an arm of an industrial robot or the like.

尚、上記火砲例では第1及び第2の駆動体7及び81C
よって出力軸25を矢印C方向及び反矢印C方向に変位
させるようにしたが、例えばガ12の駆動体8を省き、
その代わりに出力軸25を反矢印C方向に付勢するスプ
リングを設けてもよい・本発明は以上の説明から明らか
なように、駆動体により、圧電効果セフミックの歪をあ
る程度大きな変位として取出己、更にその変位を増幅し
て出力することができるので、産業用ロボットのアーム
等の駆動源としての利用が可能となる。しかも圧電効果
セラミックの電歪効果を利用して出力部全変位させる溝
底であるから、応答性が良く且つ度位の精度も高いとい
う種々の優れた効果f!:奏するものである。
In addition, in the above firearm example, the first and second driving bodies 7 and 81C
Therefore, the output shaft 25 is displaced in the direction of the arrow C and the direction opposite to the arrow C, but for example, the driver 8 of the moth 12 is omitted,
Instead, a spring may be provided that biases the output shaft 25 in the opposite direction of arrow C. As is clear from the above description, the present invention uses a driver to extract the strain of the piezoelectric effect cephmic as a relatively large displacement. Furthermore, since the displacement can be amplified and output, it can be used as a drive source for an arm of an industrial robot, etc. Moreover, since the groove bottom uses the electrostrictive effect of piezoelectric effect ceramic to displace the entire output section, it has various excellent effects such as good response and high degree accuracyf! : It is something that is played.

【図面の簡単な説明】[Brief explanation of drawings]

、図面は本発明の一夾施例を示し、第1図は圧電効果セ
フミックの概略を示す断面図、第2図及び第3図μアク
チュエーターの縦断面図及び部分平の原理図である。 図中、1に圧電効果セフミック、7.8μ第1゜第2の
駆動体、9は筒体、18はプフンジャ(fllf勤部ン
、20は基体、25は出力軸(出力部〕である。 第1 図 第2 図 第3 圏 第5図 14 t) 第40 第6図
The drawings show one embodiment of the present invention; FIG. 1 is a sectional view schematically showing a piezoelectric effect cefmic, and FIGS. 2 and 3 are longitudinal sectional views and partial plan views of the μ actuator. In the figure, 1 is a piezoelectric effect ceramic, 7.8μ first degree second driving body, 9 is a cylindrical body, 18 is a full force part, 20 is a base body, and 25 is an output shaft (output part). Figure 1 Figure 2 Figure 3 Area Figure 5 Figure 14 t) Figure 40 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、 基体と、この基体に往復wJ可能に設けられた出
力部と、筒体内に積層形の圧電効果セフミックを多数積
み重ね状態に収納し電圧の印加により生ずるこれら圧電
効果セフミックの歪によって作動部を変位させる駆動体
とを備え、前記駆動体をn11記出力部の往復動方向に
対し傾けて配設し、該駆動体の一端側及び他端側を夫々
前記基体及び出力部に回動可能に連結して削記乍勤部の
変位を出力部に伝達することを特徴とするアクチュエー
ター ―
1. A base body, an output part provided on this base body so as to be able to reciprocate, and a large number of laminated piezoelectric effect cephmics stored in a stacked state in a cylinder, and the actuating part being actuated by the distortion of these piezoelectric effect cephmics caused by the application of voltage. a driving body for displacing the driving body, the driving body is arranged to be inclined with respect to the reciprocating direction of the output section n11, and one end side and the other end side of the driving body are rotatable to the base body and the output section, respectively. An actuator characterized in that the actuator is connected to transmit the displacement of the cutting part to the output part.
JP58183744A 1983-09-30 1983-09-30 Actuator Granted JPS6077684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183744A JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183744A JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Publications (2)

Publication Number Publication Date
JPS6077684A true JPS6077684A (en) 1985-05-02
JPH053230B2 JPH053230B2 (en) 1993-01-14

Family

ID=16141214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183744A Granted JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Country Status (1)

