JPS60773B2 - Vapor phase growth method for semiconductor crystal and its growth device - Google Patents

Vapor phase growth method for semiconductor crystal and its growth device

Info

Publication number
JPS60773B2
JPS60773B2 JP15445381A JP15445381A JPS60773B2 JP S60773 B2 JPS60773 B2 JP S60773B2 JP 15445381 A JP15445381 A JP 15445381A JP 15445381 A JP15445381 A JP 15445381A JP S60773 B2 JPS60773 B2 JP S60773B2
Authority
JP
Japan
Prior art keywords
growth
electrode
vapor phase
thermal decomposition
decomposition reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15445381A
Other languages
Japanese (ja)
Other versions
JPS5854627A (en
Inventor
和久 高橋
潤 大沢
健志 池田
渉 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15445381A priority Critical patent/JPS60773B2/en
Publication of JPS5854627A publication Critical patent/JPS5854627A/en
Publication of JPS60773B2 publication Critical patent/JPS60773B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 本発明は金属元素のアルキル化物を成長用材料としてこ
の熱分解反応により半導体結晶を成長基板上に気相ェピ
タキシャル成長する方法およびその成長装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor-phase epitaxial growth of semiconductor crystals on a growth substrate by a thermal decomposition reaction using an alkylated product of a metal element as a growth material, and a growth apparatus therefor.

近時、トリメチルガリウムGa(CH3)3(以下、T
MGと記す)やトリェチルィンジウムln(C2&)3
(以下、TEIと記す)、トリメチルアルミニウムAと
(CH3)3(以下、TMAと託す)等のm族元素のア
ルキル化物およびフオスフインPH3やアルシンAsH
3等のV族元素の水素化物またはトリメチルフオスフィ
ンP(C鴇)3(以下、TM円と記す)やトリメチルア
ルシンAS(CH3)3(以下、TMAsと記す)等の
V族元素のアルキル化物を成長材料として、これらの熱
分解反応によりGaAs,GaAそAs,lnPあるい
はlnGaAsP等のm‐V族化合物半導体結晶をGa
AsあるいはlnP等の基板結晶上に気相ェピタキシャ
ル成長する方法が注目されている。
Recently, trimethylgallium Ga(CH3)3 (hereinafter T
MG) and triethylindium ln(C2&)3
(hereinafter referred to as TEI), alkylated products of group m elements such as trimethylaluminum A and (CH3)3 (hereinafter referred to as TMA), and phosphine PH3 and arsine AsH
Hydride of group V elements such as hydrides of group V elements such as trimethylphosphine P(C-to)3 (hereinafter referred to as TM) and alkylated products of group V elements such as trimethylarsine AS(CH3)3 (hereinafter referred to as TMAs) By these thermal decomposition reactions, m-V group compound semiconductor crystals such as GaAs, GaAs, lnP, or lnGaAsP are grown using GaAs as a growth material.
A method of vapor phase epitaxial growth on a substrate crystal such as As or InP is attracting attention.

第1図は従来のこの方法による気相成長装置の一例を示
す概略構成図であり、図において、10はTMG、TE
I等のm族元素のアルキル化物およびPH3、AsH3
等のV族元素の水素化物を供給するためのガス配管系、
11はその流量計、12は例えば常温常圧で液体のTM
GまたはTEI中に水素Qが供給されてこの日2中にT
MGまたはTEIを気化させる蒸発器、13は同じくT
M船またはTMP中に水素日2が供給されてこの日2中
にTM$またはTMPを気化させるさめの蒸発器である
FIG. 1 is a schematic configuration diagram showing an example of a conventional vapor phase growth apparatus using this method. In the figure, 10 is TMG, TE
Alkylated products of group m elements such as I, PH3, AsH3
A gas piping system for supplying hydrides of group V elements such as
11 is the flow meter, and 12 is a TM that is liquid at normal temperature and pressure, for example.
Hydrogen Q is supplied during G or TEI and T during this day 2
The evaporator that vaporizes MG or TEI, 13 is also T
It is the same evaporator that hydrogen is supplied into the M ship or TMP and vaporizes TM$ or TMP during this day 2.

そして、2川ま成長炉で、石英反応管21の中にグラフ
アィトからなるサセプタ22が萩層されており、このサ
セプタ22上には成長基板としての基板結晶23が萩遣
されている。24は石英反応管21の周囲に設けられた
コイルであり、このコイル24に高周波電力を供給する
ことにより、サセプタ22が加熱され、その結果、基板
結晶23が加熱されるものとなっている。
In the Nikawa growth furnace, a susceptor 22 made of graphite is layered in a quartz reaction tube 21, and a substrate crystal 23 as a growth substrate is placed on the susceptor 22. A coil 24 is provided around the quartz reaction tube 21, and by supplying high frequency power to this coil 24, the susceptor 22 is heated, and as a result, the substrate crystal 23 is heated.

この装置による例えばGaAs基板結晶上へのGaAs
層の成長は、ガス配管系10‘こおいて常温常圧で液体
のTMG中に水素日2を供給することにより、この日2
中にTMGを気化させたものと、AsH3との混合ガス
を成長炉20の中に戦遣されかつ加熱されたGaAs基
板結晶23上に供給することにより、TMGおよびAs
H3の熱分解反応Ga(CH3)3J」Ga+父日3
‘1}ASH3J→AS軌2 (2’により
生ずるGaおよびAsがGaAs基板結晶上に堆積して
GaAsヱピタキシャル層が成長する。
Using this device, for example, GaAs can be deposited on a GaAs substrate crystal.
The growth of the layer is carried out by supplying hydrogen into the liquid TMG at normal temperature and pressure in the gas piping system 10'.
TMG and As
Thermal decomposition reaction of H3 Ga(CH3)3J”Ga+Father Day3
'1} ASH3J→AS trajectory 2 (Ga and As produced by 2' are deposited on the GaAs substrate crystal to grow a GaAs epitaxial layer.

ここで示したAsH3は人体に対して極めて強い毒性を
有するため、これに代わってTMAsが用いられること
もある。この場合の反応は、AS(CH3)3J→As
+*日3‘3’で示される。
Since AsH3 shown here has extremely strong toxicity to the human body, TMAs may be used instead. The reaction in this case is AS(CH3)3J→As
+* Day 3'3' indicates.

さて「 このような従来の成長法においては上記m式ま
たは(3}式により生じたメチル基(CQ)がさらに分
解してCH3」」C+教2 ‘4} により生じた炭素CがGaAs成長層中に不純物として
取り込まれ、これがアクセプタや散乱中心として作用す
る。
Now, ``In such a conventional growth method, the methyl group (CQ) generated by the above m formula or (3} formula is further decomposed into CH3''). This is taken in as an impurity and acts as an acceptor or scattering center.

このため、従来法では純度の高いェピタキシャル層を得
ることは非常に困難であった。本発明はこのような点に
鑑みてなされたもので「その目的は、金属元素のアルキ
ル化物を成長用材料としてこの熱分解反応により半導体
結晶を気相ェピタキシャル成長する際に成長層への炭素
Cの取り込みを防止することのできる気相成長方法およ
びその成長装置を提供することにある。
For this reason, it has been extremely difficult to obtain a highly pure epitaxial layer using conventional methods. The present invention has been made in view of these points, and its purpose is to reduce the amount of carbon in the growth layer when a semiconductor crystal is vapor phase epitaxially grown by this thermal decomposition reaction using an alkylated product of a metal element as a growth material. An object of the present invention is to provide a vapor phase growth method and a growth apparatus that can prevent the incorporation of C.

このような目的を達成するために、本発明は、成長用材
料が供給される成長炉内に2つの電極を配置し「 これ
ら電極間に一方の電極に対して他方の電極が正の電位に
なるように電圧を印加して、前記一方の電極側に成長基
板を設置することを特徴とするものである。すなわち、
上述したTMG「 TMA等のm族元素のアルキル化物
やTMP「TM船などのV族元素のァルキル化物は、そ
の分子状態においてm族元素あるいはV族元素は電気的
に正に、アルキル基は負に帯電しており「 いずれもい
くぶんかのイオン結合性を有している。
In order to achieve such an objective, the present invention involves arranging two electrodes in a growth reactor to which growth materials are supplied, and ``between these electrodes, one electrode is at a positive potential with respect to the other electrode. The method is characterized in that the growth substrate is placed on the one electrode side by applying a voltage such that:
In the above-mentioned alkylated products of group m elements such as TMG (TMA) and alkylated products of group V elements such as TMP and TM ships, in their molecular state, the group m element or group V element is electrically positive, and the alkyl group is electrically negative. They are both electrically charged and have some degree of ionic bonding.