Country Link
JP (1) JPS6077684A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326766U (en) * 1986-08-05 1988-02-22
US4912343A (en) * 1988-08-31 1990-03-27 Aura Systems, Inc. Electromagnetic actuator
US4952835A (en) * 1988-12-27 1990-08-28 Ford Aerospace Corporation Double saggital push stroke amplifier
US5517074A (en) * 1994-06-14 1996-05-14 U.S. Philips Corporation Piezoelectric actuator device
JP2002203997A (en) * 2000-12-28 2002-07-19 Denso Corp Piezoelectric actuator
WO2003009402A2 (en) * 2001-07-17 2003-01-30 Eads Deutschland Gmbh Actuator system
JP2013208026A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
EP2743179A1 (en) 2012-12-17 2014-06-18 EADS Deutschland GmbH Actuator arrangement and control surface arrangement, especially for an aircraft
CN110957938A (en) * 2019-12-09 2020-04-03 西安交通大学 Positive-negative bidirectional micro-displacement amplification flexible mechanism and method based on shear type piezoelectric ceramics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940344B2 (en) * 2012-03-29 2016-06-29 東洋ゴム工業株式会社 Power generation unit
JP5940343B2 (en) * 2012-03-29 2016-06-29 東洋ゴム工業株式会社 Power generation element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129578A (en) * 1973-03-27 1974-12-11
JPS59175386A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129578A (en) * 1973-03-27 1974-12-11
JPS59175386A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326766U (en) * 1986-08-05 1988-02-22
US4912343A (en) * 1988-08-31 1990-03-27 Aura Systems, Inc. Electromagnetic actuator
US4952835A (en) * 1988-12-27 1990-08-28 Ford Aerospace Corporation Double saggital push stroke amplifier
US5517074A (en) * 1994-06-14 1996-05-14 U.S. Philips Corporation Piezoelectric actuator device
JP2002203997A (en) * 2000-12-28 2002-07-19 Denso Corp Piezoelectric actuator
WO2003009402A2 (en) * 2001-07-17 2003-01-30 Eads Deutschland Gmbh Actuator system
DE10134737A1 (en) * 2001-07-17 2003-02-20 Eads Deutschland Gmbh actuator system
WO2003009402A3 (en) * 2001-07-17 2003-10-09 Eads Deutschland Gmbh Actuator system
DE10134737B4 (en) * 2001-07-17 2004-06-03 Eads Deutschland Gmbh actuator system
JP2013208026A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
EP2743179A1 (en) 2012-12-17 2014-06-18 EADS Deutschland GmbH Actuator arrangement and control surface arrangement, especially for an aircraft
CN110957938A (en) * 2019-12-09 2020-04-03 西安交通大学 Positive-negative bidirectional micro-displacement amplification flexible mechanism and method based on shear type piezoelectric ceramics

Also Published As

Publication number Publication date
JPH053230B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JPS6077684A (en) Actuator
US3377489A (en) Position control device
US5276657A (en) Metal-electroactive ceramic composite actuators
EP0460387B1 (en) Electric traction motor
EP1959511A1 (en) A thread driven polyhedron ultrasonic motor
WO1997036366A1 (en) Piezoelectric actuator or motor, method therefor and method for fabrication thereof
US20130140951A1 (en) Piezoelectric motor, drive unit, robot hand, robot, electronic component transporting apparatus, electronic component inspecting apparatus, and printer
US6215230B1 (en) Alternately stacked piezoelectric actuator in which each electrode layer leaves an alternately L-shaped stripe of piezoelectric material uncovered
EP0319038B1 (en) Sealing structure of an electrostrictive element
Dogan et al. Solid-state ceramic actuator designs
CN110635711B (en) Nanometer displacement linear stepping motor
JPH0449350B2 (en)
JPS6059981A (en) Drive device
JPS639759B2 (en)
JPH0335515B2 (en)
CN1672272A (en) Piezoactuator and method for production of the piezoactuator
JPS6098181A (en) Diaphragm pump
JPS60162488A (en) Piezoelectric element
JPS59230472A (en) Drive device
JPH07245431A (en) Laminated piezoelectric substance
US20150155799A1 (en) Wobble motor with a solid state actuator
JPH0724951Y2 (en) Drive
JPH0568194B2 (en)
JP2000022231A (en) Piezoelectric device
JP2946870B2 (en) Method and apparatus for evaluating piezoelectric material