したがって、成長炉内に2つの電極を設け、これら電極
間に一方の電極に対して他方の電極が正の電位になるよ
うに電圧を印加し、一方の電極側に成長基板を戦置する
ことにより、熱分解反応により生じた正に帯電したGa
、Asなどの元素分子は前記成長基板上に付着し、負に
帯電したC比などのァルキル化物は他方の電極に向うた
め、この結果、成長層に炭素Cが取り込まれることはな
くなり、純度の高い結晶を得ることができる。以下、本
発明の実施例を図面に基づいて説明する。
Therefore, two electrodes are provided in the growth reactor, a voltage is applied between these electrodes so that one electrode has a positive potential with respect to the other electrode, and the growth substrate is placed on the side of one electrode. The positively charged Ga produced by the thermal decomposition reaction
, As, etc., adhere to the growth substrate, and the negatively charged alkylated compounds, such as C ratio, move toward the other electrode. As a result, carbon C is no longer incorporated into the growth layer, and the purity is reduced. You can get high crystals. Embodiments of the present invention will be described below based on the drawings.

第2図は本発明による気相成長法を実施するための成長
装置の一実施例を示す概略構成図であり、同図において
第1図と同一符号は同一または相当部分を示している。
FIG. 2 is a schematic diagram showing an embodiment of a growth apparatus for carrying out the vapor phase growth method according to the present invention, and in this figure, the same reference numerals as in FIG. 1 indicate the same or corresponding parts.

この実施例の成長装置は、第2図に示すように、基板結
晶23が戦層されたサセプタ22に対向して副サセプタ
25を配置し、これらサセプタ22、副サセプタ25に
直流電源30の正、負両極をそれぞれ電気的に接続する
ことにより、前記サセプタ22に対して副サセプタ25
が正の電位になるように直流電源30から所定の電圧が
印加されている。なお、直流電源30の負極に後続され
たサセプタ22は負の電極を構成し、その正極に接続さ
れた副サセプタ25は正の電極を構成している。このよ
うな成長装置を用いた気相成長においては、ガス配管系
10から供給されたTMGやAsH3またはTMAsは
成長炉20内において熱分解し、この熱分解反応により
生じたGa、As、CH3等のうち電気的に正に帯電し
たGaおよびAsはサセプ夕22を介して負に帯電した
基板結晶23上に成長し、負に帯電したC比は正に帯電
した副サセプタ25側に引き寄せられる。
In the growth apparatus of this embodiment, as shown in FIG. , by electrically connecting both negative electrodes to the susceptor 22, the sub susceptor 25
A predetermined voltage is applied from the DC power supply 30 so that the voltage becomes a positive potential. Note that the susceptor 22 connected to the negative electrode of the DC power supply 30 constitutes a negative electrode, and the sub-susceptor 25 connected to the positive electrode constitutes a positive electrode. In vapor phase growth using such a growth apparatus, TMG, AsH3, or TMAs supplied from the gas piping system 10 is thermally decomposed in the growth furnace 20, and Ga, As, CH3, etc. generated by this thermal decomposition reaction are generated. Of these, the electrically positively charged Ga and As grow on the negatively charged substrate crystal 23 via the susceptor 22, and the negatively charged C ratio is attracted to the positively charged sub susceptor 25 side.

したがって、成長層中に炭素Cが取り込まれることはな
く、高純度の結晶が得られる。第3図は本発明による成
長装置の他の実施例を示す概略構成図であり、同図にお
いて第2図と同一符号は同一または相当部分を示し、こ
の場合には「基板結晶23が叢層されたサセプタ22の
表面側に格子状電極26を配置し、この格子状電極26
に対して副サセプタ25が正の電位になるように直流電
源30から所定の電圧を印加することによっても、同様
の効果が得られる。
Therefore, carbon C is not incorporated into the growth layer, and highly pure crystals can be obtained. FIG. 3 is a schematic configuration diagram showing another embodiment of the growth apparatus according to the present invention, in which the same reference numerals as in FIG. 2 indicate the same or corresponding parts. A grid-like electrode 26 is arranged on the surface side of the susceptor 22, and this grid-like electrode 26
A similar effect can also be obtained by applying a predetermined voltage from the DC power supply 30 so that the sub susceptor 25 has a positive potential.

なお、上述では成長炉として藤形のものを示したが、本
発明は、線形であっても同様に適用できる。
Although the above description shows a rattan-shaped growth furnace, the present invention is equally applicable to a linear growth furnace.

また、加熱方式として高周波による誘導方式としたが「
通常の抵抗加熱にあってもよい。さらに、材料として特
にGaAsやlnP、AそGaAs、lnGaAs−P
等のm一V族化合物について示したが、デイェチルテル
ル(C2&)2TeやデイエチルジンクZn(C2日5
)2、デイメチルカドミ・ウムCd(CH3)2 等を
用いたZnTeやCdTe等のローの族化合物の気相成
長にも適用できる。また、特に本発明の成長装置はジク
ロルシランS町2C〆2 の熱分解によるシリコンSi
の気相成長等にも応用できる。以上説明したように、本
発明によれば、金属元素のァルキル化物を成長用材料と
してこの熱分解反応により半導体結晶を気相ェピタキシ
ャル成長させる際に成長層への炭素Cの取り込みを防止
することにより、高純度の成長層が得られる効果がある
In addition, the heating method was an induction method using high frequency.
Ordinary resistance heating may be used. Furthermore, materials such as GaAs, lnP, A-GaAs, lnGaAs-P, etc.
etc., but deethyl tellurium (C2&)2Te and deethyl zinc Zn (C2day5
)2, it can also be applied to the vapor phase growth of rho group compounds such as ZnTe and CdTe using dimethylcadmium Cd(CH3)2 and the like. In particular, the growth apparatus of the present invention is capable of growing silicon by thermal decomposition of dichlorosilane S-cho 2C〆2.
It can also be applied to vapor phase growth, etc. As explained above, according to the present invention, when a semiconductor crystal is vapor-phase epitaxially grown using an alkylated metal element as a growth material through this thermal decomposition reaction, the incorporation of carbon C into the growth layer can be prevented. This has the effect of obtaining a highly pure grown layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属元素のアルキル化物の熱分解反応による気
相成長に用いられている従来の装置の一例を示す概略構
成図、第2図は本発明の気相成長方法を実施するための
気相成長装置の一実施例を示す概略構成図、第3図は本
発明による気相成長装置の他の実施例を示す概略構成図
である。 20・・・・・・成長炉、22…・・・サセプ夕(一方
の電極)、25・・・・・・副サセプタ(他方の電極)
、26・・・・・・格子状電極、30・・・・・・直流
電源。 第1図第2図 第3図
Fig. 1 is a schematic configuration diagram showing an example of a conventional apparatus used for vapor phase growth by thermal decomposition reaction of alkylated metal elements, and Fig. 2 is a schematic diagram showing an example of a conventional apparatus used for vapor phase growth by thermal decomposition reaction of alkylated metal elements. FIG. 3 is a schematic diagram showing one embodiment of a phase growth apparatus. FIG. 3 is a schematic diagram showing another embodiment of a vapor phase growth apparatus according to the present invention. 20... Growth furnace, 22... Susceptor (one electrode), 25... Sub-susceptor (other electrode)
, 26... Grid electrode, 30... DC power supply. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 金属元素のアルキル化物を成長用材料として、この
熱分解反応により半導体結晶を成長基板上に気相エピタ
キシヤル成長する方法において、前記成長用材料が供給
される成長炉内に2つの電極を対向して配置し、これら
2つの電極間に一方の電極に対して他方の電極が正の電
位になるように電圧を印加し、前記一方の電極側に成長
基板を載置することにより、前記熱分解反応によって生
じた正に帯電した元素分子を前記成長基板上に付着させ
るとともに、負に帯電したアルキル化物を前記他方の電
極側に引き寄せることを特徴とする半導体結晶の気相成
長方法。 2 金属元素のアルキル化物を成長用材料として、この
熱分解反応により半導体結晶を成長基板上に気相エピタ
キシヤル成長する装置において、前記成長用材料が供給
される成長炉内に設けられた2つの電極と、これら2つ
の電極間に一方の電極に対して他方の電極が正の電位に
なるように電圧を印加する手段とを備え、前記一方の電
極側に前記成長基板を載置してなることを特徴とする半
導体結晶の気相成長装置。
[Scope of Claims] 1. A method for vapor-phase epitaxial growth of semiconductor crystals on a growth substrate by a thermal decomposition reaction using an alkylated product of a metal element as a growth material, in a growth furnace to which the growth material is supplied. Two electrodes are placed facing each other, a voltage is applied between these two electrodes so that one electrode has a positive potential with respect to the other electrode, and a growth substrate is placed on the one electrode side. By doing so, positively charged element molecules generated by the thermal decomposition reaction are attached to the growth substrate, and negatively charged alkylated substances are attracted to the other electrode side. Phase growth method. 2. In an apparatus for vapor-phase epitaxial growth of semiconductor crystals on a growth substrate using an alkylated product of a metal element as a growth material through this thermal decomposition reaction, two comprising an electrode and a means for applying a voltage between these two electrodes so that one electrode has a positive potential with respect to the other electrode, and the growth substrate is placed on the side of the one electrode. A semiconductor crystal vapor phase growth apparatus characterized by:
JP15445381A 1981-09-28 1981-09-28 Vapor phase growth method for semiconductor crystal and its growth device Expired JPS60773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15445381A JPS60773B2 (en) 1981-09-28 1981-09-28 Vapor phase growth method for semiconductor crystal and its growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15445381A JPS60773B2 (en) 1981-09-28 1981-09-28 Vapor phase growth method for semiconductor crystal and its growth device

Publications (2)

Publication Number Publication Date
JPS5854627A JPS5854627A (en) 1983-03-31
JPS60773B2 true JPS60773B2 (en) 1985-01-10

Family

ID=15584547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15445381A Expired JPS60773B2 (en) 1981-09-28 1981-09-28 Vapor phase growth method for semiconductor crystal and its growth device

Country Status (1)

Country Link
JP (1) JPS60773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263819A (en) * 1990-03-14 1991-11-25 Fujitsu Ltd Growth method of semiconductor crystal

Also Published As

Publication number Publication date
JPS5854627A (en) 1983-03-31

Similar Documents

Publication Publication Date Title
EP0835336B1 (en) A device and a method for epitaxially growing objects by cvd
Tsang Chemical beam epitaxy of InGaAs
JPS62191493A (en) Gas phase epitaxial growth for semiconductor substance
Karam et al. Laser direct writing of single‐crystal III‐V compounds on GaAs
JP3882226B2 (en) Method for growing Mg-doped nitride III-V compound semiconductor crystal
JPS60773B2 (en) Vapor phase growth method for semiconductor crystal and its growth device
JPH0321516B2 (en)
CA1287555C (en) Metalorganic vapor phase epitaxial growth of group ii-vi semiconductor materials
JPH0754802B2 (en) Vapor growth method of GaAs thin film
EP0205034A1 (en) Chemical vapor deposition method for the GaAs thin film
JPH02289484A (en) Growing device for single crystal
JP2841799B2 (en) (III)-Vapor phase growth method of group V compound semiconductor
JP3104677B2 (en) Group III nitride crystal growth equipment
JPS63227007A (en) Vapor growth method
JPH0535719B2 (en)
JPH01206618A (en) Organic metal vapor growth method
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JPH0715133Y2 (en) Reaction tube of semiconductor thin film forming equipment
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS6398121A (en) Vapor growth method
JPH0218384A (en) Method for molecular beam epitaxial growth
JPH0697656B2 (en) Vapor phase epitaxial growth method
Miura et al. Growth of GaP by cold-wall metalorganic-chloride vapor phase epitaxy
JPH0536397B2 (en)
JPS63228713A (en) Vapor growth method